Displaying publications 541 - 560 of 812 in total

Abstract:
Sort:
  1. Khaw KY, Kumar P, Yusof SR, Ramanathan S, Murugaiyah V
    Arch Pharm (Weinheim), 2020 Nov;353(11):e2000156.
    PMID: 32716578 DOI: 10.1002/ardp.202000156
    α-Mangostin has been reported to possess a broad range of pharmacological effects including potent cholinesterase inhibition, but the development of α-mangostin as a potential lead compound is impeded by its toxicity. The present study investigated the impact of simple structural modification of α-mangostin on its cholinesterase inhibitory activities and toxicity toward neuroblastoma and liver cancer cells. The dialkylated derivatives retained good acetylcholinesterase (AChE) inhibitory activities with IC50 values between 4.15 and 6.73 µM, but not butyrylcholinesterase (BChE) inhibitory activities, compared with α-mangostin, a dual inhibitor (IC50 : AChE, 2.48 µM; BChE, 5.87 µM). Dialkylation of α-mangostin produced AChE selective inhibitors that formed hydrophobic interactions at the active site of AChE. Interestingly, all four dialkylated derivatives of α-mangostin showed much lower cytotoxicity, being 6.4- to 9.0-fold and 3.8- to 5.5-fold less toxic than their parent compound on neuroblastoma and liver cancer cells, respectively. Likewise, their selectivity index was higher by 1.9- to 4.4-fold; in particular, A2 and A4 showed improved selectivity index compared with α-mangostin. Taken together, modification of the hydroxyl groups of α-mangostin at positions C-3 and C-6 greatly influenced its BChE inhibitory and cytotoxic but not its AChE inhibitory activities. These dialkylated derivatives are viable candidates for further structural modification and refinement, worthy in the search of new AChE inhibitors with higher safety margins.
    Matched MeSH terms: Liver Neoplasms/drug therapy*
  2. Sabra R, Billa N, Roberts CJ
    Int J Pharm, 2019 Dec 15;572:118775.
    PMID: 31678385 DOI: 10.1016/j.ijpharm.2019.118775
    In the present study, we successfully developed a cetuximab-conjugated modified citrus pectin-chitosan nanoparticles for targeted delivery of curcumin (Cet-MCPCNPs) for the treatment of colorectal cancer. In vitro analyses revealed that nanoparticles were spherical with size of 249.33 ± 5.15 nm, a decent encapsulation efficiency (68.43 ± 2.4%) and a 'smart' drug release profile. 61.37 ± 0.70% of cetuximab was adsorbed to the surface of the nanoparticles. Cellular uptake studies displayed enhanced internalization of Cet-MCPCNPs in Caco-2 (EGFR +ve) cells, which ultimately resulted in a significant reduction in cancer cell propagation. The cell cycle analysis indicated that Cet- MCPCNPs induced cell death in enhanced percentage of Caco-2 cells by undergoing cell cycle arrest in the G2/M phase. These data suggest that Cet-MCPCNPs represent a new and promising targeting approach for the treatment of colorectal cancer.
    Matched MeSH terms: Colonic Neoplasms/drug therapy*
  3. Chowdhury MR, Moshikur RM, Wakabayashi R, Tahara Y, Kamiya N, Moniruzzaman M, et al.
    Int J Pharm, 2019 Jun 30;565:219-226.
    PMID: 31077761 DOI: 10.1016/j.ijpharm.2019.05.020
    In order to prevent common hypersensitivity reactions to paclitaxel injections (Taxol), we previously reported an ionic liquid-mediated paclitaxel (IL-PTX) formulation with small particle size and narrow size distribution. The preliminary work showed high PTX solubility in the IL, and the formulation demonstrated similar antitumor activity to Taxol, while inducing a smaller hypersensitivity effect in in vitro cell experiments. In this study, the stability of the IL-PTX formulation was monitored by quantitative HPLC analysis, which showed that IL-PTX was more stable at 4 °C than at room temperature. The in vivo study showed that the IL-PTX formulation could be used in a therapeutic application as a biocompatible component of a drug delivery system. To assess the in-vivo biocompatibility, IL or IL-mediated formulations were administered intravenously by maintaining physiological buffered conditions (neutral pH and isotonic salt concentration). From in vivo pharmacokinetics data, the IL-PTX formulation was found to have a similar systemic circulation time and slower elimination rate compared to cremophor EL mediated paclitaxel (CrEL-PTX). Furthermore, in vivo antitumor and hypersensitivity experiments in C57BL/6 mice revealed that IL-PTX had similar antitumor activity to CrEL-PTX, but a significantly smaller hypersensitivity effect compared with CrEL-PTX. Therefore, the IL-mediated formulation has potential to be an effective and safe drug delivery system for PTX.
    Matched MeSH terms: Skin Neoplasms/drug therapy
  4. Das SS, Alkahtani S, Bharadwaj P, Ansari MT, ALKahtani MDF, Pang Z, et al.
    Int J Pharm, 2020 Jul 30;585:119556.
    PMID: 32574684 DOI: 10.1016/j.ijpharm.2020.119556
    In recent years, due to the effective drug delivery and preciseness of tumor sites or microenvironment, the targeted drug delivery approaches have gained ample attention for tumor metastasis therapy. The conventional treatment approaches for metastasis therapy have reported with immense adverse effects because they exhibited maximum probability of killing the carcinogenic cells along with healthy cells. The tumor vasculature, comprising of vasculogenic impressions and angiogenesis, greatly depends upon the growth and metastasis in the tumors. Therefore, various nanocarriers-based delivery approaches for targeting to tumor vasculature have been attempted as efficient and potential approaches for the treatment of tumor metastasis and the associated lesions. Furthermore, the targeted drug delivery approaches have found to be most apt way to overcome from all the limitations and adverse effects associated with the conventional therapies. In this review, various approaches for efficient targeting of pharmacologically active chemotherapeutics against tumor metastasis with the cohesive objectives of prognosis, tracking and therapy are summarized.
    Matched MeSH terms: Neoplasms/drug therapy*
  5. Samad MA, Saiman MZ, Abdul Majid N, Karsani SA, Yaacob JS
    Molecules, 2021 Jan 13;26(2).
    PMID: 33450878 DOI: 10.3390/molecules26020376
    Colorectal cancer (CRC) is the most common cancer among males and females, which is associated with the increment of telomerase level and activity. Some plant-derived compounds are telomerase inhibitors that have the potential to decrease telomerase activity and/or level in various cancer cell lines. Unfortunately, a deeper understanding of the effects of telomerase inhibitor compound(s) on CRC cells is still lacking. Therefore, in this study, the aspects of telomerase inhibitors on a CRC cell line (HCT 116) were investigated. Screening on HCT 116 at 48 h showed that berberine (10.30 ± 0.89 µg/mL) is the most effective (lowest IC50 value) telomerase inhibitor compared to boldine (37.87 ± 3.12 µg/mL) and silymarin (>200 µg/mL). Further analyses exhibited that berberine treatment caused G0/G1 phase arrest at 48 h due to high cyclin D1 (CCND1) and low cyclin-dependent kinase 4 (CDK4) protein and mRNA levels, simultaneous downregulation of human telomerase reverse transcriptase (TERT) mRNA and human telomerase RNA component (TERC) levels, as well as a decrease in the TERT protein level and telomerase activity. The effect of berberine treatment on the cell cycle was time dependent as it resulted in a delayed cell cycle and doubling time by 2.18-fold. Telomerase activity and level was significantly decreased, and telomere erosion followed suit. In summary, our findings suggested that berberine could decrease telomerase activity and level of HCT 116, which in turn inhibits the proliferative ability of the cells.
    Matched MeSH terms: Colorectal Neoplasms/drug therapy*
  6. Veerasamy T, Eugin Simon S, Tan KO
    Int J Biochem Cell Biol, 2021 08;137:106016.
    PMID: 34082133 DOI: 10.1016/j.biocel.2021.106016
    Conventional chemotherapy relies on the cytotoxicity of chemo-drugs to inflict destructive effects on tumor cells. However, as most tumor cells develop resistance to chemo-drugs, small doses of chemo-drugs are unlikely to provide significant clinical benefits in cancer treatment while high doses of chemo-drugs have been shown to impact normal human cells negatively due to the non-specific nature and cytotoxicity associated with chemo-drugs. To overcome this challenge, sensitizations of tumor cells with bioactive molecules that specifically target the pro-survival and pro-apoptosis signaling pathways of the tumor cells are likely to increase the therapeutic impacts and improve the clinical outcomes by reducing the dependency and adverse effects associated with using high doses of chemo-drugs in cancer treatment. This review focuses on emerging strategies to enhance the sensitization of tumor cells toward cancer therapies based on our understanding of tumor cell biology and underlying signaling pathways.
    Matched MeSH terms: Neoplasms/drug therapy*
  7. Zin CS, Rahman NA, Ismail CR, Choy LW
    Pain Pract, 2017 07;17(6):774-781.
    PMID: 27676695 DOI: 10.1111/papr.12525
    BACKGROUND: There are currently limited data available on the patterns of opioid prescribing in Malaysia. This study investigated the patterns of opioid prescribing and characterized the dosing and duration of opioid use in patients with noncancer and cancer pain.
    METHODS: This retrospective, cross-sectional study was conducted at an outpatient hospital setting in Malaysia. All prescriptions for opioids (dihydrocodeine, fentanyl, morphine, and oxycodone) issued between January 2013 and December 2014 were examined. The number of prescriptions and patients, the distribution of mean daily dose, annual total days covered with opioids, and annual total opioid dose at the individual level were calculated and stratified by noncancer and cancer groups.
    RESULTS: A total of 1015 opioid prescriptions were prescribed for 347 patients from 2013 to 2014. Approximately 41.5% of patients (N = 144/347) and 58.5% (N = 203/347) were associated with noncancer and cancer diagnosis, respectively. Oxycodone (38.0%) was the highest prescribed primarily for the noncancer group. The majority of patients in both noncancer (74.3%) and cancer (60.4%) groups were receiving mean daily doses of < 50 mg morphine equivalents. The chronic use of opioids (> 90 days per year) was associated with 21.8% of patients in the noncancer group and 17.5% in the cancer group.
    CONCLUSIONS: The finding from this study showed that 41.5% of opioid users at an outpatient hospital setting in Malaysia received opioids for noncancer pain and 21.8% of these users were using opioids for longer than 90 days. The average daily dose in the majority of patients in both groups of noncancer and cancer was modest.
    Study site: outpatient clinic, hospital, Malaysia
    Matched MeSH terms: Neoplasms/drug therapy
  8. Sonali, Singh RP, Sharma G, Kumari L, Koch B, Singh S, et al.
    Colloids Surf B Biointerfaces, 2016 Nov 01;147:129-141.
    PMID: 27497076 DOI: 10.1016/j.colsurfb.2016.07.058
    The aim of this work was to formulate RGD-TPGS decorated theranostic liposomes, which contain both docetaxel (DTX) and quantum dots (QDs) for brain cancer imaging and therapy. RGD conjugated TPGS (RGD-TPGS) was synthesized and conjugation was confirmed by Fourier transform infrared (FTIR) spectroscopy and electrospray ionisation (ESI) mass spectroscopy (ESI-MS). The theranostic liposomes were prepared by the solvent injection method and characterized for their particle size, polydispersity, zeta-potential, surface morphology, drug encapsulation efficiency, and in-vitro release study. Biocompatibility and safety of theranostic liposomes were studied by reactive oxygen species (ROS) generation study and histopathology of brain. In-vivo study was performed for determination of brain theranostic effects in comparison with marketed formulation (Docel™) and free QDs. The particle sizes of the non-targeted and targeted theranostic liposomes were found in between 100 and 200nm. About 70% of drug encapsulation efficiency was achieved with liposomes. The drug release from RGD-TPGS decorated liposomes was sustained for more than 72h with 80% of drug release. The in-vivo results demonstrated that RGD-TPGS decorated theranostic liposomes were 6.47- and 6.98-fold more effective than Docel™ after 2h and 4h treatments, respectively. Further, RGD-TPGS decorated theranostic liposomes has reduced ROS generation effectively, and did not show any signs of brain damage or edema in brain histopathology. The results of this study have indicated that RGD-TPGS decorated theranostic liposomes are promising carrier for brain theranostics.
    Matched MeSH terms: Brain Neoplasms/drug therapy
  9. Suk KH, Gopinath SCB
    Curr Med Chem, 2017;24(30):3310-3321.
    PMID: 28464786 DOI: 10.2174/0929867324666170502122444
    BACKGROUND: Drug encapsulated nanoparticle has the potency to act as an effective antidote for various diseases. It is possible to enhance the bioavailability of drug encapsulated nanoparticle, whereby the yield is significantly higher compared to the standard formulation. The development with drug encapsulated nanoparticle has been improved drastically after demonstrating its capability of showing the enhanced thermophysical properties and stability of the drug. It is also utilized widely in cancer diagnoses, whereby the surface of the nanoparticle can be modified to enable the nanocarriers to reach the targeted location. Thus, the encapsulated nanoparticle can reveal neural stem cell differentiation due to the multifaceted nature and the biophysical cues to control the cell differentiation.

    OBJECTIVE: In this overview, different advantages of the drug encapsulated nanoparticle for the downstream applications are narrated with its appealing characteristics.

    CONCLUSION: The application of the drug encapsulated nanoparticle is unrestricted as it can be customized to the specific target cell in the living system.

    Matched MeSH terms: Neoplasms/drug therapy
  10. Bera H, Chigurupati S
    Eur J Med Chem, 2016 Nov 29;124:992-1003.
    PMID: 27783978 DOI: 10.1016/j.ejmech.2016.10.032
    Thymidine phosphorylase (TP, EC 2.4.2.4), an enzyme involved in pyrimidine salvage pathway, is identical to platelet-derived endothelial cell growth factor (PD-ECGF) and gliostatin. It is extremely upregulated in a variety of solid tumours. The TP amplification is associated with concomitant overexpression of many angiogenic factors such as matrix metalloproteases (MMPs), interleukins (ILs), vascular endothelial growth factor (VEGF) etc., resulting in promotion of angiogenesis and cancer metastasis. In addition, overshooting TP level protects tumour cells from apoptosis and helps cell survival. Thus, TP is identified as a prime target for developing novel anticancer therapies. Pioneering research activities investigated a large number of TP inhibitors, most of which are pyrimidine or purine analogues. Recently, an array of structurally diverse non-nucleobase derivatives was designed, synthesized and established as promising TP inhibitors. This review, following an outline on the TP structure and functions, gives an overview of the recent advancement of various non-nucleobase TP inhibitors as novel anti-cancer agents.
    Matched MeSH terms: Neoplasms/drug therapy*
  11. Waziri PM, Abdullah R, Rosli R, Omar AR, Abdul AB, Kassim NK, et al.
    Asian Pac J Cancer Prev, 2018 Apr 25;19(4):917-922.
    PMID: 29693341
    Clausena excavata Burm f. is used by traditional healers to treat cancer patients in South East Asia. The use of the
    plant and its compounds is based on Asian folklore with little or no scientific evidence supporting the therapeutic efficacy
    The current study aimed to determine the effect of pure clausenidin isolated from C. excavata on caspase-8-induced cell
    death as well as angiogenesis in the HepG2 hepatocellular carcinoma cell line. Caspase-8 and extrinsic death receptor
    protein expression was determined using spectrophotometry and protein profile arrays, respectively. Ultrastructural
    analysis of clausenidin-treated cells was conducted using transmission electron microscopy. In addition, anti-angiogenic
    effects of clausenidin were investigated by Western blot analysis. Clausenidin significantly (p<0.05) increased the
    activity of caspase-8 and expression of protein components of the death inducing signaling complex (DISC) in HepG2
    cells. Ultrastructural analysis of the clausenidin-treated HepG2 cells revealed morphological abnormalities typical of
    apoptosis. Furthermore, clausenidin significantly (p<0.05) decreased the expression of vascular endothelial growth
    factor (VEGF). Therefore, clausenidin is a potential anti-angiogenic agent which may induce apoptosis of hepatocellular
    carcinoma cells.
    Matched MeSH terms: Liver Neoplasms/drug therapy
  12. Biabanikhankahdani R, Alitheen NBM, Ho KL, Tan WS
    Sci Rep, 2016 11 24;6:37891.
    PMID: 27883070 DOI: 10.1038/srep37891
    Multifunctional nanocarriers harbouring specific targeting moieties and with pH-responsive properties offer great potential for targeted cancer therapy. Several synthetic drug carriers have been studied extensively as drug delivery systems but not much information is available on the application of virus-like nanoparticles (VLNPs) as multifunctional nanocarriers. Here, we describe the development of pH-responsive VLNPs, based on truncated hepatitis B virus core antigen (tHBcAg), displaying folic acid (FA) for controlled drug delivery. FA was conjugated to a pentadecapeptide containing nanoglue bound on tHBcAg nanoparticles to increase the specificity and efficacy of the drug delivery system. The tHBcAg nanoparticles loaded with doxorubicin (DOX) and polyacrylic acid (PAA) demonstrated a sustained drug release profile in vitro under tumour tissue conditions in a controlled manner and improved the uptake of DOX in colorectal cancer cells, leading to enhanced antitumour effects. This study demonstrated that DOX-PAA can be packaged into VLNPs without any modification of the DOX molecules, preserving the pharmacological activity of the loaded DOX. The nanoglue can easily be used to display a tumour-targeting molecule on the exterior surface of VLNPs and can bypass the laborious and time-consuming genetic engineering approaches.
    Matched MeSH terms: Colorectal Neoplasms/drug therapy
  13. Lim IL, Loo AVP, Subrayan V, Khang TF, See MH, Alip A, et al.
    Breast, 2018 Jun;39:117-122.
    PMID: 29660599 DOI: 10.1016/j.breast.2018.04.003
    It is now increasingly common for breast cancer patients to receive adjuvant tamoxifen therapy for a period of up to 10 years. As survival rate increases, managing tamoxifen ocular toxicities is important for patients' quality of life. Macular pigments in photoreceptor cells protect against free radical damage, which can cause macular degeneration. By reducing macular pigment concentration, tamoxifen may increase the risk of macular degeneration. Here, we compared macular pigment optical density (MPOD) and central macular thickness between breast cancer patients on tamoxifen adjuvant therapy (n = 70), and a control group (n = 72). Multiple regression analysis indicated that MPOD decreases with increasing tamoxifen dosage, up to a threshold of about 20 g, after which MPOD plateaus out. Mean MPOD in the treatment group (mean = 0.40) was significantly lower (p-value = 0.02) compared to the control group (mean = 0.47) for the left eye, and for the right eye (treatment mean = 0.39; control mean = 0.48; p-value = 0.009). No significant difference in mean central macular thickness was found between the treatment and the control group (p-values > 0.4). In the control group, MPOD and central macular thickness showed significant correlation (r∼0.30; p-values 
    Matched MeSH terms: Breast Neoplasms/drug therapy*
  14. Nawaz A, Wong TW
    J Invest Dermatol, 2018 11;138(11):2412-2422.
    PMID: 29857069 DOI: 10.1016/j.jid.2018.04.037
    5-Fluorouracil delivery profiles in the form of chitosan-folate submicron particles through skin and melanoma cells in vitro were examined using microwaves as the penetration enhancer. The in vivo pharmacokinetic profile of 5-fluorouracil was also determined. Chitosan-carboxymethyl-5-fluorouracil-folate conjugate was synthesized and processed into submicron particles by spray-drying technique. The size, zeta potential, morphology, drug content, and drug release, as well as skin permeation and retention, pharmacokinetics, in vitro SKMEL-28 melanoma cell line cytotoxicity, and intracellular trafficking profiles of drug/particles, were examined as a function of skin/melanoma cell treatment by microwaves at 2,450 MHz for 5 + 5 minutes. The level of skin drug/particle retention in vitro and in vivo increased in skin treated by microwaves. This was facilitated by the drug conjugating to chitosan and microwaves fluidizing both the protein and lipid domains of epidermis and dermis. The uptake of chitosan-folate particles by melanoma cells was mediated via lipid raft route. It was promoted by microwaves, which fluidized the lipid and protein regimes of the cell membrane, and this increased drug cytotoxicity. In vivo pharmacokinetic study indicated skin treatment by microwave-enhanced drug retention but not permeation. The combination of microwaves and submicron particles synergized skin drug retention and intracellular drug delivery.
    Matched MeSH terms: Skin Neoplasms/drug therapy*
  15. Foo JB, Low ML, Lim JH, Lor YZ, Zainol Abidin R, Eh Dam V, et al.
    Biometals, 2018 08;31(4):505-515.
    PMID: 29623473 DOI: 10.1007/s10534-018-0096-4
    Copper complexes have been widely studied for the anti-tumour application as cancer cells are reported to take up greater amounts of copper than normal cells. Preliminary study revealed that the newly synthesised copper complex [Cu(SBCM)2] displayed marked anti-proliferative towards triple-negative MDA-MB-231 breast cancer cells. Therefore, Cu(SBCM)2 has great potential to be developed as an agent for the management of breast cancer. The present study was carried out to investigate the mode of cell death induced by Cu(SBCM)2 towards MDA-MB-231 breast cancer cells. The inhibitory and morphological changes of MDA-MB-231 cells treated with Cu(SBCM)2 was determined by using MTT assay and inverted light microscope, respectively. The safety profile of Cu(SBCM)2 was also evaluated towards human dermal fibroblast (HDF) normal cells. Confirmation of apoptosis and cell cycle arrest were determined by flow cytometry analysis. The expression of p53, Bax, Bcl-2 and MMP2 protein were detected with western blot analysis. Cu(SBCM)2 significantly inhibited the growth of MDA-MB-231 cells in a dose-dependent manner with GI50 18.7 ± 3.06 µM. Indeed, Cu(SBCM)2 was less toxic towards HDF normal cells with GI50 31.8 ± 4.0 µM. Morphological study revealed that Cu(SBCM)2-treated MDA-MB-231 cells experienced cellular shrinkage, membrane blebbing, chromatin condensation and formation of apoptotic bodies, suggesting that Cu(SBCM)2 induced apoptosis in the cells, which was confirmed by Annexin-V/PI flow cytometry analysis. It was also found that Cu(SBCM)2 induced G2/M phase cell cycle arrest towards MDA-MB-231 cells. The induction of apoptosis and cell cycle arrest in the present study is possibly due to the down-regulation of the mutant p53 and MMP2 protein. In conclusion, Cu(SBCM)2 can be developed as a targeted therapy for the treatment of triple-negative breast cancer.
    Matched MeSH terms: Breast Neoplasms/drug therapy*
  16. Perumalsamy S, Aqilah Mohd Zin NA, Widodo RT, Wan Ahmad WA, Vethakkan SRDB, Huri HZ
    Curr Pharm Des, 2017;23(25):3689-3698.
    PMID: 28625137 DOI: 10.2174/1381612823666170616081256
    BACKGROUND: Chemerin is an adipokine that induces insulin resistance by the mechanism of inflammation in adipose tissue but these are still unclear. A high level of chemerin in humans is considered as a marker of inflammation in insulin resistance and obesity as well as in type 2 diabetes mellitus. Despite the role of chemerin in insulin resistance progression, chemerin as one of the novel adipokines is proposed to be involved in high cancer risk and mortality.

    AIM: The aim of this paper was to review the role of CMKLR-1 receptor and the potential therapeutic target in the management of chemerin induced type 2 diabetes mellitus and cancer.

    PATHOPHYSIOLOGY: Increased chemerin secretion activates an inflammatory response. The inflammatory response will increase the oxidative stress in adipose tissue and consequently results in an insulin-resistant state. The occurrence of inflammation, oxidative stress and insulin resistance leads to the progression of cancers.

    CONCLUSION: Chemerin is one of the markers that may involve in development of both cancer and insulin resistance. Chemokine like receptor- 1 (CMKLR-1) receptor that regulates chemerin levels exhibits a potential therapeutic target for insulin resistance, type 2 diabetes and cancer treatment.

    Matched MeSH terms: Neoplasms/drug therapy
  17. Jain A, Sharma G, Kushwah V, Garg NK, Kesharwani P, Ghoshal G, et al.
    Nanomedicine (Lond), 2017 Aug;12(15):1851-1872.
    PMID: 28703643 DOI: 10.2217/nnm-2017-0011
    AIM: This work was intended to investigate the targeting potential of fructose-tethered lipid-polymeric hybrid nanoparticles (F-BC-MTX-LPHNPs) co-loaded with beta carotene (BC) and methotrexate (MTX) in breast cancer therapeutics and find out the possible protective role of BC on MTX-induced toxicity.

    MATERIALS & METHODS: F-BC-MTX-LPHNPs were fabricated using self-assembled nano-precipitation technique. Fructose was conjugated on the surface of the particles. The in vitro cytotoxicity, sub-cellular localization and apoptotic activity of F-BC-MTX-LPHNPs were evaluated against MCF-7 breast cancer cells. The antitumor potential of F-BC-MTX-LPHNPs was further studied.

    RESULTS & CONCLUSION: Outcomes suggested that F-BC-MTX-LPHNPs induced the highest apoptosis index (0.89) against MCF-7 cells. Following 30 days of treatment, the residual tumor progression was assessed to be approximately 32%, in animals treated with F-BC-MTX-LPHNPs. F-BC-MTX-LPHNPs are competent to selectively convey the chemotherapeutic agent to the breast cancers. Beta carotene ameliorated MTX-induced hepatic and renal toxicity.

    Matched MeSH terms: Breast Neoplasms/drug therapy*
  18. Thu HE, Hussain Z, Mohamed IN, Shuid AN
    Curr Drug Targets, 2018;19(10):1109-1126.
    PMID: 28721818 DOI: 10.2174/1389450118666170718151913
    BACKGROUND: Eurycoma longifolia is a well-documented herbal medicine that has gained widespread recognition due to its versatile pharmacological activities including anticancer, antimalarial, antimicrobial, antioxidant, aphrodisiac, anti-inflammatory, anxiolytic, anti-diabetic, antirheumatism and anti-ulcer. Plethora of in vitro and in vivo studies evidenced their excellent antiproliferative and anticancer efficacy against various types of human cancers.

    OBJECTIVE: This review was aimed to critically analyze the therapeutic viability and anticancer efficacy of Eurycoma longifolia in the treatment of cancer and also to propose its molecular and translational mechanism of cytotoxicity against cancerous cells.

    RESULTS: Among a range of medicinally active compounds isolated from various parts (roots, stem, bark and leaves) of Eurycoma longifolia, 16 compounds have shown promising anti-proliferative and anticancer efficacies. Eurycomanone, one of the most active medicinal compounds of Eurycoma longifolia, displayed a strong dose-dependent anticancer efficacy against lung carcinoma (A-549 cells) and breast cancer (MCF-7 cells); however, showed moderate efficacy against gastric (MGC-803 cells) and intestinal carcinomas (HT-29 cells). The prime mode of cytotoxicity of Eurycoma longifolia and its medicinal compounds is the induction of apoptosis (programmed cell death) via the up-regulation of the expression of p53 (tumor suppressor protein) and pro-apoptotic protein (Bax) and downregulation of the expression of anti-apoptotic protein (Bcl-2). A remarkable alleviation in the mRNA expression of various cancer-associated biomarkers including heterogeneous nuclear ribonucleoprotein (hnRNP), prohibitin (PHB), annexin-1 (ANX1) and endoplasmic reticulum protein-28 (ERp28) has also been evidenced.

    CONCLUSION: Eurycoma longifolia and its medicinal constituents exhibit promising anticancer efficacy and thus can be considered as potential complementary therapy for the treatment of various types of human cancers.

    Matched MeSH terms: Neoplasms/drug therapy*
  19. Jabir RS, Ho GF, Annuar MABA, Stanslas J
    Biomarkers, 2018 Mar;23(2):142-146.
    PMID: 28554261 DOI: 10.1080/1354750X.2017.1334152
    CONTEXT: Rash and oral mucositis are major non-haematological adverse events (AEs) of docetaxel, in addition to fatigue, nausea, vomiting and diarrhoea, which restrict the use of the drug in cancer therapy. Alpha-1-acid glycoprotein (AAG) is an acute phase reactant glycoprotein and is a primary carrier of docetaxel in the blood. Docetaxel has extensive binding (>98%) to plasma proteins such as AAG, lipoproteins and albumin.

    OBJECTIVE: To study the association between plasma AAG level and non-haematological AEs of docetaxel in Malaysian breast cancer patients of three major ethnic groups (Malays, Chinese and Indians).

    MATERIALS AND METHODS: One hundred and twenty Malaysian breast cancer patients receiving docetaxel as single agent chemotherapy were investigated for AAG plasma level using enzyme-linked immunosorbent assay technique. Toxicity assessment was determined using Common Terminology Criteria of Adverse Events v4.0. The association between AAG and toxicity were then established.

    RESULTS: There was interethnic variation of plasma AAG level; it was 182 ± 85 mg/dl in Chinese, 237 ± 94 mg/dl in Malays and 240 ± 83 mg/dl in Indians. It was found that low plasma levels of AAG were significantly associated with oral mucositis and rash.

    CONCLUSIONS: This study proposes plasma AAG as a potential predictive biomarker of docetaxel non-haematological AEs namely oral mucositis and rash.

    Matched MeSH terms: Breast Neoplasms/drug therapy*
  20. Abdallah Q, Al-Deeb I, Bader A, Hamam F, Saleh K, Abdulmajid A
    Mol Med Rep, 2018 Aug;18(2):2441-2448.
    PMID: 29901194 DOI: 10.3892/mmr.2018.9155
    Angiogenesis plays a crucial role in malignant tumor progression and development. The present study aimed to identify lead plants with selective anti-angiogenic properties. A total of 26 methanolic extracts obtained from 18 plants growing in Saudi Arabia and Jordan that belong to the Lamiaceae family were screened for their cytotoxic and anti-angiogenic activities using MTT and rat aortic ring assays, respectively. Four novel extracts of Thymbra capitata (L.) Cav., Phlomis viscosa Poir, Salvia samuelssonii Rech.f., and Premna resinosa (Hochst.) Schauer were identified for their selective anti-angiogenic effects. These extracts did not exhibit cytotoxic effects on human endothelial cells (EA.hy926) indicating the involvement of indirect anti-angiogenic mechanisms. The active extracts are potential candidates for further phytochemical and mechanistic studies.
    Matched MeSH terms: Neoplasms/drug therapy*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links