Objectives: The aim of this study was to prepare magnetic/bacterial nanocellulose (Fe3O4/BNC) nanocomposite films as ecofriendly wound dressing in order to evaluate their physical, cytotoxicity and antimicrobial properties. The molecular study was carried out to evaluate expression of genes involved in healing of wounds after treatment with BNC/Fe3O4 films.
Study design materials and methods: Magnetic nanoparticles were biosynthesized by using Aloe vera extract in new isolated bacterial nanocellulose (BNC) RM1. The nanocomposites were characterized using X-ray diffraction, Fourier transform infrared, and field emission scanning electron microscopy. Moreover, swelling property and metal ions release profile of the nanocomposites were investigated. The ability of nanocomposites to promote wound healing of human dermal fibroblast cells in vitro was examined. Bioinformatics databases were used to identify genes with important healing effect. Key genes which interfered with healing were studied by quantitative real time PCR.
Results: Spherical magnetic nanoparticles (15-30 nm) were formed and immobilized within the structure of BNC. The BNC/Fe3O4 was nontoxic (IC50>500 μg/mL) with excellent wound healing efficiency after 48 hours. The nanocomposites showed good antibacterial activity ranging from 6±0.2 to 13.40±0.10 mm against Staphylococcus aureus, Staphylococcus epidermidis and Pseudomonas aeruginosa. The effective genes for the wound healing process were TGF-B1, MMP2, MMP9, Wnt4, CTNNB1, hsa-miR-29b, and hsa-miR-29c with time dependent manner. BNC/Fe3O4 has an effect on microRNA by reducing its expression and therefore causing an increase in the gene expression of other genes, which consequently resulted in wound healing.
Conclusion: This eco-friendly nanocomposite with excellent healing properties can be used as an effective wound dressing for treatment of cutaneous wounds.
METHOD: We created an iontophoresis cell; 3% CF was inserted within medullary segment of goat bone and sealed from external saline solution. The cell operated at the following voltages 30, 60 and 90 V and at the following durations 5, 10, 15, 20, 25 and 30 min. Information regarding optimal conditions for its application was then obtained. After which, correlation between voltages and time with CF concentration in the bone was analysed. A bioavailability test was also conducted to observe the optimal rate of CF elution from the graft.
RESULT: The optimal condition for the impregnation process is 3% CF at 90 V for 10 min. Bone graft impregnated with CF at optimal conditions can elute above minimum inhibitory concentration of the CF against MRSA for 21 days.
CONCLUSION: CF iontophoresis was found feasible for allograft impregnation. The technique is simple, inexpensive and reproducible clinically. Iontophoresis offers a novel solution to reduce the rate of perioperative infection in reconstructive surgery involving use of bone graft.
METHODS: PMMA pellets were prepared with three separate concentrations of each of the two antibiotics tested. They were tested to determine the effect of increasing concentration of antibiotics on the biomechanical properties of PMMA and antibiotic activity by measuring the zone of inhibition and broth elution assay.
RESULTS: Ceftaroline PMMA at 3 wt%, three-point bending was 37.17 ± 0.51 N ( p < 0.001) and axial loading was 41.95 N ± 0.51 ( p < 0.001). At 5-wt% vancomycin-PMMA, three-point bending was 41.65 ± 0.79 N ( p = 0.02) and axial loading was 49.49 ± 2.21 N ( p = 0.01). Stiffness of ceftroline-loaded PMMA in low and medium concentration was significantly higher than the vancomycin. The zone of inhibition for ceftaroline was higher than vancomycin. Ceftaroline at 3 wt% eluted up to 6 weeks (0.3 ± 0.1 μg/ml) above the minimum inhibitory concentration (MIC) and vancomycin at 2.5 wt% eluted up to 3 weeks, same as MIC, that is, 0.5 ± 0.0 μg/ml.
CONCLUSIONS: Ceftaroline, loaded at similar concentrations as vancomycin into PMMA, is a more potent alternative based on its more favourable bioactivity and elution properties, while having a lesser effect on the mechanical properties of the cement. The use of 3-wt% ceftaroline as antibiotic laden PMMA against MRSA is recommended. It should be noted that this was an in vitro study and to determine the clinical efficacy would need prospective, controlled and randomized studies.
METHODS: A total of 28 critically ill patients were included in this study. All data were collected from medical, microbiology and pharmacokinetic records. The clinical response was evaluated on the basis of clinical and microbiological parameters. The 24-h area under the curve (AUC0-24) was estimated from a single trough level using established equations.
RESULTS: Out of the 28 patients, 46% were classified as responders to vancomycin treatment. The trough vancomycin concentration did not differ between the responders and non-responders (15.02 ± 6.16 and 14.83 ± 4.80 μg mL-1; P = 0.929). High vancomycin minimum inhibitory concentration (MIC) was observed among the non-responders (P = 0.007). The ratio between vancomycin trough concentration and vancomycin MIC was significantly lower in the non-responder group (8.76 ± 3.43 vs. 12.29 ± 4.85 μg mL-1; P = 0.034). The mean ratio of estimated AUC0-24 and vancomycin MIC was 313.78 ± 117.17 μg h mL-1 in the non-responder group and 464.44 ± 139.06 μg h mL-1 in the responder group (P = 0.004). AUC0-24/MIC of ≥ 400 μg h mL-1 was documented for 77% of the responders and 27% of the non-responders (c2 = 7.03; P = 0.008).
CONCLUSIONS: Ratio of trough concentration/MIC and AUC0-24/MIC of vancomycin are better predictors for MRSA treatment outcomes than trough vancomycin concentration or AUC0-24 alone. The single trough-based estimated AUC may be sufficient for the monitoring of treatment response with vancomycin.
METHODS: Sprague-Dawley (Rattus norvegicus) rats were used as the experimental animals. The skin around the dorsum of the tested animals was shaved and pasted with 0.1 mg and 0.5 mg of the nanotitania extraction. The color and condition of the pasted area and the behavior of the animals were observed.
RESULTS: 0.1 mg nanotitania extraction application on the dorsum of the rat produced no skin color changes at day 1, day 3, day 5, or day 7 postapplication. There were no changes in their behavior up to day 7 with no skin rashes or skin scratches seen or fur changes. However, 0.5 mg of nanotitania extraction resulted in redness and less fur regrowth at day 7.
CONCLUSIONS: A 0.1 mg modified nanotitania extraction was observed to have no effect on the skin of Sprague-Dawley rats.
METHODS: Herein, we have engineered antibiotic-loaded (doxycycline or vancomycin) LPHNPs with cationic and zwitterionic lipids and examined the effects on their physicochemical characteristics (size and charge), antibiotic entrapment efficiency, and the in vitro intracellular bacterial killing efficiency against Mycobacterium smegmatis or Staphylococcus aureus infected macrophages.
RESULTS: The incorporation of cationic or zwitterionic lipids in the LPHNP formulation resulted in a size reduction in LPHNPs formulations and shifted the surface charge of bare NPs towards positive or neutral values. Also observed were influences on the drug incorporation efficiency and modulation of the drug release from the biodegradable polymeric core. The therapeutic efficacy of LPHNPs loaded with vancomycin was improved as its minimum inhibitory concentration (MIC) (2 µg/mL) versus free vancomycin (4 µg/mL). Importantly, our results show a direct relationship between the cationic surface nature of LPHNPs and its intracellular bacterial killing efficiency as the cationic doxycycline or vancomycin loaded LPHNPs reduced 4 or 3 log CFU respectively versus the untreated controls.
CONCLUSION: In our study, modulation of surface charge in the nanomaterial formulation increased macrophage uptake and intracellular bacterial killing efficiency of LPHNPs loaded with antibiotics, suggesting alternate way for optimizing their use in biomedical applications.