Displaying publications 41 - 60 of 222 in total

Abstract:
Sort:
  1. Hosseinzadeh-Bandbafha H, Li C, Chen X, Peng W, Aghbashlo M, Lam SS, et al.
    J Hazard Mater, 2022 02 15;424(Pt C):127636.
    PMID: 34740507 DOI: 10.1016/j.jhazmat.2021.127636
    Waste cooking oil (WCO) is a hazardous waste generated at staggering values globally. WCO disposal into various ecosystems, including soil and water, could result in severe environmental consequences. On the other hand, mismanagement of this hazardous waste could also be translated into the loss of resources given its energy content. Hence, finding cost-effective and eco-friendly alternative pathways for simultaneous management and valorization of WCO, such as conversion into biodiesel, has been widely sought. Due to its low toxicity, high biodegradability, renewability, and the possibility of direct use in diesel engines, biodiesel is a promising alternative to mineral diesel. However, the conventional homogeneous or heterogeneous catalysts used in the biodiesel production process, i.e., transesterification, are generally toxic and derived from non-renewable resources. Therefore, to boost the sustainability features of the process, the development of catalysts derived from renewable waste-oriented resources is of significant importance. In light of the above, the present work aims to review and critically discuss the hazardous WCO application for bioenergy production. Moreover, various waste-oriented catalysts used to valorize this waste are presented and discussed.
  2. Hu J, Yew CT, Chen X, Feng S, Yang Q, Wang S, et al.
    Talanta, 2017 Apr 01;165:419-428.
    PMID: 28153277 DOI: 10.1016/j.talanta.2016.12.086
    The identification and quantification of chemicals play a vital role in evaluation and surveillance of environmental health and safety. However, current techniques usually depend on costly equipment, professional staff, and/or essential infrastructure, limiting their accessibility. In this work, we develop paper-based capacitive sensors (PCSs) that allow simple, rapid identification and quantification of various chemicals from microliter size samples with the aid of a handheld multimeter. PCSs are low-cost parallel-plate capacitors (~$0.01 per sensor) assembled from layers of aluminum foil and filter paper via double-sided tape. The developed PCSs can identify different kinds of fluids (e.g., organic chemicals) and quantify diverse concentrations of substances (e.g., heavy metal ions) based on differences in dielectric properties, including capacitance, frequency spectrum, and dielectric loss tangent. The PCS-based method enables chemical identification and quantification to take place much cheaply, simply, and quickly at the point-of-care (POC), holding great promise for environmental monitoring in resource-limited settings.
  3. Hu QL, Zhuo JC, Fang GQ, Lu JB, Ye YX, Li DT, et al.
    Sci Adv, 2024 Apr 26;10(17):eadk3852.
    PMID: 38657063 DOI: 10.1126/sciadv.adk3852
    Many insect pests, including the brown planthopper (BPH), undergo windborne migration that is challenging to observe and track. It remains controversial about their migration patterns and largely unknown regarding the underlying genetic basis. By analyzing 360 whole genomes from around the globe, we clarify the genetic sources of worldwide BPHs and illuminate a landscape of BPH migration showing that East Asian populations perform closed-circuit journeys between Indochina and the Far East, while populations of Malay Archipelago and South Asia undergo one-way migration to Indochina. We further find round-trip migration accelerates population differentiation, with highly diverged regions enriching in a gene desert chromosome that is simultaneously the speciation hotspot between BPH and related species. This study not only shows the power of applying genomic approaches to demystify the migration in windborne migrants but also enhances our understanding of how seasonal movements affect speciation and evolution in insects.
  4. Hu Y, Ran J, Zheng Z, Jin Z, Chen X, Yin Z, et al.
    Acta Biomater, 2018 04 15;71:168-183.
    PMID: 29524675 DOI: 10.1016/j.actbio.2018.02.019
    Anterior cruciate ligament (ACL) is one of the most difficult tissues to heal once injured. Ligament regeneration and tendon-bone junction healing are two major goals of ACL reconstruction. This study aimed to investigate the synergistic therapeutic effects of Stromal cell-derived factor 1 (SDF-1)-releasing collagen-silk (CSF) scaffold combined with intra-articular injection of ligament-derived stem/progenitor cells (LSPCs) for ACL regeneration and the amelioration in the long-term complication of osteoarthritis (OA). The stem cell recruitment ability of CSF scaffold and the multipotency, particularly the tendon forming ability of LSPCs from rabbits were characterized in vitro, while the synergistic effect of the CSF scaffold and LSPCs for ACL regeneration and OA amelioration were investigated in vivo at 1, 3, and 6 months with a rabbit ACL reconstruction model. The CSF scaffold was used as a substitute for the ACL, and LSPCs were injected into the joint cavity after 7 days of the ACL reconstruction. CSF scaffold displayed a controlled release pattern for the encapsulated protein for up to 7 days with an increased stiffness in the mechanical property. LSPCs, which exhibited highly I Collagen and CXCR4 expression, were attracted by SDF-1 and successfully relocated into the CSF scaffold at 1 month in vivo. At 3 and 6 months post-treatment, the CSF scaffold combined with LSPCs (CSFL group) enhanced the regeneration of ACL tissue, and promoted bone tunnel healing. Furthermore, the OA progression was impeded efficiently. Our findings here provided a new strategy that using stem cell recruiting CSF scaffold with tissue-specific stem cells, could be a promising solution for ACL regeneration.

    STATEMENT OF SIGNIFICANCE: In this study, we developed a silk scaffold with increased stiffness and SDF-1 controlled release capacity for ligament repair. This advanced scaffold transplantation combined with intra-articular injection of LSPCs (which was isolated from rabbit ligament for the first time in this study) promoted the regeneration of both the tendinous and bone tunnel portion of ACL. This therapeutic strategy also ameliorated cartilage degeneration and reduced the severity of arthrofibrosis. Hence, combining LSPCs injection with SDF-1-releasing silk scaffold is demonstrated as a therapeutic strategy for ACL regeneration and OA treatment in the clinic.

  5. Huang B, Zhou N, Chen X, Ong WJ, Li N
    Chemistry, 2018 Dec 10;24(69):18479-18486.
    PMID: 30381861 DOI: 10.1002/chem.201804686
    Developing highly active, non-noble-metal H2 -evolution catalysts is appealing yet still remains a great challenge in the field of electrocatalytic and photocatalytic H2 production. In this work, high quality transition-metal carbonitrides M3 CN (MXene) are investigated using well-defined density functional theory (DFT) calculations. The structural configurations, H-adsorption free energy (ΔGH ) and charge transfer for bare, surface-terminated and transition-metal (TM)-modified M3 CNO2 are systematically studied. The calculated results indicate that all bare transition metal carbonitrides exhibit strong binding between H atom and catalysts. In addition, only Ti3 CNO2 and Nb3 CNO2 have the potential to be HER active catalysts based on the ΔGH results. In an attempt to overcome poor HER activity limitations, we apply O as well as OH mixed groups and TMs modification on the Ti3 CNO2 surface for tuning HER activity, and a significant improvement of HER activity is observed. Overall, this work presents in-depth investigations for transition-metal carbonitrides (MXene) and opens up new designs for robust metal carbonitrides as noble-metal-free cocatalysts for highly efficient and low-cost MXene-based nanocomposites for water splitting applications.
  6. Huang W, Chen X, Guan Q, Zhong Z, Ma J, Yang B, et al.
    Gene, 2019 Mar 20;689:43-50.
    PMID: 30528270 DOI: 10.1016/j.gene.2018.11.083
    Atmospheric CO2 level is one of the most important factors which affect plant growth and crop production. Although many crucial genes and pathways have been identified in response to atmospheric CO2 changes, the integrated and precise mechanisms of plant CO2 response are not well understood. Alternative splicing (AS) is an important gene regulation process that affects many biological processes in plants. However, the AS pattern changes in plants in response to elevated CO2 levels have not yet been investigated. Here, we used RNA-Seq data of Arabidopsis thaliana grown under different CO2 concentration to analyze the global changes in AS. We found that AS increased with the rise in CO2 concentration. Additionally, we identified 345 differentially expressed (DE) genes and 251 differentially alternative splicing (DAS) genes under the elevated CO2 condition. Moreover, the results showed that the expression of most of the DAS genes did not change significantly, indicating that AS can serve as an independent mechanism for gene regulation in response to elevated CO2. Furthermore, our analysis of function categories revealed that the DAS genes were associated mainly with the stimulus response. Overall, this the first study to explore the changes of AS in plants in response to elevated CO2.
  7. Jiang H, Peng H, Guo H, Zeng Y, Li L, Zhang Y, et al.
    ACS Appl Mater Interfaces, 2020 Nov 18;12(46):51344-51356.
    PMID: 33146507 DOI: 10.1021/acsami.0c13139
    Thin-film lithium-ion microbatteries with a high energy density and long lifespan are exceedingly desired for developing self-powered integrated micro-nano devices and systems. However, exploring high-performance thin-film anodes still remains a challenge. Herein, a double-layer-structure diamond-like carbon-ZnS (DLC-ZnS) thin-film anode fabricated by radio frequency magnetron sputtering exhibits high specific capacity and good cycling stability up to 1000 cycles, superior to the pure ZnS thin-film anode. To understand the mechanism, the bimodal amplitude modulated-frequency modulated atomic force microscopy was used to explore the mechanical properties of the thin films, and the DLC layer shows significantly higher Young's modulus than the ZnS thin film. The DLC interface with a high Young's modulus can effectively buffer the mechanical stress originating from the huge volume changes of the ZnS layer during lithiation/delithiation processes; therefore, the DLC interface maintains the higher mechanical integrity of the DLC-ZnS thin film and improves the utilization of ZnS. In addition, the electrochemical kinetics of the DLC-ZnS and ZnS thin films were also investigated by electrochemical methods. Electrochemical impedance spectroscopy tests indicate the obstacle of the DLC interface to Li+ ion diffusion in the initial charge/discharge processes; however, the DLC-ZnS thin film exhibits lower total resistance than the ZnS thin film afterward. In particular, galvanostatic intermittent titration technique tests were performed to find out the differences between the two thin films during the galvanostatical charge/discharge processes. The results demonstrate the obviously enhanced conversion reaction reversibility and decreased alloy reaction polarization of the DLC-ZnS thin film; therefore, it delivers higher reversible capacity.
  8. Jiang H, Zhang J, Zeng Y, Chen Y, Guo H, Li L, et al.
    Nanotechnology, 2021 Nov 18;33(6).
    PMID: 34724657 DOI: 10.1088/1361-6528/ac3540
    Metal sulfides are promising anode materials for lithium ion batteries because of the high specific capacities and better electrochemical kinetics comparing to their oxide counterparts. In this paper, novel monocrystalline wurtzite ZnS@N-doped carbon (ZnS@N-C) nanoplates, whose morphology and phase are different from the common ZnS particles with cubic phase, are successfully synthesized. The ZnS@N-C nanoplates exhibit long cycle life with a high reversible specific capacity of 536.8 mAh · g-1after 500 cycles at a current density of 500 mA · g-1, which is superior to the pure ZnS nanoplates, illustrating the obvious effect of the N-doped carbon coating for mitigating volume change of the ZnS nanoplates and enhancing the electronic conductivity during charge/discharge processes. Furthermore, it is revealed that the ZnS single crystals with wurtzite phase in the ZnS@N-C nanoplates are transformed to the polycrystalline cubic phase ZnS after charge/discharge processes. In particular, the ZnS@N-C nanoplates are combined with the commercial LiNi0.6Co0.2Mn0.2O2cathode to fabricate a new type of LiNi0.6Co0.2Mn0.2O2/ZnS@N-C complete battery, which exhibits good cycling durability up to 120 cycles at a charge/discharge rate of 1 C after the prelithiation treatment on the ZnS@N-C anode, highlighting the potential of the ZnS@N-C nanoplates anode material applied in lithium ion battery.
  9. Keong CY, B V, Daker M, Hamzah MY, Mohamad SA, Lan J, et al.
    Int J Med Mushrooms, 2016;18(2):141-54.
    PMID: 27279536 DOI: 10.1615/IntJMedMushrooms.v18.i2.50
    This study investigated antioxidant and anti-inflammatory properties, and the direct cytotoxic effect of Lignosus rhinocerotis fractions, especially the polysaccharide fraction, on nasopharyngeal carcinoma cells. L. rhinocerotis crude extract was obtained through hot water extraction. The precipitate saturated with 30% ammonium sulfate was purified with ion-exchanged chromatography. Gel permeation chromatography multiangle laser light scattering analysis equipped with light scattering and UV signals revealed two district groups of polymers. A total of four peaks were observed in the total carbohydrate test. Fraction C, which was the second region of the second peak eluted with 0.3 M NaOH, showed the highest integrated molecular weight, whereas fraction E had the lowest integrated molecular weight of 19,790 Da. Fraction A contained the highest β-D-glucan content. Enzymatic analysis showed that most of the polysaccharide fractions contained β-1-3 and β-1-6 skeletal backbones. The peak eluted with 0.6 M NaOH was separated in fraction D (flask 89-92) and fraction E (93-96). The results showed that fraction E expressed higher antioxidant activities than fraction D whereas fraction D expressed higher chelating activity than fraction E. The extract saturated with 30% ammonium sulfate exhibited higher reducing power than the extract saturated with 100% ammonium sulfate. Fractions D and E significantly inhibited the secretion of tumor necrosis factor-α in lipopolysaccharide-stimulated RAW 264.7 macrophages in a dose-dependent manner. There was no apparent difference in the viability of cells exposed or unexposed to L. rhinocerotis fractions.
  10. Klionsky DJ, Abdelmohsen K, Abe A, Abedin MJ, Abeliovich H, Acevedo Arozena A, et al.
    Autophagy, 2016;12(1):1-222.
    PMID: 26799652 DOI: 10.1080/15548627.2015.1100356
  11. Klionsky DJ, Abdel-Aziz AK, Abdelfatah S, Abdellatif M, Abdoli A, Abel S, et al.
    Autophagy, 2021 Jan;17(1):1-382.
    PMID: 33634751 DOI: 10.1080/15548627.2020.1797280
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field.
  12. Kong TW, Ryu HS, Kim SC, Enomoto T, Li J, Kim KH, et al.
    J Gynecol Oncol, 2019 Mar;30(2):e39.
    PMID: 30740961 DOI: 10.3802/jgo.2019.30.e39
    The Asian Society of Gynecologic Oncology International Workshop 2018 on gynecologic oncology was held in the Ajou University Hospital, Suwon, Korea on the 24th to 25th August 2018. The workshop was an opportunity for Asian doctors to discuss the latest findings of gynecologic cancer, including cervical, ovarian, and endometrial cancers, as well as the future of fertility-sparing treatments, minimally invasive/radical/debulking surgery, radiotherapy, chemotherapy, targeted therapy, and immunotherapy. Clinical guidelines and position statement of Asian countries were presented by experts. Asian clinical trials for gynecologic cancers were reviewed and experts emphasized the point that original Asian study is beneficial for Asian patients. In Junior session, young gynecologic oncologists presented their latest research on gynecologic cancers.
  13. Li G, Yan L, Chen X, Lam SS, Rinklebe J, Yu Q, et al.
    Chemosphere, 2023 Apr;320:138058.
    PMID: 36746249 DOI: 10.1016/j.chemosphere.2023.138058
    Potentially toxic elements (PTEs) pose a great threat to ecosystems and long-term exposure causes adverse effects to wildlife and humans. Cadmium induces a variety of diseases including cancer, kidney dysfunction, bone lesions, anemia and hypertension. Here we review the ability of plants to accumulate cadmium from soil, air and water under different environmental conditions, focusing on absorption mechanisms and factors affecting these. Cadmium possess various transport mechanisms and pathways roughly divided into symplast and apoplast pathway. Excessive cadmium concentrations in the environment affects soil properties, pH and microorganism composition and function and thereby plant uptake. At the same time, plants resist cadmium toxicity by antioxidant reaction. The differences in cadmium absorption capacity of plants need more exploration to determine whether it is beneficial for crop breeding or genetic modification. Identify whether plants have the potential to become hyperaccumulator and avoid excessive cadmium uptake by edible plants. The use of activators such as wood vinegar, GLDA (Glutamic acid diacetic acid), or the placement of earthworms and fungi can speed up phytoremediation of plants, thereby reducing uptake of crop varieties and reducing human exposure, thus accelerating food safety and the health of the planet.
  14. Li M, Wang S, Zhong L, Heděnec P, Tan Z, Wang R, et al.
    Front Microbiol, 2023;14:1301480.
    PMID: 38274745 DOI: 10.3389/fmicb.2023.1301480
    Intestinal parasites, such as Eimeria, are common among plateau pika (Ochotona curzoniae). The gut microbiome is an essential driver of the host response to gastrointestinal parasites. However, the effects of intestinal protozoal parasites on the temporal variations in the gut microbiome and behavioral and physiological activities remain unknown. Our study conducted treatments involving experimental feeding of pika with Eimeria oocysts or anticoccidia under laboratory conditions to focus on the parasite-associated alterations in gut bacterial communities, host behavioral activity, physiology, and host-bacteria relationships. The results showed insignificant differences in bacterial community structures among treatments on the basis of Bray-Curtis distance metrics, whereas the patterns of temporal alterations in the bacterial communities were changed by the treatments. Bacterial alpha diversities did not vary with the treatments, and experimental feeding with Eimeria slowed down the decrement rate of alpha diversity. Furthermore, few bacterial members were significantly changed by the treatments-only the genus Ruminococcus and the species Ruminococcus flavefaciens, which were associated with energy metabolism. Experimental feeding with Eimeria modified the temporal variations in the bacterial members, including a lower loss rate of the relative abundance of the dominant families Muribaculaceae and Ruminococcaceae in the group with Eimeria experimental feeding. Moreover, a shifting energy trade-off was suggested by the parasite-induced increments in thyroid hormones (triiodothyronine and tetraiodothyronine) and decrements in exploration behavior in the group with Eimeria feeding. However, we did not detect specific connections between gut bacterial communities and pika behaviors and physiology in terms of energy trade-offs. Further in-depth research is needed to examine the role of Eimeria-modified differences in the gut bacteria of plateau pika.
  15. Li Y, Shaheen SM, Rinklebe J, Ma NL, Yang Y, Ashraf MA, et al.
    J Hazard Mater, 2021 08 15;416:126012.
    PMID: 34492887 DOI: 10.1016/j.jhazmat.2021.126012
    The rapid thermal cracking technology of biomass can convert biomass into bio-oil and is beneficial for industrial applications. Agricultural and forestry wastes are important parts of China's energy, and their high-grade utilization is useful to solve the problem of energy shortages and environmental pollution. To the best of our knowledge, the impact of nanocatalysts on converting biowastes for bio-oil has not been studied. Consequently, we examined the production of bio-oil by pyrolysis of Aesculus chinensis Bunge Seed (ACBS) using nanocatalysts (Fe2O3 and NiO catalysts) for the first time. The pyrolysis products of ACBS include 1-hydroxy-2-propanone (3.97%), acetic acid (5.42%), and furfural (0.66%). These chemical components can be recovered for use as chemical feedstock in the form of bio-oil, thus indicating the potential of ACBS as a feedstock to be converted by pyrolysis to produce value-added bio-oil. The Fe2O3 and NiO catalysts enhanced the pyrolysis process, which accelerated the precipitation of gaseous products. The pyrolysis rates of the samples gradually increased at DTGmax, effectively promoting the catalytic cracking of ACBS, which is beneficial to the development and utilization of ACBS to produce high valorization products. Combining ACBS and nanocatalysts can change the development direction of high valorization agricultural and forestry wastes in the future.
  16. Li Z, Yang Y, Chen X, He Y, Bolan N, Rinklebe J, et al.
    Chemosphere, 2023 Feb;313:137637.
    PMID: 36572363 DOI: 10.1016/j.chemosphere.2022.137637
    Microplastics are among the major contaminations in terrestrial and marine environments worldwide. These persistent organic contaminants composed of tiny particles are of concern due to their potential hazards to ecosystem and human health. Microplastics accumulates in the ocean and in terrestrial ecosystems, exerting effects on living organisms including microbiomes, fish and plants. While the accumulation and fate of microplastics in marine ecosystems is thoroughly studied, the distribution and biological effects in terrestrial soil call for more research. Here, we review the sources of microplastics and its effects on soil physical and chemical properties, including water holding capacity, bulk density, pH value as well as the potential effects to microorganisms and animals. In addition, we discuss the effects of microplastics in combination with other toxic environmental contaminants including heavy metals and antibiotics on plant growth and physiology, as well as human health and possible degradation and remediation methods. This reflect is an urgent need for monitoring projects that assess the toxicity of microplastics in soil and plants in various soil environments. The prospect of these future research activities should prioritize microplastics in agro-ecosystems, focusing on microbial degradation for remediation purposes of microplastics in the environment.
  17. Li Z, He Y, Sonne C, Lam SS, Kirkham MB, Bolan N, et al.
    Environ Pollut, 2023 Feb 15;319:120964.
    PMID: 36584860 DOI: 10.1016/j.envpol.2022.120964
    Radionuclides released from nuclear contamination harm the environment and human health. Nuclear pollution spread over large areas and the costs associated with decontamination is high. Traditional remediation methods include both chemical and physical, however, these are expensive and unsuitable for large-scale restoration. Bioremediation is the use of plants or microorganisms to remove pollutants from the environment having a lower cost and can be upscaled to eliminate contamination from soil, water and air. It is a cheap, efficient, ecologically, and friendly restoration technology. Here we review the sources of radionuclides, bioremediation methods, mechanisms of plant resistance to radionuclides and the effects on the efficiency of biological adsorption. Uptake of radionuclides by plants can be facilitated by the addition of appropriate chemical accelerators and agronomic management, such as citric acid and intercropping. Future research should accelerate the use of genetic engineering and breeding techniques to screen high-enrichment plants. In addition, field experiments should be carried out to ensure that this technology can be applied to the remediation of nuclear contaminated sites as soon as possible.
  18. Lian J, Lin D, Huang Y, Chen X, Chen L, Zhang F, et al.
    Chin Med, 2023 Sep 23;18(1):124.
    PMID: 37742025 DOI: 10.1186/s13020-023-00834-5
    Tumours do not exist in isolation from the organism; their growth, proliferation, motility, and immunosuppressive response are intricately connected to the tumour's microenvironment. As tumour cells and the microenvironment coevolve, an inflammatory microenvironment ensues, propelling the phenomenon of inflammation-cancer transformation-an idea proposed by modern medicine. This review aims to encapsulate the array of representative factors within the tumour's inflammatory microenvironment, such as interleukins (IL-6, IL-10, IL-17, IL-1β), transforming growth factor-beta (TGF-β), interferon-gamma (IFN-γ), tumour necrosis factor-alpha (TNF-α), vascular endothelial growth factor (VEGF), and matrix metalloproteinases (MMPs). Moreover, drawing upon research in traditional Chinese medicine (TCM) and pharmacology, we explore the delicate interplay between these factors and tumour-associated inflammatory cells: tumour-associated macrophages (TAMs), myeloid-derived suppressor cells (MDSCs), tumour-associated neutrophils (TANs) and dendritic cells (DCs). By analyzing the tumour-promoting effects of these entities, we delve into the connotations of Academician Tong Xiao-lin's novel model of "state-target differentiation" and its application in the diagnosis and treatment of tumours. Our aim is to enhance the precision and targeting of tumour treatment in clinical practice. Delving deeper into our understanding of tumour pathogenesis through the lens of modern medicine, we discern the key etiology and pathogenesis throughout the entire developmental stage of tumours, unveiling the evolutionary patterns of Chinese Medicine (CM) states: heat state → phlegm state → stagnation state → deficiency state. Building upon this foundation, we devised a state-regulating formula. Simultaneously, drawing on pharmacological research in traditional Chinese medicine (TCM), we meticulously identified a range of targeted drugs that effectively modulate the aforementioned tumour-related mediators. This comprehensive strategy-a harmonious integration of state identification, target recognition, and simultaneous regulation-aims to elevate clinical efficacy. The fusion of TCM with Western medicine in tumour treatment introduces novel dimensions to the precise and refined application of TCM in clinical practice.
  19. Lian X, Hong WCH, Gao F, Kolletar-Zhu K, Wang J, Cai C, et al.
    Res Dev Disabil, 2023 Oct;141:104602.
    PMID: 37757565 DOI: 10.1016/j.ridd.2023.104602
    Traditional picture books for children come with colourful images and a multitude of elements to attract attention and increase the reading interest of typical-developing (TD) children. However, children with Autism Spectrum Disorder (ASD) are less capable of filtering out unimportant elements in pictures and focusing on social items (e.g., human faces). This study proposed that the removal of background and less important elements in the pictures of children's storybooks could facilitate better attention and enhance children with ASD's focus on the main object and thus the intended meaning of the storybook. We adopted pictures from a well-known children's book and modified them by removing the inessential background elements. Then, ASD children with intellectual disabilities (ASD+ID) (n = 40), children with ID (n = 38) and TD (n = 40) were asked to view the original and modified pictures in an eye-tracking experiment, respectively. Additionally, brain activation of ASD+ID participants (n = 10) was recorded as they were viewing those pictures in an fMRI scan. Eye-tracking found that ASD+ID children viewed the modified pictures with significantly longer average fixations, fewer fixations, fewer saccades, and higher fixation/saccade duration ratio. Contrary to the original pictures, no significant differences were found among ASD+ID, ID only and TD. Especially, ASD+ID group showed highly similar visual patterns to the TD participants when viewing the modified pictures and particularly focusing on the main character in the pictures. Additional fMRI evidence on ASD+ID group also revealed that modified pictures were associated with enhanced activation in bilateral fusiform gyri as compared to those from original pictures, which might suggest increased visual attention. Theoretical and practical implications were discussed in light of our findings.
  20. Liu J, Chen X, Liu Y, Lin J, Shen J, Zhang H, et al.
    Infect Dis Poverty, 2021 Aug 21;10(1):112.
    PMID: 34419160 DOI: 10.1186/s40249-021-00895-4
    BACKGROUND: The coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome-related coronavirus-2 (SARS-CoV-2) is pandemic. However, the origins and global transmission pattern of SARS-CoV-2 remain largely unknown. We aimed to characterize the origination and transmission of SARS-CoV-2 based on evolutionary dynamics.

    METHODS: Using the full-length sequences of SARS-CoV-2 with intact geographic, demographic, and temporal information worldwide from the GISAID database during 26 December 2019 and 30 November 2020, we constructed the transmission tree to depict the evolutionary process by the R package "outbreaker". The affinity of the mutated receptor-binding region of the spike protein to angiotensin-converting enzyme 2 (ACE2) was predicted using mCSM-PPI2 software. Viral infectivity and antigenicity were tested in ACE2-transfected HEK293T cells by pseudovirus transfection and neutralizing antibody test.

    RESULTS: From 26 December 2019 to 8 March 2020, early stage of the COVID-19 pandemic, SARS-CoV-2 strains identified worldwide were mainly composed of three clusters: the Europe-based cluster including two USA-based sub-clusters; the Asia-based cluster including isolates in China, Japan, the USA, Singapore, Australia, Malaysia, and Italy; and the USA-based cluster. The SARS-CoV-2 strains identified in the USA formed four independent clades while those identified in China formed one clade. After 8 March 2020, the clusters of SARS-CoV-2 strains tended to be independent and became "pure" in each of the major countries. Twenty-two of 60 mutations in the receptor-binding domain of the spike protein were predicted to increase the binding affinity of SARS-CoV-2 to ACE2. Of all predicted mutants, the number of E484K was the largest one with 86 585 sequences, followed by S477N with 55 442 sequences worldwide. In more than ten countries, the frequencies of the isolates with E484K and S477N increased significantly. V367F and N354D mutations increased the infectivity of SARS-CoV-2 pseudoviruses (P 

Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links