Displaying publications 41 - 60 of 87 in total

Abstract:
Sort:
  1. Rehman AU, Abbas Z, Hussain Z, Hasnain J, Asma M
    Nanotechnology, 2024 Apr 09;35(26).
    PMID: 38522098 DOI: 10.1088/1361-6528/ad373d
    In industrial and engineering fields including lamination, melt-spinning, continuous casting, and fiber spinning, the flow caused by a continually moving surface is significant. Therefore, the problem of ternary hybrid nanofluid flow over a moving surface is studied. This study explores the stability and statistical analyses of the magnetohydrodynamics (MHD) forced flow of the ternary hybrid nanofluid with melting heat transfer phenomena. The impacts of viscous dissipation, Joule heating, and thermal radiation are also included in the flow. Different fluids including ternary hybrid nanofluid, hybrid nanofluids, and nanofluids with base fluid ethylene glycol (EG) are examined and compared, where magnetite (Fe3O4) and silica (SiO2) are taken as the magnetic nanomaterials while silver (Ag) is chosen as the nonmagnetic nanomaterial. The skin friction coefficient and the local Nusselt number are estimated through regression analysis. By employing similarity transformations, the governing partial differential equations are converted into non-linear ordinary differential equations. Then, the least square method is applied to solve the equations analytically. Dual solutions are established in a particular range of moving parameterλ. Due to this, a stability test is implemented to find the stable solution by using the bvp4c function in MATLAB software. It is found that the first solution is the stable one while the second is unstable. The use of ternary hybrid nanomaterials improves the heat transport rate. The increasing values of the Eckert number enlarge the heat passage. The fluid velocity and temperature profiles for nonmagnetic nanomaterials are higher than that of magnetic nanomaterials. The uniqueness and originality of this study stems from the fact that, to the best of the authors' knowledge, it is the first to use this combination technique.
  2. Ali I, Wei DQ, Khan A, Feng Y, Waseem M, Hussain Z, et al.
    Biotechnol Appl Biochem, 2024 Apr;71(2):402-413.
    PMID: 38287712 DOI: 10.1002/bab.2548
    Malonyl-CoA serves as the main building block for the biosynthesis of many important polyketides, as well as fatty acid-derived compounds, such as biofuel. Escherichia coli, Corynebacterium gultamicum, and Saccharomyces cerevisiae have recently been engineered for the biosynthesis of such compounds. However, the developed processes and strains often have insufficient productivity. In the current study, we used enzyme-engineering approach to improve the binding of acetyl-CoA with ACC. We generated different mutations, and the impact was calculated, which reported that three mutations, that is, S343A, T347W, and S350W, significantly improve the substrate binding. Molecular docking investigation revealed an altered binding network compared to the wild type. In mutants, additional interactions stabilize the binding of the inner tail of acetyl-CoA. Using molecular simulation, the stability, compactness, hydrogen bonding, and protein motions were estimated, revealing different dynamic properties owned by the mutants only but not by the wild type. The findings were further validated by using the binding-free energy (BFE) method, which revealed these mutations as favorable substitutions. The total BFE was reported to be -52.66 ± 0.11 kcal/mol for the wild type, -55.87 ± 0.16 kcal/mol for the S343A mutant, -60.52 ± 0.25 kcal/mol for T347W mutant, and -59.64 ± 0.25 kcal/mol for the S350W mutant. This shows that the binding of the substrate is increased due to the induced mutations and strongly corroborates with the docking results. In sum, this study provides information regarding the essential hotspot residues for the substrate binding and can be used for application in industrial processes.
  3. Pandey M, Choudhury H, Gunasegaran TAP, Nathan SS, Md S, Gorain B, et al.
    Drug Deliv Transl Res, 2019 04;9(2):520-533.
    PMID: 29488170 DOI: 10.1007/s13346-018-0480-1
    Atopic dermatitis (AD) is a chronically relapsing eczematous skin disease characterised by frequent episodes of rashes, severe flares, and inflammation. Till date, there is no absolute therapy for the treatment of AD; however, topical corticosteroids (TCs) are the majorly prescribed class of drugs for the management of AD in both adults and children. Though, topical route is most preferable; however, limited penetration of therapeutics across the startum cornum (SC) is one of the major challenges for scientists. Therefore, the present study was attempted to fabricate a moderate-potency TC, betamethasone valerate (BMV), in the form of chitosan nanoparticles (CS-NPs) for optimum dermal targeting and improved penetration across the SC. To further improve the targeting efficiency of BMV and to potentiate its therapeutic efficacy, the fabricated BMV-CS-NPs were coated with hyaluronic acid (HA). The prepared NPs were characterised for particle size, zeta potential, polydispersity index (PDI), entrapment efficiency, loading capacity, crystallinity, thermal behaviour, morphology, in vitro release kinetics, drug permeation across the SC, and percentage of drug retained into various skin layers. Results showed that optimised HA-BMV-CS-NPs exhibited optimum physicochemical characteristics including finest particle size (
  4. Chen LH, Xue JF, Zheng ZY, Shuhaidi M, Thu HE, Hussain Z
    Int J Biol Macromol, 2018 Sep;116:572-584.
    PMID: 29772338 DOI: 10.1016/j.ijbiomac.2018.05.068
    Hyaluronic acid (HA) plays multifaceted role in regulating various biological processes and maintaining homeostasis into the body. Numerous researches evidenced the biomedical implications of HA in skin repairmen, cancer prognosis, wound healing, tissue regeneration, anti-inflammatory, immunomodulation. The present review was aimed to summarize and critically appraise the recent developments and efficacy of HA for treatment of inflammatory skin and joint diseases. A thorough analysis of the literature revealed that HA based formulations (i.e., gels, creams, autologous graft, thin sheets, soaked gauze, gauze pad, tincture, injection) have shown remarkable efficacy in treating a wide range of inflammatory skin diseases. The safety, tolerability, and efficacy of HA (as intra-articular injection) have also been well-documented for treatment of various types of joint disease including knee osteoarthritic, joint osteoarthritis, canine osteoarthritis, and meniscal swelling. Intra-articular injection of HA produces remarkable reduction in joint pain, synovial inflammation, and articular swelling. A remarkable improvement in chondrocyte density, territorial matrix appearance, reconstitution of superficial amorphous layer of the cartilage, collagen remodelling, and regeneration of meniscus have also been evident in patients treated with HA. Conclusively, we validate that the application/administration of HA is a promising pharmacotherapeutic regimen for treatment of inflammatory skin and joint diseases.
  5. Bukhari SNA, Roswandi NL, Waqas M, Habib H, Hussain F, Khan S, et al.
    Int J Biol Macromol, 2018 Dec;120(Pt B):1682-1695.
    PMID: 30287361 DOI: 10.1016/j.ijbiomac.2018.09.188
    Hyaluronic acid (HA) plays multifaceted role in regulating the various biological processes such as skin repairmen, diagnosis of cancer, wound healing, tissue regeneration, anti-inflammatory, and immunomodulation. Owing to its remarkable biomedical and tissue regeneration potential, HA has been numerously employed as one of the imperative components of the cosmetic and nutricosmetic products. The present review aims to summarize and critically appraise recent developments and clinical investigations on cosmetic and nutricosmetic efficacy of HA for skin rejuvenation. A thorough analysis of the literature revealed that HA based formulations (i.e., gels, creams, intra-dermal filler injections, dermal fillers, facial fillers, autologous fat gels, lotion, serum, and implants, etc.) exhibit remarkable anti-wrinkle, anti-nasolabial fold, anti-aging, space-filling, and face rejuvenating properties. This has been achieved via soft tissue augmentation, improved skin hydration, collagen and elastin stimulation, and face volume restoration. HA, alone or in combination with lidocaine and other co-agents, showed promising efficacy in skin tightness and elasticity, face rejuvenation, improving aesthetic scores, reducing the wrinkle scars, longevity, and tear trough rejuvenation. Our critical analysis evidenced that application/administration of HA exhibits outstanding nutricosmetic efficacy and thus is warranted to be used as a prime component of cosmetic products.
  6. Zhuo F, Abourehab MAS, Hussain Z
    Carbohydr Polym, 2018 Oct 01;197:478-489.
    PMID: 30007638 DOI: 10.1016/j.carbpol.2018.06.023
    Nano-delivery systems have gained remarkable recognition for targeted delivery of therapeutic payload, reduced off-target effects, and improved biopharmaceutical profiles of drugs. Therefore, we aimed to fabricate polymeric nanoparticles (NPs) to deliver tacrolimus (TCS) to deeper layers of the skin in order to alleviate its systemic toxicity and improved therapeutic efficacy against atopic dermatitis (AD). To further optimize the targeting efficiency, TCS-loaded NPs were coated with hyaluronic acid (HA). Following the various physicochemical optimizations, the prepared HA-TCS-CS-NPs were tested for in vitro drug release kinetics, drug permeation across the stratum corneum, percentage of drug retained in the epidermis and dermis, and anti-AD efficacy. Results revealed that HA-TCS-CS-NPs exhibit sustained release profile, promising drug permeation ability, improved skin retention, and pronounced anti-AD efficacy. Conclusively, we anticipated that HA-based modification of TCS-CS-NPs could be a promising therapeutic approach for rationalized management of AD, particularly in children as well as in adults having steroid phobia.
  7. Hussain Z, Zainul Azlan N, Yusof AZB
    Appl Bionics Biomech, 2018;2018:8567648.
    PMID: 29515649 DOI: 10.1155/2018/8567648
    The focus of this research is to analyse both human hand motion and force, during eating, with respect to differing food characteristics and cutlery (including a fork and a spoon). A glove consisting of bend and force sensors has been used to capture the motion and contact force exerted by fingers during different eating activities. The Pearson correlation coefficient has been used to show that a significant linear relationship exists between the bending motion of the fingers and the forces exerted during eating. Analysis of variance (ANOVA) and independent samplest-tests are performed to establish whether the motion and force exerted by the fingers while eating is influenced by the different food characteristics and cutlery. The middle finger motion showed the least positive correlation with index fingertip and thumb-tip force, irrespective of the food characteristics and cutlery used. The ANOVA andt-test results revealed that bending motion of the index finger and thumb varies with respect to differing food characteristics and the type of cutlery used (fork/spoon), whereas the bending motion of the middle finger remains unaffected. Additionally, the contact forces exerted by the thumb tip and index fingertip remain unaffected with respect to differing food types and cutlery used.
  8. Hussain Z, Thu HE, Amjad MW, Hussain F, Ahmed TA, Khan S
    Mater Sci Eng C Mater Biol Appl, 2017 Aug 01;77:1316-1326.
    PMID: 28532009 DOI: 10.1016/j.msec.2017.03.226
    Curcumin derivatives have been well-documented due to their natural antioxidant, antimicrobial and anti-inflammatory activities. Curcuminoids have also gained widespread recognition due to their wide range of other activities which include anti-infective, anti-mutagenic, anticancer, anti-coagulant, antiarthrititc, and wound healing potential. Despite of having a wide range of activities, the inherent physicochemical characteristics (poor water solubility, low bioavailability, chemical instability, photodegradation, rapid metabolism and short half-life) of curcumin derivatives limit their pharmaceutical significance. Aiming to overcome these pharmaceutical issues and improving therapeutic efficacy of curcuminoids, newer strategies have been attempted in recent years. These advanced techniques include polymeric nanoparticles, nanocomposite hydrogels, nanovesicles, nanofibers, nanohybrid scaffolds, nanoconjugates, nanostructured lipid carriers (NLCs), nanoemulsion, polymeric micelles and polymeric blend films. Incorporation of curcumin in these delivery systems has shown improved solubility, transmembrane permeability, long-term stability, improved bioavailability, longer plasma half-life, target-specific delivery, and upgraded therapeutic efficacy. In this review, a range of in vitro and in vivo studies have been critically discussed to explore the pharmaceutical significance and therapeutic viability of the advanced delivery systems to improve antioxidant, anti-inflammatory and antimicrobial efficacies of curcumin and its derivatives.
  9. Thu HE, Mohamed IN, Hussain Z, Shuid AN
    J Ayurveda Integr Med, 2017 11 13;9(4):272-280.
    PMID: 29146110 DOI: 10.1016/j.jaim.2017.04.005
    BACKGROUND: Among the numerous well-documented medicinal herbs, Eurycoma longifolia (EL) has gained remarkable recognition due to its promising efficacy of stimulating bone formation in androgen-deficient osteoporosis. Though numerous animal studies have explored the bone-forming capacity of EL, the exact mechanism was yet to be explored.

    OBJECTIVE(S): The present study was aimed to investigate the mechanism of bone-forming capacity of EL using MC3T3-E1 as an in vitro osteoblastic model.

    MATERIALS AND METHODS: The cell differentiation capacity of EL was investigated by evaluating cell growth, alkaline phosphatase (ALP) activity, collagen deposition and mineralization. Taken together, time-mannered expression of bone-related mediators which include bone morphogenic protein-2 (BMP-2), ALP, runt-related transcription factor-2 (Runx-2), osteocalcin (OCN), type I collagen, osteopontin (OPN), transforming growth factor-β1 (TGF-β1) and androgen receptor (AR) were measured to comprehend bone-forming mechanism of EL.

    RESULTS: Results demonstrated a superior cell differentiation efficacy of EL (particularly at a dose of 25 μg/mL) that was evidenced by dramatically increased cell growth, higher ALP activity, collagen deposition and mineralization compared to the testosterone. Results analysis of the bone-related protein biomarkers indicated that the expression of these mediators was well-regulated in EL-treated cell cultures compared to the control groups. These findings revealed potential molecular mechanism of EL for the prevention and treatment of male osteoporosis.

    CONCLUSION: The resulting data suggested that EL exhibited superior efficacy in stimulating bone formation via up-regulating the expression of various mitogenic proteins and thus can be considered as a potential natural alternative therapy for the treatment of osteoporosis.

  10. Safdar MH, Hasan H, Afzal S, Hussain Z
    Mini Rev Med Chem, 2018;18(12):1047-1063.
    PMID: 29173165 DOI: 10.2174/1389557517666171123212039
    The immune system is an intricate and coordinated nexus serving as a natural defense to preclude internal and external pathogenic insults. The deregulation in the natural balance of immunological functions as a consequence of either over expression or under expression of immune cells tends to cause disruption of homeostasis in the body and may lead to development of numerous immune system disorders. Chalcone moieties (1,3-diphenyl-2-propen-1-one) have been well-documented as ideal lead compounds or precursors to design a wide range of pharmacologically active agents to down-regulate various immune disorders. Owing to their unique structural and molecular framework, these α, β-unsaturated carbonyl-based moieties have also gained remarkable recognition due to their other multifarious pharmacological properties including antifungal, anti-inflammatory, anti-malarial, antibacterial, anti-tuberculosis, and anticancer potential. Though a great number of methodologies are currently being employed for their synthesis, this review mainly focuses on the natural and synthetic chalcone derivatives that are exclusively synthesized via Claisen-Schmidt condensation reaction and their immunomodulatory prospects. We have critically reviewed the literature and provided convincing evidence for the promising efficacy of chalcone derivatives to modulate functioning of various innate and adaptive immune players including granulocytes, mast cells, monocytes, macrophages, platelets, dendritic cells, natural killer cells, and T-lymphocytes.
  11. Ahmed S, Govender T, Khan I, Rehman NU, Ali W, Shah SMH, et al.
    Drug Des Devel Ther, 2018;12:255-269.
    PMID: 29440875 DOI: 10.2147/DDDT.S148912
    Background and aim: The challenges with current antimicrobial drug therapy and resistance remain a significant global health threat. Nanodrug delivery systems are playing a crucial role in overcoming these challenges and open new avenues for effective antimicrobial therapy. While fluticasone (FLU), a poorly water-soluble corticosteroid, has been reported to have potential antimicrobial activity, approaches to optimize its dissolution profile and antimicrobial activity are lacking in the literature. This study aimed to combine an experimental study with molecular modeling to design stable FLU nanopolymeric particles with enhanced dissolution rates and antimicrobial activity.

    Methods: Six different polymers were used to prepare FLU nanopolymeric particles: hydroxyl propyl methylcellulose (HPMC), poly (vinylpyrrolidone) (PVP), poly (vinyl alcohol) (PVA), ethyl cellulose (EC), Eudragit (EUD), and Pluronics®. A low-energy method, nanoprecipitation, was used to prepare the polymeric nanoparticles.

    Results and conclusion: The combination of HPMC-PVP and EUD-PVP was found most effective to produce stable FLU nanoparticles, with particle sizes of 250 nm ±2.0 and 280 nm ±4.2 and polydispersity indices of 0.15 nm ±0.01 and 0.25 nm ±0.03, respectively. The molecular modeling studies endorsed the same results, showing highest polymer drug binding free energies for HPMC-PVP-FLU (-35.22 kcal/mol ±0.79) and EUD-PVP-FLU (-25.17 kcal/mol ±1.12). In addition, it was observed that Ethocel® favored a wrapping mechanism around the drug molecules rather than a linear conformation that was witnessed for other individual polymers. The stability studies conducted for 90 days demonstrated that HPMC-PVP-FLU nanoparticles stored at 2°C-8°C and 25°C were more stable. Crystallinity of the processed FLU nanoparticles was confirmed using differential scanning calorimetry, powder X-ray diffraction analysis and TEM. The Fourier transform infrared spectroscopy (FTIR) studies showed that there was no chemical interaction between the drug and chosen polymer system. The HPMC-PVP-FLU nanoparticles also showed enhanced dissolution rate (P<0.05) compared to the unprocessed counterpart. The in vitro antibacterial studies showed that HPMC-PVP-FLU nanoparticles displayed superior effect against gram-positive bacteria compared to the unprocessed FLU and positive control.

  12. Hussain Z, Yusoff ZM, Sulaiman SA
    Prim Care Diabetes, 2015 Jun;9(3):184-90.
    PMID: 25132140 DOI: 10.1016/j.pcd.2014.07.007
    AIMS: The aim of this study was to evaluate the knowledge about GDM and its corresponding relation with glycaemic level in GDM patients.
    METHOD: A cross-sectional study was conducted in antenatal clinic of Hospital Pulau Pinang, Malaysia from June 2013 to December 2013 using Gestational Diabetes Mellitus Knowledge Questionnaire (GDMKQ) on the sample of 175 GDM patients. Three most recent fasting plasma glucose (FPG) values (mmol/l) were taken from patients profiles and mean was calculated.
    RESULTS: A total of 166 patients were included in final analysis. A total mean knowledge score of 166 patients was 10.01±3.63 and total mean FPG value was 5.50±1.13. Knowledge had a significant negative association with FPG (r=- 0.306, P<0.01). Among different knowledge domains, highest mean score was seen for diet/food values domain and lowest for management of GDM. Educational level seems to be the most significant predictor of GDM knowledge and glycaemic control. Highest mean knowledge score and lowest mean glycaemic levels were recorded for patients aged 25-29 years, Malay ethnicity, working women and family history of DM.
    CONCLUSION: Higher Knowledge about GDM is related to better glycaemic control. New educational strategies should be developed to improve the lower health literacy.
    KEYWORDS: Educational level; GDM; Glycaemic level; Knowledge

    Study site: antenatal clinic of Hospital Pulau Pinang, Malaysia
  13. Thu HE, Hussain Z, Mohamed IN, Shuid AN
    J Ayurveda Integr Med, 2018 08 16;10(2):102-110.
    PMID: 30120052 DOI: 10.1016/j.jaim.2017.07.014
    BACKGROUND: Eurycoma longifolia (E. longifolia) has gained remarkable recognition due to its promising efficacy of stimulating bone formation in androgen-deficient osteoporosis. Numerous in vivo studies have explored the effects of E. longifolia on osteoporosis; however, the in vitro cellular mechanism was not discovered yet.

    OBJECTIVES: The present study was aimed to investigate the effect of E. longifolia on the proliferation, differentiation and maturation of osteoclasts and the translational mechanism of inhibition of osteoclastogenesis using RAW 264.7 cells as an in vitro osteoclastic model.

    MATERIALS AND METHODS: Having assessed cytotoxicity, the cell viability, cell proliferation rate and osteoclastic differentiation capacity of E. longifolia was investigated by evaluating the tartrate-resistant acid phosphatase (TRAP) activity in receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL)-induced osteoclasts. Taken together, the time-mannered expression of osteoclast-related protein biomarkers such as matrix metallopeptidase-9 (MMP-9), cathepsin-K, TRAP, nuclear factor of activated T-cells cytoplasmic 1 (NFATc1), superoxide (free radicals) generation and superoxide dismutase activity were also measured to comprehend the mechanism of osteoclastogenesis.

    RESULTS: E. longifolia did not show significant effects on cytotoxicity and cell proliferation of RAW 264.7 cells; however, a significant inhibition of cells differentiation and maturation of osteoclasts was observed. Moreover, a significant down-regulation of RANKL-induced TRAP activity and expression of MMP-9, cathepsin-K, TRAP, NFATc1 and generation of superoxide and enhanced superoxide dismutase activity was observed in E. longifolia treated cell cultures.

    CONCLUSION: We anticipated that E. longifolia that enhances bone regeneration on the one hand and suppresses osteoclast's maturation on the other hand may have great therapeutic value in treating osteoporosis and other bone-erosive diseases such as rheumatoid arthritis and metastasis associated with bone loss.

  14. Thu HE, Hussain Z, Mohamed IN, Shuid AN
    Curr Drug Targets, 2018;19(10):1109-1126.
    PMID: 28721818 DOI: 10.2174/1389450118666170718151913
    BACKGROUND: Eurycoma longifolia is a well-documented herbal medicine that has gained widespread recognition due to its versatile pharmacological activities including anticancer, antimalarial, antimicrobial, antioxidant, aphrodisiac, anti-inflammatory, anxiolytic, anti-diabetic, antirheumatism and anti-ulcer. Plethora of in vitro and in vivo studies evidenced their excellent antiproliferative and anticancer efficacy against various types of human cancers.

    OBJECTIVE: This review was aimed to critically analyze the therapeutic viability and anticancer efficacy of Eurycoma longifolia in the treatment of cancer and also to propose its molecular and translational mechanism of cytotoxicity against cancerous cells.

    RESULTS: Among a range of medicinally active compounds isolated from various parts (roots, stem, bark and leaves) of Eurycoma longifolia, 16 compounds have shown promising anti-proliferative and anticancer efficacies. Eurycomanone, one of the most active medicinal compounds of Eurycoma longifolia, displayed a strong dose-dependent anticancer efficacy against lung carcinoma (A-549 cells) and breast cancer (MCF-7 cells); however, showed moderate efficacy against gastric (MGC-803 cells) and intestinal carcinomas (HT-29 cells). The prime mode of cytotoxicity of Eurycoma longifolia and its medicinal compounds is the induction of apoptosis (programmed cell death) via the up-regulation of the expression of p53 (tumor suppressor protein) and pro-apoptotic protein (Bax) and downregulation of the expression of anti-apoptotic protein (Bcl-2). A remarkable alleviation in the mRNA expression of various cancer-associated biomarkers including heterogeneous nuclear ribonucleoprotein (hnRNP), prohibitin (PHB), annexin-1 (ANX1) and endoplasmic reticulum protein-28 (ERp28) has also been evidenced.

    CONCLUSION: Eurycoma longifolia and its medicinal constituents exhibit promising anticancer efficacy and thus can be considered as potential complementary therapy for the treatment of various types of human cancers.

  15. Thu HE, Mohamed IN, Hussain Z, Shuid AN
    J Ethnopharmacol, 2017 Jan 04;195:143-158.
    PMID: 27818256 DOI: 10.1016/j.jep.2016.10.085
    ETHNOPHARMACOLOGICAL RELEVANCE: Eurycoma longifolia (EL) has been well-studied traditionally as a chief ingredient of many polyherbal formulations for the management of male osteoporosis. It has also been well-recognised to protect against bone calcium loss in orchidectomised rats.

    AIM OF THE STUDY: To evaluate the effects of EL on the time-mannered sequential proliferative, differentiative, and morphogenic modulation in osteoblasts compared with testosterone.

    MATERIALS AND METHODS: Cell proliferation was analysed using MTS assay and phase contrast microscopy. Osteogenic differentiation of MC3T3-E1 cells was assessed through a series of characteristic assays which include crystal violet staining, alkaline phosphatase (ALP) activity and Van Gieson staining. Taken together, the bone mineralization of extra cellular matrix (ECM) was estimated using alizarin red s (ARS) staining, von kossa staining, scanning electron microscopic (SEM) and energy dispersive x-ray (EDX) analysis.

    RESULTS: The cell proliferation data clearly revealed the efficiency of EL particularly at a dose of 25µg/mL, in improving the growth of MC3T3-E1 cells compared with the untreated cells. Data also showed the prominence of EL in significantly promoting ALP activity throughout the entire duration of treatment compared with the testosterone-treated cells. The osteogenic differentiation potential of EL was further explored by analysing mineralization data which revealed that the calcified nodule formation (calcium deposition) and phosphate deposition was more pronounced in cells treated with 25µg/mL concentration of EL at various time points compared with the untreated and testosterone treated cells. The scanning electron microscopic (SEM) analysis also revealed highest globular masses of mineral deposits (identified as white colour crystals) in the ECM of cultured cells treated with 25µg/mL concentration of EL.

    CONCLUSION: Compared to testosterone, greater potential of EL in promoting the proliferation and osteogenic differentiation of MC3T3-E1 cells provides an in vitro basis for the prevention of male osteoporosis. Thus, we anticipate that EL can be considered as an alternative approach to testosterone replacement therapy (TRT) for the treatment of male osteoporosis.

  16. Thu HE, Mohamed IN, Hussain Z, Jayusman PA, Shuid AN
    Chin J Nat Med, 2017 Jan;15(1):71-80.
    PMID: 28259255 DOI: 10.1016/S1875-5364(17)30010-9
    Eurycoma longifolia (EL) has been well recognized as a booster of male sexual health. Over the past few decades, numerous in vivo animal studies and human clinical trials have been conducted across the globe to explore the promising role of EL in managing various male sexual disorders, which include erectile dysfunction, male infertility, low libido, and downregulated testosterone levels. The aim of the present review is to analyze and summarize the literature on human clinical trials which revealed the clinical significance and therapeutic feasibility of EL in improving male sexual health. This systematic review is focused on the following databases: Medline, Wiley Online Library, BioMed Central, Hindawi, Web of Knowledge, PubMed Central and Google Scholar, using search terms such as "Eurycoma longifolia", "EL", "Tongkat Ali", "male sexual health", "sexual infertility", "erectile dysfunction", "male libido", and "testosterone levels". Notably, only human clinical studies published between 2000 and 2014 were selected and thoroughly reviewed for relevant citations. Out of 150 articles, 11 met the inclusion criteria. The majority of articles included were randomized placebo-controlled trials, multiple cohort studies, or pilot trials. All these studies demonstrated considerable effects of EL on male sexual health disorders. Among them, 7 studies revealed remarkable association between the use of EL and the efficacy in the treatment of male sexual disorders, and remaining 4 studies failed to demonstrate sufficient effects on male sexual health. In summary, there is convincing evidence for the prominence of EL in improving the male sexual health. The review also substantiates the use of current methodology in the development of novel and more rationale natural herbal medicines for the management of male sexual disorders.
  17. Hameed HA, Khan S, Shahid M, Ullah R, Bari A, Ali SS, et al.
    Drug Des Devel Ther, 2020;14:27-41.
    PMID: 32021089 DOI: 10.2147/DDDT.S232111
    BACKGROUND: Naproxen (NP) is a non-steroidal anti-inflammatory drug with poor aqueous solubility and low oral bioavailability, which may lead to therapeutic failure. NP causes crucial GIT irritation, bleeding, and peptic and duodenal ulcers.

    PURPOSE OF THE STUDY: This study aimed to engineer and characterize polymer hybrid enteric microspheres using an integrated (experimental and molecular modelling) approach with further development to solid dosage form with modified drug release kinetics and improved bioavailability.

    MATERIALS AND METHODS: NP loaded polymer hybrid enteric microspheres (PHE-Ms) were fabricated by using a modified solvent evaporation technique coupled with molecular modelling (MM) approach. The PHE-Ms were characterized by particle size, distribution, morphology, crystallinity, EE, drug-polymer compatibility, and DSC. The optimized NP loaded PHE-Ms were further subjected to downstream procedures including tablet dosage form development, stability studies and comparative in vitro-in vivo evaluation.

    RESULTS: The hydrophobic polymer EUD-L100 and hydrophilic polymer HPMC-E5 delayed and modified drug release at intestinal pH while imparting retardation of NP release at gastric pH to diminish the gastric side effects. The crystallinity of the NP loaded PHE-Ms was established through DSC and P (XRD). The particle size for the developed formulations of PEH-Ms (M1-M5) was in the range from 29.06 ±7.3-74.31 ± 17.7 μm with Span index values of 0.491-0.69, respectively. The produced NP hybrid microspheres demonstrated retarded drug release at pH 1.2 and improved dissolution at pH 6.8. The in vitro drug release patterns were fitted to various release kinetic models and the best-followed model was the Higuchi model with a release exponent "n" value > 0.5. Stability studies at different storage conditions confirmed stability of the NP loaded PHE-Ms based tablets (P<0.05). The molecular modelling (MM) study resulted in adequate binding energy of co-polymer complex SLS-Eudragit-HPMC-Naproxen (-3.9 kcal/mol). In contrast to the NP (unprocessed) and marketed formulations, a significant increase in the Cmax of PHE-MT1 (44.41±4.43) was observed.

    CONCLUSION: The current study concludes that developing NP loaded PHE-Ms based tablets could effectively reduce GIT consequences with restored therapeutic effects. The modified release pattern could improve the dissolution rate and enhancement of oral bioavailability. The MM study strengthens the polymer-drug relationship in microspheres.

  18. Shao M, Hussain Z, Thu HE, Khan S, de Matas M, Silkstone V, et al.
    Crit Rev Ther Drug Carrier Syst, 2017;34(5):387-452.
    PMID: 29256838 DOI: 10.1615/CritRevTherDrugCarrierSyst.2017016957
    Chronic wounds which include diabetic foot ulcer (DFU), pressure ulcer, and arterial or venous ulcers compel a significant burden to the patients, healthcare providers, and the healthcare system. Chronic wounds are characterized by an excessive persistent inflammatory phase, prolonged infection, and the failure of defense cells to respond to environmental stimuli. Unlike acute wounds, chronic nonhealing wounds pose a substantial challenge to conventional wound dressings, and the development of novel and advanced wound healing modalities is needed. Toward this end, numerous conventional wound-healing modalities have been evaluated in the management of nonhealing wounds, but a multifaceted approach is lacking. Therefore, this review aims to compile and explore the wide therapeutic algorithm of current and advanced wound healing approaches to the treatment of chronic wounds. The algorithm of chronic wound healing techniques includes conventional wound dressings; approaches based on autografts, allografts, and cultured epithelial autografts; and recent modalities based on natural, modified or synthetic polymers and biomaterials, processed mutually in the form of hydrogels, films, hydrocolloids, and foams. Moreover, this review also explores the promising potential of advanced drug delivery systems for the sustained delivery of growth factors, curcumin, aloe vera, hyaluronic acid, and other bioactive substances as well as stem cell therapy. The current review summarizes the convincing evidence for the clinical dominance of polymer-based chronic wound healing modalities as well as the latest and innovative therapeutic strategies for the treatment of chronic wounds.
  19. Hussain Z, Katas H, Mohd Amin MC, Kumolosasi E
    PLoS One, 2014;9(11):e113143.
    PMID: 25396426 DOI: 10.1371/journal.pone.0113143
    The present study was conducted with the aim to investigate the immuno-modulatory and histological stabilization effects of nanocarrier-based transcutaneous co-delivery of hydrocortisone (HC) and hydroxytyrosol (HT). In this investigation, the clinical and pharmacological efficacies of nanoparticle (NP)-based formulation to alleviate 2,4-dinitrofluorobenzene (DNFB)-induced atopic dermatitis (AD) was explored by using an NC/Nga mouse model. Ex vivo visual examination of AD induction in experimental mice indicated remarkable control of NP-based formulations in reducing pathological severity of AD-like skin lesions. Therapeutic effectiveness of NP-based formulations was also evaluated by comparing skin thickness of AD-induced NP-treated mice (456±27 µm) with that of atopic mice (916±37 µm). Analysis of the immuno-spectrum of AD also revealed the dominance of NP-based formulations in restraining immunoglobulin-E (IgE), histamine, prostaglandin-E2 (PGE2), vascular endothelial growth factor-α (VEGF-α), and T-helper cells (TH1/TH2) producing cytokines in serum and skin biopsies of tested mice. These anti-AD data were further supported by histological findings that revealed alleviated pathological features, including collagen fiber deposition, fibroblasts infiltration, and fragmentation of elastic fibers in experimental mice. Thus, NP-mediated transcutaneous co-delivery of HC and HT can be considered as a promising therapy for managing immunological and histological spectra associated with AD.
  20. Hussain F, Malik A, Ayyaz U, Shafique H, Rana Z, Hussain Z
    Asian Pac J Trop Med, 2017 Nov;10(11):1054-1058.
    PMID: 29203101 DOI: 10.1016/j.apjtm.2017.10.008
    OBJECTIVE: To investigate the hepatoprotective efficacy of cranberry extract (CBE) against carbon tetrachloride (CCl4)-induced hepatic injury using in-vivo animal model.

    METHODS: The hepatoprotective efficacy of CBE (200 and 400 mg/kg) was investigated against CCl4 (4 mL/kg)-induced hepatotoxicity, elevated liver enzymes [ALT (alanine aminotransferase), AST (aspartate aminotransferase), and alkaline phosphatase (ALP)], and total protein (TP) contents in the serum. Moreover, CBE-aided antioxidant defense against hepatotoxic insult of CCl4 was measured by evaluating a number of anti-oxidative biomarkers including reduced glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), and malondialdehyde (MDA) in the serum by using spectrophotometric analyses.

    RESULTS: Results showed that the exposure of experimental animals to CCl4 did induce significant hepatotoxicity compared to the non-induced (untreated) group. The oral administration of CBE demonstrated a significant dose-dependent alleviation in the liver enzymes (AST, ALT, and ALP), increased antioxidant defense (GSH, SOD, and CAT), and reduced MDA levels in the serum of treated animals compared to the animals without treatment. The resulting data showed that the administration of CBE decreased the serum levels of ALT, AST, and ALP compared to the CCl4-induced group.

    CONCLUSIONS: The resulting data evidenced that CBE exhibits promising hepatoprotective potential against the chemical induced hepatotoxicity, maintains homeostasis in liver enzymes, and can provide significant antioxidant defense against free radicals-induced oxidative stress.

Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links