Displaying publications 41 - 60 of 129 in total

Abstract:
Sort:
  1. Aziz AN, Taha M, Ismail NH, Anouar el H, Yousuf S, Jamil W, et al.
    Molecules, 2014 Jun 19;19(6):8414-33.
    PMID: 24950444 DOI: 10.3390/molecules19068414
    Schiff bases of 3,4-dimethoxybenzenamine 1-25 were synthesized and evaluated for their antioxidant activity. All the synthesized compounds were characterized by various spectroscopic techniques. In addition, the characterizations of compounds 13, 15 and 16 were supported by crystal X-ray determinations and their geometrical parameters were compared with theoretical DFT calculations at the B3LYP level of theory. Furthermore, the X-ray crystal data of two non-crystalline compounds 8 and 18 were theoretically calculated and compared with the practical values of compounds 13, 15, 16 and found a good agreement. The compounds showed good DPPH scavenging activity ranging from 10.12 to 84.34 μM where compounds 1-4 and 6 showed stronger activity than the standard n-propyl gallate. For the superoxide anion radical assay, compounds 1-3 showed better activity than the standard.
  2. Alhares HS, Ali QA, Shaban MAA, M-Ridha MJ, Bohan HR, Mohammed SJ, et al.
    Environ Monit Assess, 2023 Aug 24;195(9):1078.
    PMID: 37615739 DOI: 10.1007/s10661-023-11689-6
    The 17 α-ethinylestradiol (EE2) adsorption from aqueous solution was examined using a novel adsorbent made from rice husk powder coated with CuO nanoparticles (CRH). Advanced analyses of FTIR, XRD, SEM, and EDSwere used to identify the classification parameters of a CRH-like surface morphology, configuration, and functional groups. The rice husk was coated with CuO nanoparticles, allowing it to create large surface area materials with significantly improved textural qualities with regard to functional use and adsorption performance, according to a detailed characterization of the synthesized materials. The adsorption process was applied successfully with elimination effectiveness of 100% which can be kept up to 61.3%. The parameters of adsorption were affecting the adsorption process significantly. Thermodynamic data stated that the process of adsorption was endothermic, spontaneous, chemisorption and the molecules of EE2 show affinity with the CRH. It was discovered that the adsorption process controlled by a pseudo-second-order kinetic model demonstrates that the chemisorption process was controlling EE2 removal. The Sips model is regarded as optimal for representing this practice, exhibiting a significantly high determination coefficient of 0.948. This coefficient implies that the adsorption mechanism indicates the occurrence of both heterogeneous and homogeneous adsorption. According to the findings, biomass can serve as a cheap, operative sorbent to remove estrogen from liquified solutions.
  3. Abdelwahab SI, Mohamed AH, Mohamed OY, Oall M, Taha MM, Mohan S, et al.
    PMID: 21747892 DOI: 10.1155/2012/137386
    Clerodendron capitatum (Willd) (family: verbenaceae) is locally named as Gung and used traditionally to treat erectile dysfunction. Therefore, the current study was designed to investigate the erectogenic properties of C. capitatum. The relaxation effect of this plant was tested on phenylephrine precontracted rabbit corpus cavernosum smooth muscle (CCSM). The effects of C. capitatum were also examined on isolated Guinea pig atria alone, in the presence of calcium chloride (Ca(2+) channel blocker), atropine (cholinergic blocker), and glibenclamide (ATP-sensitive K(+) channel blocker). These effects were confirmed on isolated rabbit aortic strips. The extract, when tested colorimetrically for its inhibitory activities on phosphordiesterase-5 (PDE-5) in vitro towards p-nitrophenyl phenyl phosphate (PNPPP), was observed to induce significant dose-dependent inhibition of PDE-5, with an ID(50) of 0.161 mg/ml (P < .05). In conclusion, our results suggest that C. capitatum possesses a relaxant effect on CCSM, which is attributable to the inhibition of PDE-5, but not mediated by the release calcium, activation of adrenergic or cholinergic receptors, or the activation of potassium channels.
  4. Abdelwahab SI, Mohan S, Mohamed Elhassan M, Al-Mekhlafi N, Mariod AA, Abdul AB, et al.
    PMID: 21234328 DOI: 10.1155/2011/156765
    Antiapoptotic and antioxidant activities of aqueous-methanolic extract (CAME) of Orthosiphonstamineus Benth(OS), and its hexane (HF), chloroform (CF), n-butanol (NBF), ethyl acetate (EAF) and water (WF) fractions were investigated. Antioxidant properties were evaluated using the assays of Folin-Ciocalteu, aluminiumtrichloride, β-carotene bleaching and DPPH. The role of OS against hydrogen peroxide induced apoptosis on MDA-M231 epithelial cells was examined using MTT assay, phase contrast microscope, colorimetric assay of caspase-3, western blot and quantitative real-time PCR. Results showed that EAF showed the highest total phenolic content followed by CAME, NBF, WF, CF and HF, respectively. Flavonoid content was in the order of the CF > EAF > HF > CAME > NBF > WF. The IC(50) values on DPPH assay for different extract/fractions were 126.2 ± 23, 31.25 ± 1.2, 15.25 ± 2.3, 13.56 ± 1.9, 23.0 ± 3.2, and 16.66 ± 1.5 μg/ml for HF, CF, EAF, NBF, WF and CAME, respectively. OSreduced the oxidation of β-carotene by hydroperoxides. Cell death was dose-dependently inhibited by pretreatment with OS. Caspase-3 and distinct morphological features suggest the anti-apoptotic activities of OS. This plant not only increased the expression of Bcl-2, but also decreased Bax expression, and ultimately reduced H(2)O(2)-induced apoptosis. The current results showed that phenolics may provide health and nutritional benefits.
  5. Alkharfy KM, Ahmad A, Almuaijel S, Bin Hashim A, Raish M, Jan BL, et al.
    J Biomol Struct Dyn, 2024 Dec 11.
    PMID: 39663630 DOI: 10.1080/07391102.2024.2439616
    The present study examined the vascular effects of peppermint or mint (Mentha longifolia L.) using an abdominal aortic rings model. Concentration-response curves for mint oil were generated after precontracting isolated mouse aorta with phenylephrine. The effect of different receptor antagonists and ion channel or enzyme inhibitors on the vasorelaxant potential of mint oil were studied. Molecular docking studies were conducted using computational techniques to investigate the potential interactions between the bioactive constituents of mint oil and key vascular targets. The tension of aortic rings, which had been contracted by phenylephrine, relaxed as a function of the concentration of mint oil (0.0002-2 mg/mL). Pretreatment of the rings with the nitric oxide synthase inhibitor (L-NAME), a nonselective β-blocker (propranolol), and a muscarinic receptor blocker (atropine) didn't show significant resistance to the vasodilatory effects of the mint oil. The vasodilatory effects of mint oil were significantly diminished when the rings were pretreated with glibenclamide, an inhibitor of ATP-sensitive K+ channels. In addition, indomethacin, a cyclooxygenase (COX) inhibitor, did influence mint oil's tension in the preparations precontracted with phenylephrine. The present findings imply that ATP-sensitive K+ channels activation, blocking of Ca2+ channels, and inhibition of COX play a role in mediating the mint oil-induced vasorelaxation. Molecular docking studies of mint oil constituents showed that β-Elemene and Aromadendrene can interact with K+ and Ca2+ channels through various hydrophobic interactions with key amino acid residues. Additional work is needed to confirm the possible beneficial application of mint oil or its constituents in regulating the vascular tone.
  6. Taha M, Ismail NH, Jamil W, Rashwan H, Kashif SM, Sain AA, et al.
    Eur J Med Chem, 2014 Sep 12;84:731-8.
    PMID: 25069019 DOI: 10.1016/j.ejmech.2014.07.078
    4-Methylbenzimidazole 1-28 novel derivatives were synthesized and evaluated for their antiglycation and antioxidant activities. Compounds 1-7 and 11 showed excellent activities ranged 140-280 μM, better than standard drug rutin (294.46 ± 1.50 μM). Compound 1-28 were also evaluated for DPPH activities. Compounds 1-8 showed excellent activities, ranging 12-29 μM, better than standard drug n-propylgallate (IC50 = 30.30 ± 0.40 μM). For superoxide anion scavenging activity, compounds 1-7 showed better activity than standard n-propylgallate (IC50 = 106.34 ± 1.6 μM), ranged 82-104 μM. These compounds were found to be nontoxic to THP-1 cells.
  7. Rahim F, Zaman K, Ullah H, Taha M, Wadood A, Javed MT, et al.
    Bioorg Chem, 2015 Dec;63:123-31.
    PMID: 26520885 DOI: 10.1016/j.bioorg.2015.10.005
    4-Thiazolidinone analogs 1-20 were synthesized, characterized by (1)H NMR and EI-MS and investigated for urease inhibitory activity. All twenty (20) analogs exhibited varied degree of urease inhibitory potential with IC50 values 1.73-69.65μM, if compared with standard thiourea having IC50 value of 21.25±0.15μM. Among the series, eight derivatives 3, 6, 8, 10, 15, 17, 19, and 20 showed outstanding urease inhibitory potential with IC50 values of 9.34±0.02, 14.62±0.03, 8.43±0.01, 7.3±0.04, 2.31±0.002, 5.75±0.003, 8.81±0.005, and 1.73±0.001μM, respectively, which is better than the standard thiourea. The remaining analogs showed good to excellent urease inhibition. The binding interactions of these compounds were confirmed through molecular docking studies.
  8. Abed KM, Hayyan A, Elgharbawy AAM, Hizaddin HF, Hashim MA, Hasan HA, et al.
    Molecules, 2022 Dec 09;27(24).
    PMID: 36557866 DOI: 10.3390/molecules27248734
    This study concerns the role of activated carbon (AC) from palm raceme as a support material for the enhancement of lipase-catalyzed reactions in an aqueous solution, with deep eutectic solvent (DES) as a co-solvent. The effects of carbonization temperature, impregnation ratio, and carbonization time on lipase activity were studied. The activities of Amano lipase from Burkholderia cepacia (AML) and lipase from the porcine pancreas (PPL) were used to investigate the optimum conditions for AC preparation. The results showed that AC has more interaction with PPL and effectively provides greater enzymatic activity compared with AML. The optimum treatment conditions of AC samples that yield the highest enzymatic activity were 0.5 (NaOH (g)/palm raceme (g)), 150 min, and a carbonization temperature of 400 °C. DES was prepared from alanine/sodium hydroxide and used with AC for the further enhancement of enzymatic activity. Kinetic studies demonstrated that the activity of PPL was enhanced with the immobilization of AC in a DES medium.
  9. Khalid MI, Teh LK, Lee LS, Zakaria ZA, Salleh MZ
    Genome Announc, 2013;1(3).
    PMID: 23792750 DOI: 10.1128/genomeA.00327-13
    Proteus mirabilis is one of the pathogenic agents that commonly causes urinary tract infections among elderly individuals and long-term catheterized patients. Here, we report a draft genome sequence of Proteus mirabilis strain PR03 (3,932,623 bp, with a G+C content of 38.6%) isolated from a local hospital in Malaysia.
  10. Michael FM, Khalid M, Walvekar R, Ratnam CT, Ramarad S, Siddiqui H, et al.
    Mater Sci Eng C Mater Biol Appl, 2016 Oct 01;67:792-806.
    PMID: 27287178 DOI: 10.1016/j.msec.2016.05.037
    Bones are nanocomposites consisting of a collagenous fibre network, embedded with calcium phosphates mainly hydroxyapatite (HA) nanocrystallites. As bones are subjected to continuous loading and unloading process every day, they often tend to become prone to fatigue and breakdown. Therefore, this review addresses the use of nanocomposites particularly polymers reinforced with nanoceramics that can be used as load bearing bone implants. Further, nanocomposite preparation and dispersion modification techniques have been highlighted along with thorough discussion on the influence that various nanofillers have on the physico-mechanical properties of nanocomposites in relation to that of natural bone properties. This review updates the nanocomposites that meet the physico-mechanical properties (strength and elasticity) as well as biocompatibility requirement of a load bearing bone implant and also attempts to highlight the gaps in the reported studies to address the fatigue and creep properties of the nanocomposites.
  11. Fang YK, Osama M, Rashmi W, Shahbaz K, Khalid M, Mjalli FS, et al.
    Nanotechnology, 2016 Feb 19;27(7):075702.
    PMID: 26766874 DOI: 10.1088/0957-4484/27/7/075702
    This study introduces a new class of heat transfer fluids by dispersing functionalised graphene oxide nanoparticles (GNPs) in ammonium and phosphonium-based deep eutectic solvents (DESs) without the aid of a surfactant. Different molar ratios of salts and hydrogen bond donors (HBD) were used to synthesise DESs for the preparation of different concentrations of graphene nanofluids (GNFs). The concentrations of GNPs were 0.01 wt%, 0.02 wt% and 0.05 wt %. Homogeneous and stable suspensions of nanofluids were obtained by high speed homogenisation and an ultrasonication process. The stability of the GNFs was determined through visual observation for 4 weeks followed by a centrifugal process (5000-20,000 rpm) for 30 min in addition to zeta potential studies. Dispersion of the GNPs in DES was observed using an optical microscope. The synthesised DES-based GNFs showed no particle agglomeration and formation of sediments in the nanofluids. Thermo-physical properties such as thermal conductivity and specific heat of the nanofluids were also investigated in this research. The highest thermal conductivity enhancement of 177% was observed. The findings of this research provide a new class of engineered fluid for heat transfer applications as a function of temperature, type and composition DESs as well as the GNPs concentration.
  12. Quah RV, Tan YH, Mubarak NM, Kansedo J, Khalid M, Abdullah EC, et al.
    Waste Manag, 2020 Dec;118:626-636.
    PMID: 33011540 DOI: 10.1016/j.wasman.2020.09.016
    Due to its environment-friendly and replenishable characteristics, biodiesel has the potential to substitute fossil fuels as an alternative source of energy. Although biodiesel has many benefits to offer, manufacturing biodiesel on an industrial scale is uneconomical as a high cost of feedstock is required. A novel sulfonated and magnetic catalyst synthesised from a palm kernel shell (PMB-SO3H) was first introduced in this study for methyl ester or biodiesel production to reduce capital costs. The wasted palm kernel shell (PKS) biochar impregnated with ferrite Fe3O4 was synthesised with concentrated sulphuric acid through the sulfonation process. The SEM, EDX, FTIR, VSM and TGA characterization of the catalysts were presented. Then, the optimisation of biodiesel synthesis was catalysed by PMB-SO3H via the Response Surface Methodology (RSM). It was found that the maximum biodiesel yield of 90.2% was achieved under these optimum operating conditions: 65 °C, 102 min, methanol to oil ratio of 13:1 and the catalyst loading of 3.66 wt%. Overall, PMB-SO3H demonstrated acceptable catalysing capability on its first cycle, which subsequently showed a reduction of the reusability performance after 4 cycles. An important practical implication is that PMB-SO3H can be established as a promising heterogeneous catalyst by incorporating an iron layer which can substantially improve the catalyst separation performance in biodiesel production.
  13. Mehmood A, Mubarak NM, Khalid M, Jagadish P, Walvekar R, Abdullah EC
    Sci Rep, 2020 11 18;10(1):20106.
    PMID: 33208815 DOI: 10.1038/s41598-020-77139-2
    Strain sensors in the form of buckypaper (BP) infiltrated with various polymers are considered a viable option for strain sensor applications such as structural health monitoring and human motion detection. Graphene has outstanding properties in terms of strength, heat and current conduction, optics, and many more. However, graphene in the form of BP has not been considered earlier for strain sensing applications. In this work, graphene-based BP infiltrated with polyvinyl alcohol (PVA) was synthesized by vacuum filtration technique and polymer intercalation. First, Graphene oxide (GO) was prepared via treatment with sulphuric acid and nitric acid. Whereas, to obtain high-quality BP, GO was sonicated in ethanol for 20 min with sonication intensity of 60%. FTIR studies confirmed the oxygenated groups on the surface of GO while the dispersion characteristics were validated using zeta potential analysis. The nanocomposite was synthesized by varying BP and PVA concentrations. Mechanical and electrical properties were measured using a computerized tensile testing machine, two probe method, and hall effect, respectively. The electrical conducting properties of the nanocomposites decreased with increasing PVA content; likewise, electron mobility also decreased while electrical resistance increased. The optimization study reports the highest mechanical properties such as tensile strength, Young's Modulus, and elongation at break of 200.55 MPa, 6.59 GPa, and 6.79%, respectively. Finally, electrochemical testing in a strain range of ε ~ 4% also testifies superior strain sensing properties of 60 wt% graphene BP/PVA with a demonstration of repeatability, accuracy, and preciseness for five loading and unloading cycles with a gauge factor of 1.33. Thus, results prove the usefulness of the nanocomposite for commercial and industrial applications.
  14. Liu S, Dang M, Lei Y, Ahmad SS, Khalid M, Kamal MA, et al.
    Curr Pharm Des, 2020;26(37):4808-4814.
    PMID: 32264807 DOI: 10.2174/1381612826666200407161842
    BACKGROUND: Alzheimer's disease (AD) is the most well-known reason for disability in persons aged greater than 65 years worldwide. AD influences the part of the brain that controls cognitive and non-cognitive functions.

    OBJECTIVE: The study focuses on the screening of natural compounds for the inhibition of AChE and BuChE using a computational methodology.

    METHODS: We performed a docking-based virtual screening utilizing the 3D structure of AChE and BuChE to search for potential inhibitors for AD. In this work, a screened inhibitor Ajmalicine similarity search was carried out against a natural products database (Super Natural II). Lipinski rule of five was carried out and docking studies were performed between ligands and enzyme using 'Autodock4.2'.

    RESULTS: Two phytochemical compounds SN00288228 and SN00226692 were predicted for the inhibition of AChE and BuChE, respectively. The docking results revealed Ajmalicine, a prominent natural alkaloid, showing promising inhibitory potential against AChE and BuChE with the binding energy of -9.02 and -8.89 kcal/mole, respectively. However, SN00288228- AChE, and SN00226692-BuChE were found to have binding energy -9.88 and -9.54 kcal/mole, respectively. These selected phytochemical compounds showed better interactions in comparison to Ajmalicine with the target molecule.

    CONCLUSION: The current study verifies that SN00288228 and SN00226692 are more capable inhibitors of human AChE and BuChE as compared to Ajmalicine with reference to ΔG values.

  15. Jun LY, Mubarak NM, Yon LS, Bing CH, Khalid M, Jagadish P, et al.
    Sci Rep, 2019 02 18;9(1):2215.
    PMID: 30778111 DOI: 10.1038/s41598-019-39621-4
    Surface modified Multi-walled carbon nanotubes (MWCNTs) Buckypaper/Polyvinyl Alcohol (BP/PVA) composite membrane was synthesized and utilized as support material for immobilization of Jicama peroxidase (JP). JP was successfully immobilized on the BP/PVA membrane via covalent bonding by using glutaraldehyde. The immobilization efficiency was optimized using response surface methodology (RSM) with the face-centered central composite design (FCCCD) model. The optimum enzyme immobilization efficiency was achieved at pH 6, with initial enzyme loading of 0.13 U/mL and immobilization time of 130 min. The results of BP/PVA membrane showed excellent performance in immobilization of JP with high enzyme loading of 217 mg/g and immobilization efficiency of 81.74%. The immobilized system exhibited significantly improved operational stability under various parameters, such as pH, temperature, thermal and storage stabilities when compared with free enzyme. The effective binding of peroxidase on the surface of the BP/PVA membrane was evaluated and confirmed by Field emission scanning electron microscopy (FESEM) coupled with Energy Dispersive X-Ray Spectroscopy (EDX), Fourier transform infrared spectroscopy (FTIR) and Thermogravimetric Analysis (TGA). This work reports the characterization results and performances of the surface modified BP/PVA membrane for peroxidase immobilization. The superior properties of JP-immobilized BP/PVA membrane make it promising new-generation nanomaterials for industrial applications.
  16. Walvekar S, Anwar A, Anwar A, Sridewi N, Khalid M, Yow YY, et al.
    Acta Trop, 2020 Nov;211:105618.
    PMID: 32628912 DOI: 10.1016/j.actatropica.2020.105618
    Acanthamoeba spp. are free living amoeba (FLA) which are widely distributed in nature. They are opportunistic parasites and can cause severe infections to the eye, skin and central nervous system. The advances in drug discovery and modifications in the chemotherapeutic agents have shown little improvement in morbidity and mortality rates associated with Acanthamoeba infections. The mechanism-based process of drug discovery depends on the molecular drug targets present in the signaling pathways in the genome. Synthetic libraries provide a platform for broad spectrum of activities due to their desired structural modifications. Azoles, originally a class of synthetic anti-fungal drugs, disrupt the fungal cell membrane by inhibiting the biosynthesis of ergosterol through the inhibition of cytochrome P450 dependent 14α-lanosterol, a key step of the sterol pathway. Acanthamoeba and fungi share the presence of similar sterol intermediate, as ergosterol is also the major end-product in the sterol biosynthesis in Acanthamoeba. Sterols present in the eukaryotic cell membrane are one of the most essential lipids and exhibit important structural and signaling functions. Therefore, in this review we highlight the importance of specific targeting of ergosterol present in Acanthamoebic membrane by azole compounds for amoebicidal activity. Previously, azoles have also been repurposed to report antimicrobial, antiparasitic and antibacterial properties. Moreover, by loading the azoles into nanoparticles through advanced techniques in nanotechnology, such as physical encapsulation, adsorption, or chemical conjugation, the pharmacokinetics and therapeutic index of the drugs can be significantly improved. The current review proposes an important strategy to target Acanthamoeba using synthetic libraries of azoles and their conjugated nanoparticles for the first time.
  17. Masri A, Abdelnasir S, Anwar A, Iqbal J, Numan A, Jagadish P, et al.
    Appl Microbiol Biotechnol, 2021 Apr;105(8):3315-3325.
    PMID: 33797573 DOI: 10.1007/s00253-021-11221-1
    BACKGROUND: Conducting polymer based nanocomposites are known to be effective against pathogens. Herein, we report the antimicrobial properties of multifunctional polypyrrole-cobalt oxide-silver nanocomposite (PPy-Co3O4-AgNPs) for the first time. Antibacterial activities were tested against multi-drug-resistant Gram-negative Escherichia coli (E. coli) and Gram-positive methicillin-resistant Staphylococcus aureus (MRSA) bacteria, while antiamoebic effects were assessed against opportunistic protist Acanthamoeba castellanii (A. castellanii).

    RESULTS: The ternary nanocomposite containing conducting polymer polypyrrole, cobalt oxide, and silver nanoparticles showed potent antimicrobial effects against these pathogens. The antibacterial assay showed that PPy-Co3O4-AgNPs exhibited significant bactericidal activity against neuropathogenic E. coli K1 at only 8 μg/mL as compared to individual components of the nanocomposite, whereas a 70 % inhibition of A. castellanii viability was observed at 50 μg/mL. Moreover, PPy-Co3O4-AgNPs were found to have minimal cytotoxicity against human keratinocytes HaCaT cells in vitro even at higher concentration (50 μg/mL), and also reduced the microbes-mediated cytopathogenicity against host cells.

    CONCLUSION: These results demonstrate that PPy-Co3O4-AgNPs hold promise in the development of novel antimicrobial nanomaterials for biomedical applications.

    KEY POINTS: •Synthesis of polypyrrole-cobalt oxide-silver (PPy-Co3O4-AgNPs) nanocomposite. •Antimicrobial activity of nanocomposite. •PPy-Co3O4-AgNPs hold promise for biomedical applications.

  18. Bibi A, Muhammad S, UrRehman S, Bibi S, Bashir S, Ayub K, et al.
    ACS Omega, 2021 Sep 28;6(38):24602-24613.
    PMID: 34604642 DOI: 10.1021/acsomega.1c03218
    In the present investigation, quantum chemical calculations have been performed in a systematic way to explore the optoelectronic, charge transfer, and nonlinear optical (NLO) properties of different bis(dicyanomethylene) end-functionalized quinoidal oligothiophenes. The effect of different conformations (linking modes of thiophene rings) on conformational, optoelectronic, and NLO properties are studied from the best-performed dimer to octamer. The optical and NLO properties of all the selected systems (1-7) are calculated by means of density functional theory (DFT) methods. Among all the designed compounds, the largest linear isotropic (αiso) polarizability value of 603.1 × 10-24 esu is shown by compound 7 which is ∼12, ∼16, ∼9, ∼11, ∼10, and ∼4 times larger as compared to compounds 1-6, respectively. A relative investigation is performed considering the expansion in third-order NLO polarizability as a function of size and conformational modes. Among all the investigated systems, system 7 shows the highest value of static second hyperpolarizability ⟨γ⟩ with an amplitude of 7607 × 10-36 esu at the M06/6-311G** level of theory, which is ∼521, ∼505, ∼38, ∼884, ∼185, and ∼15 times more than that of compounds 1-6, respectively. The extensively larger ⟨γ⟩ amplitude of compound 7 with higher oscillator strength and lower transition energy indicates that NLO properties are remarkably dependent upon linking modes of thiophene rings and its chain length. Furthermore, to trace the origin of higher nonlinearities, TD-DFT calculations are also performed at the same TD-M06/6-311G** level of theory. Additionally, a comprehensive understanding of the effect of structure/property relationship on the NLO polarizabilities of these investigated quinoidal oligothiophenes is obtained through the inspection of Frontier molecular orbitals, the density of states (TDOS and PDOS), and molecular electrostatic potential diagrams including the transition density matrix. Hence, the current examination will not just feature the NLO capability of entitled compounds yet additionally incite the interest of experimentalists to adequately modify the structure of these oligothiophenes for efficient optical and NLO applications.
  19. Anwar A, Chi Fung L, Anwar A, Jagadish P, Numan A, Khalid M, et al.
    Pathogens, 2019 Nov 22;8(4).
    PMID: 31766722 DOI: 10.3390/pathogens8040260
    T4 genotype Acanthamoeba are opportunistic pathogens that cause two types of infections, including vision-threatening Acanthamoeba keratitis (AK) and a fatal brain infection known as granulomatous amoebic encephalitis (GAE). Due to the existence of ineffective treatments against Acanthamoeba, it has become a potential threat to all contact lens users and immunocompromised patients. Metal nanoparticles have been proven to have various antimicrobial properties against bacteria, fungi, and parasites. Previously, different types of cobalt nanoparticles showed some promise as anti-acanthamoebic agents. In this study, the objectives were to synthesize and characterize the size, morphology, and crystalline structure of cobalt phosphate nanoparticles, as well as to determine the effects of different sizes of cobalt metal-based nanoparticles against A. castellanii. Cobalt phosphate octahydrate (CHP), Co3(PO4)2•8H2O, was synthesized by ultrasonication using a horn sonicator, then three different sizes of cobalt phosphates Co3(PO4)2 were produced through calcination of Co3(PO4)2•8H2O at 200 °C, 400 °C and 600 °C (CP2, CP4, CP6). These three types of cobalt phosphate nanoparticles were characterized using a field emission scanning electron microscope (FESEM), energy dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD) analysis. Next, the synthesized nanoparticles were subjected to biological assays to investigate their amoebicidal, amoebistatic, anti-encystation, and anti-excystation effects against A. castellanii, as well as cell cytotoxicity. The overall results showed that 1.30 ± 0.70 µm of CHP microflakes demonstrated the best anti-acanthemoebic effects at 100 µg/mL, followed by 612.50 ± 165.94 nm large CP6 nanograins. However, amongst the three tested cobalt phosphates, Co3(PO4)2, the smaller nanoparticles had stronger antiamoebic effects against A. castellanii. During cell cytotoxicity analysis, CHP exhibited only 15% cytotoxicity against HeLa cells, whereas CP6 caused 46% (the highest) cell cytotoxicity at the highest concentration, respectively. Moreover, the composition and morphology of nanoparticles is suggested to be important in determining their anti-acathamoebic effects. However, the molecular mechanisms of cobalt phosphate nanoparticles are still unidentified. Nevertheless, the results suggested that cobalt phosphate nanoparticles hold potential for development of nanodrugs against Acanthamoeba.
  20. Jamal FN, Dzulkarnain AAA, Shahrudin FA, Musa R, Sidek SN, Yusof HM, et al.
    Med J Malaysia, 2021 09;76(5):680-684.
    PMID: 34508374
    INTRODUCTION: Emotion Regulation Checklist (ERC) has been used globally and translated to several languages, including Brazilian Portuguese, Italian and Persian. The aim of this study is to translate and validate ERC to the Malay language and to measure the reliability and validity of the translated version of this scale among Malaysian parents.

    METHODS: This study involved forward and back translation method. The translated questionnaire was then pretested and piloted among 10 parents and 50 participants, respectively. The procedure was repeated using the same questionnaire to evaluate the test-retest reliability.

    RESULTS: The ERC-Malay (ERC-M) has excellent qualitative and quantitative measurements in both item-level content validation index (I-CVI) and scale-level content validation index (S-CVI). In addition, the ERC-M demonstrated good internal consistency from Cronbach's alpha and test-retest reliability based on the Intraclass Correlation Coefficient (ICC) in all domains.

    CONCLUSION: ERC-M can potentially be used as a tool to evaluate emotion for the population with emotional dysregulation issue, such as autism spectrum disorder.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links