Displaying publications 41 - 60 of 78 in total

Abstract:
Sort:
  1. Lakhan A, Abed Mohammed M, Kadry S, Hameed Abdulkareem K, Taha Al-Dhief F, Hsu CH
    PeerJ Comput Sci, 2021;7:e758.
    PMID: 34901423 DOI: 10.7717/peerj-cs.758
    The intelligent reflecting surface (IRS) is a ground-breaking technology that can boost the efficiency of wireless data transmission systems. Specifically, the wireless signal transmitting environment is reconfigured by adjusting a large number of small reflecting units simultaneously. Therefore, intelligent reflecting surface (IRS) has been suggested as a possible solution for improving several aspects of future wireless communication. However, individual nodes are empowered in IRS, but decisions and learning of data are still made by the centralized node in the IRS mechanism. Whereas, in previous works, the problem of energy-efficient and delayed awareness learning IRS-assisted communications has been largely overlooked. The federated learning aware Intelligent Reconfigurable Surface Task Scheduling schemes (FL-IRSTS) algorithm is proposed in this paper to achieve high-speed communication with energy and delay efficient offloading and scheduling. The training of models is divided into different nodes. Therefore, the trained model will decide the IRSTS configuration that best meets the goals in terms of communication rate. Multiple local models trained with the local healthcare fog-cloud network for each workload using federated learning (FL) to generate a global model. Then, each trained model shared its initial configuration with the global model for the next training round. Each application's healthcare data is handled and processed locally during the training process. Simulation results show that the proposed algorithm's achievable rate output can effectively approach centralized machine learning (ML) while meeting the study's energy and delay objectives.
  2. Lemlem M, Aklilu E, Mohammed M, Kamaruzzaman F, Zakaria Z, Harun A, et al.
    PLoS One, 2023;18(5):e0285743.
    PMID: 37205716 DOI: 10.1371/journal.pone.0285743
    Antimicrobial resistance is one of the major public health threats globally. This challenge has been aggravated with the overuse and misuse of antibiotics in food animals and humans. The present study aimed to investigate the prevalence of Extended-Spectrum β-lactamase (ESBL) genes in Escherichia coli (E. coli) isolated from broiler chickens in Kelantan, Malaysia. A total of 320 cloacal swabs were collected from farms in different districts of Kelantan and were analyzed using routine bacteriology, antimicrobial susceptibility test, and molecular techniques for further identification and characterization of ESBL encoding genes. Based on PCR detection for the E. coli species-specific Pho gene, 30.3% (97/320) of isolates were confirmed as E. coli, and 84.5% (82/97) of the isolates were positive for at least one ESBL gene. Majority of the isolates, 62.9% (61/97) were harboring blaCTX-M followed by 45.4% (44/97) of blaTEM genes, while 16.5% (16/97) of the isolates were positive for both mcr-1 and ESBL genes. Overall, 93.8% (90/97) of the E. coli were resistant to three or more antimicrobials; indicating that the isolates were multi-drug resistance. 90.7% of multiple antibiotic resistance (MAR) index value greater than 0.2, would also suggest the isolates were from high-risk sources of contamination. The MLST result shows that the isolates are widely diverse. Our findings provide insight into the alarmingly high distribution of antimicrobial resistant bacteria, mainly ESBL producing E. coli in apparently healthy chickens indicating the role of food animals in the emergence and spread of antimicrobial resistance, and the potential public health threats it may pose.
  3. Ungogo MA, Mohammed M, Umar BN, Bala AA, Khalid GM
    Biosaf Health, 2021 Jun;3(3):148-155.
    PMID: 33458647 DOI: 10.1016/j.bsheal.2021.01.001
    The novel coronavirus disease 2019 (COVID-19) is the third coronavirus outbreak in the last two decades. Emerging and re-emerging infections like COVID-19 pose serious challenges of the paucity of information and lack of specific cure or vaccines. This leaves utilisation of existing scientific data on related viral infections and repurposing relevant aetiologic and supportive therapies as the best control approach while novel strategies are developed and trialled. Many promising antiviral agents including lopinavir, ritonavir, remdesivir, umifenovir, darunavir, and oseltamivir have been repurposed and are currently trialled for the care for COVID-19 patients. Adjunct therapies for the management of symptoms and to provide support especially in severe and critically ill patients have also been identified. This review provides an appraisal of the current evidence for the rational use of frontline therapeutics in the management of COVID-19. It also includes updates regarding COVID-19 immunotherapy and vaccine development.
  4. Manisekaran T, Wan M Khairul, Foong YD, Tuan Johari SAT, Hashim F, Rahamathullah R, et al.
    Chemosphere, 2024 Sep 02.
    PMID: 39233293 DOI: 10.1016/j.chemosphere.2024.143220
    The demand for developing bioindicators to assess environmental pollution has increased significantly due to the awareness of potential threats of diseases. Herein, the eukaryotic ubiquitous microorganism Acanthamoeba sp. was used as a bioindicator to explore further the influence of functionalized organic molecules containing -C≡C- and -CH=N- moieties prior application in the potential electronic components. The acetylide and hybrid acetylide-imine derivatives (FYD3A, FYD4B, and FYD4C) were tested for their cytotoxicity potentials based on dose-response analysis, morphological observation, and mode of cell death assessment on Acanthamoeba sp. (environmental-isolate). The biological activities of optimized compounds were evaluated by HOMO-LUMO energy gap and MEP analysis. The determination of the IC50 value through the MTT assay showed functionalized organic molecules of FYD3A, FYD4B, and FYD4C, revealing the inhibition growth of Acanthamoeba sp. with IC50 values in the 3.515 - 3.845 μg/mL range. Morphological observation displayed encystment with cellular agglutination and overall cell shrinkage. AO/PI-stained moieties-treated Acanthamoeba sp. cells appeared with shades of red to orange in necrotic Acanthamoeba cells whilst green to yellow apoptotic Acanthamoeba cells when compared to entirely green fluorescence untreated cells. Moreover, the results of the mitochondrial membrane potential (MMP) assay demonstrate the integrity and functionality potential of the mitochondrial membrane in cells, where a decrease in the MMP assay is linked to apoptosis. This study confirmed that the functionalized organic molecule featuring acetylide and its designated acetylide-imine moieties exhibit cytotoxicity towards the Acanthamoeba sp. by apoptotic and necrotic mode of cell death. This indicates that seeping these derivatives as electronic components can lead to the leaching of hazardous chemicals and contribute to environmental pollution that negatively affects the ecosystem. This study proposes the selection of efficient systems and elements for functionalized organic molecules that are safe to be released into the environment.
  5. Olatomiwa AL, Adam T, Edet CO, Adewale AA, Chik A, Mohammed M, et al.
    Heliyon, 2023 Mar;9(3):e14279.
    PMID: 36950613 DOI: 10.1016/j.heliyon.2023.e14279
    Graphene has received tremendous attention among diverse 2D materials because of its remarkable properties. Its emergence over the last two decades gave a new and distinct dynamic to the study of materials, with several research projects focusing on exploiting its intrinsic properties for optoelectronic devices. This review provides a comprehensive overview of several published articles based on density functional theory and recently introduced machine learning approaches applied to study the electronic and optical properties of graphene. A comprehensive catalogue of the bond lengths, band gaps, and formation energies of various doped graphene systems that determine thermodynamic stability was reported in the literature. In these studies, the peculiarity of the obtained results reported is consequent on the nature and type of the dopants, the choice of the XC functionals, the basis set, and the wrong input parameters. The different density functional theory models, as well as the strengths and uncertainties of the ML potentials employed in the machine learning approach to enhance the prediction models for graphene, were elucidated. Lastly, the thermal properties, modelling of graphene heterostructures, the superconducting behaviour of graphene, and optimization of the DFT models are grey areas that future studies should explore in enhancing its unique potential. Therefore, the identified future trends and knowledge gaps have a prospect in both academia and industry to design future and reliable optoelectronic devices.
  6. Awad OI, Zhou B, Chen Z, Kadirgama K, Mohammed MN, Ramasamy D
    Heliyon, 2023 Nov;9(11):e22364.
    PMID: 38034680 DOI: 10.1016/j.heliyon.2023.e22364
    Polyoxymethylene dimethyl ethers (PODEn, n = 1-8) as an oxygenated fuel are a promising alternative fuel with a high oxygen concentration, a low C:H ratio, and no C-C bonds in their chemical structure. This could lead to smoke-free combustion. In this study, we chose to focus on PODE1 because of its lower cetane number, which makes it more suitable for use in spark ignition (SI) engines. However, its lower boiling point and octane number remain challenges. A low boiling point may lead to high vapour pressure and require storage and handling comparable to gaseous fuels. We investigated the effect of adding PODE1 to gasoline-ethanol blends (E10) on fuel properties, including distillation curve, octane number, phase stability, C/O/H ratio, heat of combustion, kinematic viscosity, and density. Our results showed that the blended fuels of E10 and PODE1 are stable up to 10 % PODE1, and there was no phase separation. Additionally, up to 10 % PODE1 additive had no significant side effect on the fuel properties of E10, particularly boiling point and octane number. Thus, work offers creative points by proposing a new candidate for additive fuel to gasoline-ethanol blends, which contributes to reducing the soot emission of GDI engines.
  7. Khairul WM, Hashim F, Rahamathullah R, Mohammed M, Aisyah Razali S, Ahmad Tajudin Tuan Johari S, et al.
    PMID: 38134650 DOI: 10.1016/j.saa.2023.123776
    The fabrication of molecular electronics from non-toxic functional materials which eventually would potentially able to degrade or being breaking down into safe by-products have attracted much interests in recent years. Hence, in this study, the introduction of mixed highly functional substructures of chalcone (-CO-CH=CH-) and ethynylated (C≡C) as building blocks has shown ideal performance as solution-processed thin film candidatures. Two types of derivatives, (MM-3a) and (MM-3b) repectively, showed a substantial Stokes shifts at 75 nm and 116 nm, in which such emission exhibits an intramolecular charge transfer (ICT) state and fluoresce characteristics. The density functional theory (DFT) simulation shows that MM-3a and MM-3b exhibit low energy gaps of 3.70 eV and 2.81 eV, respectively. TD-DFT computations for molecular electrostatic potential (MEP) and frontier molecular orbitals (FMO) were also used to emphasise the structure-property relationship. A solution-processed thin film with a single layer of ITO/PEDOT:PSS/MM-3a-MM-3b/Au exhibited electroluminescence behaviour with orange and purple emissions when supplied with direct current (DC) voltages. To promote the safer application of the derivatives formed, ethynylated chalcone materials underwent toxicity studies toward Acanthamoeba sp. to determine their suitability as non-toxic molecules prior to the determination as safer materials in optical limiting interests. From the preliminary test, no IC50 value was obtained for both compounds via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay analysis and molecular docking analysis between MM-3a and MM-3b, with profilin protein exhibited weak bond interactions and attaining huge interaction distances.
  8. Fasina FO, LeRoux-Pullen L, Smith P, Debusho LK, Shittu A, Jajere SM, et al.
    Front Public Health, 2020;8:517964.
    PMID: 33194938 DOI: 10.3389/fpubh.2020.517964
    In African countries, antimicrobial resistance (AMR) issue remains pertinent. Despite this, little efforts have been made to assess the future veterinary prescribers on their knowledge, attitudes and practices (KAP) related to antimicrobial usage. This multi-country survey attempts to explore the KAP of future veterinarians on stewardship of antimicrobial and identify knowledge gaps. Eight veterinary schools participated from Nigeria, Sudan and South Africa. Data regarding perceptions and knowledge were analyzed using Chi-square χ2 test, Spearman's (Rho) Rank order correlation and factor analysis using principal component factoring extraction method. Fifty-two percent of the study participants were final year veterinary students, respectively, and majority (77.2%) had no previous knowledge of biomedical sciences. Majority age were 22-27 years (24.7 ± 2.8) 79% and multiple career fields post-graduation were preferred. Overall, poor perceptions and knowledge of antimicrobial stewardship were observed with variations among countries and only 36.3% (n = 123) of the students were confident in their ability to choose the ideal antimicrobial agents for a specific patient/group of animals. The majority of the final year students were confident of their knowledge regarding AMR (68%), making of Gram staining (69.2%) and in choosing the most ideal route for administering a specific antimicrobial (74.7%). The final year students had significantly (p < 0.05) higher confidence level for knowledge compared with the pre-final year students. Tetracyclines, penicillins, and sulphonamides represent the three most abused veterinary antimicrobials with similar ranking across countries. South African (69.7 ± 20.5) and Sudanese (68.1 ± 15.4) had significantly (p < 0.0001) higher mean scores compared to the Nigerian students (44.3 ± 6.8) in the student's ability to correctly match some specific antimicrobials against their classes but Nigerian students performed better in ranking antimicrobials. This survey revealed poor to average knowledge of antimicrobial stewardship among veterinary students with significant knowledge gaps across the countries. It is recommended that the relevant regulatory and standardization authorities should make concerted efforts and interventions to regularly review curricula to ensure the delivery of targeted formative and normative training, and improved lectures on antimicrobial usage and stewardship in order to improve the awareness and behaviors of future prescribers. The identified knowledge gaps of veterinary medical students on antimicrobial stewardship must be bridge to safeguard the future.
  9. Alharbi KS, Shaikh MAJ, Almalki WH, Kazmi I, Al-Abbasi FA, Alzarea SI, et al.
    J Environ Pathol Toxicol Oncol, 2022;41(4):85-102.
    PMID: 36374963 DOI: 10.1615/JEnvironPatholToxicolOncol.2022042281
    Lung cancer is the leading cause of cancer-related mortality across the globe. The most prevalent pathological form of lung cancer is non-small-cell lung cancer (NSCLC). Elevated stimulation of the PI3K/Akt/mTOR pathway causes a slew of cancer-related symptoms, making it a promising target for new anticancer drugs. The PI3K/Akt/mTOR path is involved extensively in carcinogenesis and disease advancement in NSCLC. Several new inhibitors targeting this pathway have been discovered in preclinical investigations and clinical trials. The etiology and epidemiology of NSCLC and biology of the PI3K/Akt/mTOR cascade and its role in NSCLC pathogenesis have all been discussed in this article. In this article, we've reviewed PI3K/Akt/mTOR cascade inhibitors that have been proven in vitro and in preclinical trials to be effective in NSCLC. Drugs targeting the PI3K/Akt/mTOR path in the treatment of NSCLC were also addressed. A better knowledge of the underlying molecular biology, including epigenetic changes, is also critical to detecting relevant biomarkers and guiding combination methods. Additionally, improved clinical trial designs will increase the capacity to test novel drugs and combinations for accounting for genomic variation and eventually improve patient outcomes.
  10. Abdelgawad MA, Musa A, Almalki AH, Alzarea SI, Mostafa EM, Hegazy MM, et al.
    Drug Des Devel Ther, 2021;15:2325-2337.
    PMID: 34103896 DOI: 10.2147/DDDT.S310820
    Introduction: Epidermal growth factor receptor (EGFR) inhibition is an imperative therapeutic approach targeting various types of cancer including colorectal, lung, breast, and pancreatic cancer types. Moreover, cyclooxygenase-2 (COX-2) is frequently overexpressed in different types of cancers and has a role in the promotion of malignancy, apoptosis inhibition, and metastasis of tumor cells. Combination therapy has been emerged to improve the therapeutic benefit against cancer and curb intrinsic and acquired resistance.

    Methods: Three semi-synthetic series of compounds (C1-4, P1-4, and G1-4) were prepared and evaluated biologically as potential dual epidermal growth factor receptor (EGFR) and COX-2 inhibitors. The main phenolic constituents of Amaranthus spinosus L. (p-coumaric, caffeic and gallic) acids have been isolated and subsequently subjected to diazo coupling with various amines to get novel three chemical scaffolds with potential anticancer activities.

    Results: Compounds C4 and G4 showed superior inhibitory activity against EGFR (IC50: 0.9 and 0.5 µM, respectively) and displayed good COX-2 inhibition (IC50: 4.35 and 2.47 µM, respectively). Moreover, the final compounds were further evaluated for their cytotoxic activity against human colon cancer (HT-29), pancreatic cancer (PaCa-2), human malignant melanoma (A375), lung cancer (H-460), and pancreatic ductal cancer (Panc-1) cell lines. Interestingly, compounds C4 and G4 exhibited the highest cytotoxic activity with average IC50 values of 1.5 µM and 2.8 µM against H-460 and Panc-1, respectively. The virtual docking study was conducted to gain proper understandings of the plausible-binding modes of target compounds within EGFR and COX-2 binding sites.

    Discussion: The NMR of prepared compounds showed characteristic peaks that confirmed the structure of the target compounds. The synthesized benzoxazolyl scaffold containing compounds showed inhibitory activities for both COXs and EGFR which are consistent with the virtual docking study.

  11. Uddin MR, Khandaker MU, Ahmed S, Abedin MJ, Hossain SMM, Al Mansur MA, et al.
    PLoS One, 2024;19(4):e0300878.
    PMID: 38635835 DOI: 10.1371/journal.pone.0300878
    Saltwater intrusion in the coastal areas of Bangladesh is a prevalent phenomenon. However, it is not conducive to activities such as irrigation, navigation, fish spawning and shelter, and industrial usage. The present study analyzed 45 water samples collected from 15 locations in coastal areas during three seasons: monsoon, pre-monsoon, and post-monsoon. The aim was to comprehend the seasonal variation in physicochemical parameters, including water temperature, pH, electrical conductivity (EC), salinity, total dissolved solids (TDS), hardness, and concentrations of Na+, K+, Mg2+, Ca2+, Fe2+, HCO3-, PO43-, SO42-, and Cl-. Additionally, parameters essential for agriculture, such as soluble sodium percentage (SSP), sodium absorption ratio (SAR), magnesium absorption ratio (MAR), residual sodium carbonate (RSC), Kelly's ratio (KR), and permeability index (PI), were examined. Their respective values were found to be 63%, 16.83 mg/L, 34.92 mg/L, 145.44 mg/L, 1.28 mg/L, and 89.29%. The integrated water quality index was determined using entropy theory and principal component analysis (PCA). The resulting entropy water quality index (EWQI) and SAR of 49.56% and 63%, respectively, indicated that the samples are suitable for drinking but unsuitable for irrigation. These findings can assist policymakers in implementing the Bangladesh Deltaplan-2100, focusing on sustainable land management, fish cultivation, agricultural production, environmental preservation, water resource management, and environmental protection in the deltaic areas of Bangladesh. This research contributes to a deeper understanding of seasonal variations in the hydrochemistry and water quality of coastal rivers, aiding in the comprehension of salinity intrusion origins, mechanisms, and causes.
  12. Bhaskar V, Kumar S, Sujathan Nair A, Gokul S, Rajappan Krishnendu P, Benny S, et al.
    J Biomol Struct Dyn, 2025 Feb;43(3):1329-1351.
    PMID: 38064315 DOI: 10.1080/07391102.2023.2291549
    Tuberculosis is one of the most ancient infectious diseases known to mankind predating upper Paleolithic era. In the current scenario, treatment of drug resistance tuberculosis is the major challenge as the treatment options are limited, less efficient and more toxic. In our study we have developed an atom based 3D QSAR model, statistically validated sound with R2 > 0.90 and Q2 > 0.72 using reported direct inhibitors of InhA (2018-2022), validated by enzyme inhibition assay. The model was used to screen a library of 3958 molecules taken from Binding DB and candidates molecules with promising predicted activity value (pIC50) > 5) were selected for further analyzed screening by using molecular docking, ADME profiling and molecular dynamic simulations. The lead molecule, ZINC11536150 exhibited good docking score (glideXP = -11.634 kcal/mol) compared to standard triclosan (glideXP =  -7.129 kcal/mol kcal/mol) and through molecular dynamics study it was observed that the 2nv6-complex of ZINC11536150 with Mycobacterium tuberculosis InhA (PDB entry: 2NV6) complex remained stable throughout the entire simulation time of 100 ns.Communicated by Ramaswamy H. Sarma.
  13. Idris ZM, Chan CW, Mohammed M, Kalkoa M, Taleo G, Junker K, et al.
    Parasit Vectors, 2017 Apr 26;10(1):204.
    PMID: 28441959 DOI: 10.1186/s13071-017-2139-z
    BACKGROUND: Seroepidemiology can provide evidence for temporal changes in malaria transmission and is an important tool to evaluate the effectiveness of control interventions. During the early 2000s, Vanuatu experienced an acute increase in malaria incidence due to a lapse in funding for vector control. After the distribution of subsidised insecticide-treated nets (ITNs) resumed in 2003, malaria incidence decreased in the subsequent years. This study was conducted to find the serological evidence supporting the impact of ITN on exposure to Anopheles vector bites and parasite prevalence.

    METHODS: On Ambae Island, blood samples were collected from 231 and 282 individuals in 2003 and 2007, respectively. Parasite prevalence was determined by microscopy. Antibodies to three Plasmodium falciparum (PfSE, PfMSP-119, and PfAMA-1) and three Plasmodium vivax (PvSE, PvMSP-119, and PvAMA-1) antigens, as well as the Anopheles-specific salivary antigen gSG6, were detected by ELISA. Age-specific seroprevalence was analysed using a reverse catalytic modelling approach to estimate seroconversion rates (SCRs).

    RESULTS: Parasite rate decreased significantly (P 

  14. Hajissa K, Muhajir AEMA, Eshag HA, Alfadel A, Nahied E, Dahab R, et al.
    BMC Res Notes, 2018 Oct 31;11(1):779.
    PMID: 30382901 DOI: 10.1186/s13104-018-3871-y
    OBJECTIVE: Schistosomiasis remains one of the most common parasitic diseases worldwide. This is a cross-sectional study aimed to determine the prevalence of schistosomiasis and its associated risk factors among primary school children in Um-Asher area. The study was conducted among 170 primary school students in Um-Asher area from November 2017 to February 2018. Urine and stool samples were collected and examined for schistosomiasis infections. Moreover, data on sociodemographic characteristics and associated risk factors were obtained using a questionnaire.

    RESULTS: The overall prevalence of Schistosoma haematobium was 12.9%, whereas that of Schistosoma mansoni was 2.95%. Additionally, the males had higher prevalence (60%) of S. mansoni than females (40%). However, both gender were equally infected with S. haematobium (50%). With regard to risk factors, distance of residence from water source and source of drinking water are relatively associated with the infection.

  15. Abdi Alkareem Alyasseri Z, Alomari OA, Al-Betar MA, Awadallah MA, Hameed Abdulkareem K, Abed Mohammed M, et al.
    Comput Intell Neurosci, 2022;2022:5974634.
    PMID: 35069721 DOI: 10.1155/2022/5974634
    Recently, the electroencephalogram (EEG) signal presents an excellent potential for a new person identification technique. Several studies defined the EEG with unique features, universality, and natural robustness to be used as a new track to prevent spoofing attacks. The EEG signals are a visual recording of the brain's electrical activities, measured by placing electrodes (channels) in various scalp positions. However, traditional EEG-based systems lead to high complexity with many channels, and some channels have critical information for the identification system while others do not. Several studies have proposed a single objective to address the EEG channel for person identification. Unfortunately, these studies only focused on increasing the accuracy rate without balancing the accuracy and the total number of selected EEG channels. The novelty of this paper is to propose a multiobjective binary version of the cuckoo search algorithm (MOBCS-KNN) to find optimal EEG channel selections for person identification. The proposed method (MOBCS-KNN) used a weighted sum technique to implement a multiobjective approach. In addition, a KNN classifier for EEG-based biometric person identification is used. It is worth mentioning that this is the initial investigation of using a multiobjective technique with EEG channel selection problem. A standard EEG motor imagery dataset is used to evaluate the performance of the MOBCS-KNN. The experiments show that the MOBCS-KNN obtained accuracy of 93.86% using only 24 sensors with AR20 autoregressive coefficients. Another critical point is that the MOBCS-KNN finds channels not too close to each other to capture relevant information from all over the head. In conclusion, the MOBCS-KNN algorithm achieves the best results compared with metaheuristic algorithms. Finally, the recommended approach can draw future directions to be applied to different research areas.
  16. Khairul WM, Hashim F, Mohammed M, Shah NSMN, Johari SATT, Rahamathullah R, et al.
    Anticancer Agents Med Chem, 2021;21(13):1738-1750.
    PMID: 33176667 DOI: 10.2174/1871520620999201110190709
    INTRODUCTION: In this contribution, a series of alkoxy substituted chalcones were successfully designed, synthesized, spectroscopically characterized and evaluated for their cytotoxicity potential in inhibiting the growth of MCF-7 cells.

    OBJECTIVE: In order to investigate the influence between electron density in conjugated π-systems and biological activities, different withdrawing substituents, namely Nitro (NO2), Cyano (C≡N) and trifluoromethyl (CF3) were introduced in the chalcone-based molecular system.

    METHODS: All the derivatives were then tested on MCF-7 cell line using the fluorescence microscopy-based cytotoxicity analyses.

    RESULTS: The preliminary findings showed that both -NO2 and -CF3 substituents revealed their potential to inhibit the growth of MCF-7 with IC;50 values of 14.75 and 13.75 μg/ml, respectively. In addition, the morphological changes of MCF-7 cells were observed in response to alkoxy substituted chalcone treatment through an induction of apoptosis pathway with cell blebbing, phosphatidylserine exposure and autophagic activity with acidification of lysosomal structure. Intermolecular interaction based on in silico investigation on nitro, trifluoromethyl and cyano based chalcones exhibited several types of interactions with tumor necrosis factor receptor (PDB: 1EXT) protein and high hydrogen bond in the molecule-receptor interaction have given significant impact towards their toxicity on MCF-7 cells.

    CONCLUSION: Significantly, these types of chalcones exhibited ideal and high potential to be further developed as anti-cancer agents.

  17. Jesmin F, Kamarudin A, Baharin F, Ahmad WMABW, Mohammed M, Marya A, et al.
    Biomed Res Int, 2021;2021:8424206.
    PMID: 34977246 DOI: 10.1155/2021/8424206
    Introduction: Hall's technique preformed metal crown (HTPMC) has been used widely by pediatric dentists in developed countries as a new approach for managing decayed primary molars without local anesthesia, caries removal, and tooth preparation. Currently, inadequate information is available regarding the implementation of this technique (HTPMC) in Malaysia. This study is aimed at evaluating the implementation of HTPMC by Malaysia's pediatric dentists and identify the co-occurrence frequencies of the HTPMC implementation with the respondents' demographic profile.

    Materials and Methods: A cross-sectional questionnaire-based research was conducted among 65 pediatric dentists in Malaysia. Online questionnaires were distributed to the pediatric dentists employed at public hospitals (MOH) and universities in Malaysia.

    Result: It was found that over half of the respondents (65.6%) employed HTPMC. The analysis of the co-occurrence network frequency revealed that a high frequency of female pediatric dentists who were within the age group of 31-40 years old had fulfilled their postgraduation overseas and was employed in the university mainly applied HTPMC.

    Conclusion: The application of HTPMC among respondent pediatric dentists in Malaysia was high. However, most respondents considered HTPMC a treatment option only to manage carious primary molar rather than a treatment of choice.

  18. Mohammed M, Sha'aban A, Jatau AI, Yunusa I, Isa AM, Wada AS, et al.
    J Racial Ethn Health Disparities, 2022 Feb;9(1):184-192.
    PMID: 33469869 DOI: 10.1007/s40615-020-00942-0
    BACKGROUND: A relentless flood of information accompanied the novel coronavirus 2019 (COVID-19) pandemic. False news, conspiracy theories, and magical cures were shared with the general public at an alarming rate, which may lead to increased anxiety and stress levels and associated debilitating consequences.

    OBJECTIVES: To measure the level of COVID-19 information overload (COVIO) and assess the association between COVIO and sociodemographic characteristics among the general public.

    METHODS: A cross-sectional online survey was conducted between April and May 2020 using a modified Cancer Information Overload scale. The survey was developed and posted on four social media platforms. The data were only collected from those who consented to participate. COVIO score was classified into high vs. low using the asymmetrical distribution as a guide and conducted a binary logistic regression to examine the factors associated with COVIO.

    RESULTS: A total number of 584 respondents participated in this study. The mean COVIO score of the respondents was 19.4 (± 4.0). Sources and frequency of receiving COVID-19 information were found to be significant predictors of COVIO. Participants who received information via the broadcast media were more likely to have high COVIO than those who received information via the social media (adjusted odds ratio ([aOR],14.599; 95% confidence interval [CI], 1.608-132.559; p = 0.017). Also, participants who received COVID-19 information every minute (aOR, 3.892; 95% CI, 1.124-13.480; p = 0.032) were more likely to have high COVIO than those who received information every week.

    CONCLUSION: The source of information and the frequency of receiving COVID-19 information were significantly associated with COVIO. The COVID-19 information is often conflicting, leading to confusion and overload of information in the general population. This can have unfavorable effects on the measures taken to control the transmission and management of COVID-19 infection.

  19. Sha'aban A, Zainal H, Khalil NA, Abd Aziz F, Ch'ng ES, Teh CH, et al.
    Molecules, 2022 Mar 25;27(7).
    PMID: 35408523 DOI: 10.3390/molecules27072126
    BACKGROUND: Low-dose aspirin (LDA) is the backbone for secondary prevention of coronary artery disease, although limited by gastric toxicity. This study aimed to identify novel metabolites that could predict LDA-induced gastric toxicity using pharmacometabolomics.

    METHODS: Pre-dosed urine samples were collected from male Sprague-Dawley rats. The rats were treated with either LDA (10 mg/kg) or 1% methylcellulose (10 mL/kg) per oral for 28 days. The rats' stomachs were examined for gastric toxicity using a stereomicroscope. The urine samples were analyzed using a proton nuclear magnetic resonance spectroscopy. Metabolites were systematically identified by exploring established databases and multivariate analyses to determine the spectral pattern of metabolites related to LDA-induced gastric toxicity.

    RESULTS: Treatment with LDA resulted in gastric toxicity in 20/32 rats (62.5%). The orthogonal projections to latent structures discriminant analysis (OPLS-DA) model displayed a goodness-of-fit (R2Y) value of 0.947, suggesting near-perfect reproducibility and a goodness-of-prediction (Q2Y) of -0.185 with perfect sensitivity, specificity and accuracy (100%). Furthermore, the area under the receiver operating characteristic (AUROC) displayed was 1. The final OPLS-DA model had an R2Y value of 0.726 and Q2Y of 0.142 with sensitivity (100%), specificity (95.0%) and accuracy (96.9%). Citrate, hippurate, methylamine, trimethylamine N-oxide and alpha-keto-glutarate were identified as the possible metabolites implicated in the LDA-induced gastric toxicity.

    CONCLUSION: The study identified metabolic signatures that correlated with the development of a low-dose Aspirin-induced gastric toxicity in rats. This pharmacometabolomic approach could further be validated to predict LDA-induced gastric toxicity in patients with coronary artery disease.

  20. Bala AA, Jatau AI, Yunusa I, Mohammed M, Mohammed AH, Isa AM, et al.
    Ther Adv Drug Saf, 2020;11:2042098620935721.
    PMID: 32944213 DOI: 10.1177/2042098620935721
    Introduction: Snakebite envenoming (SBE) is an important occupational and public health hazard especially in sub-Saharan Africa. For optimum management of SBE, adequate knowledge of Snake antivenom (SAV) is very critical among the healthcare practioners in this region. Information related to the knowledge of SAV use in the management of SBE, as well as SAV logistics is scarce among the Health Care Professionals (HCPs) in Nigeria, particularly in the northern region. We therefore aimed to develop, validate and utilize a tool to assess the SAV knowlegde among HCPs in northern Nigeria. We also sought to implement and evaluate an intervention that could improve the SAV knowledge among the HCPs.

    Methods: The proposed study will be conducted in three phases: Phase I will involve the development of the item-pool to be included in the tool, followed by a face, content validity and construct validity. The tool reliability, readability and difficulty index will be determined. Phase II will involve the utilization of the tool to assess baseline SAV knowledge among the HCPs followed by an educational intervention. Multiple Linear Regression analysis will be used to determine the factors associated with SAV knowledge among the HCPs. Lastly, Phase III which will be a repeat of Phase II to assess and evaluate the knowledge after the intervention.

    Discussion: The study design and findings may guide future implementation and streamline the intervention of improving SAV knowledge in HCPs training and practice.

    Lay Summary: Knowledge assessment and educational intervention of snake antivenom among healthcare practitioners in northern Nigeria: a study protocol Snakebite envenoming (SBE) is an important occupational and public health hazard especially in sub-Saharan Africa. For optimum management of SBE, adequate knowledge of snake antivenom (SAV) is very critical among the healthcare practitioners. The baseline knowledge SAV dosage, mode of administration, availability, and logistics is very relevant among healthcare professionals, particularly those that are directly involved in its logistics. It is paramount that SAV is handled and used appropriately. The efforts and advocacy for the availability for more SAV will be in vain if not handled appropriately before they are used. This study protocol aims to develop a tool, to assess SAV knowledge and effects of educational interventions among healthcare professionals (HCPs) in northern Nigeria. This protocol suggests conducting studies in three phases: (a) Development and validation of SAV knowledge assessment tool, (b) Baseline assessment of SAV knowledge assessment tool among HCPs, and (c) Development, implementation and evaluation of an educational intervention to improve SAV knowledge among HCPs in northern Nigeria.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links