Displaying publications 41 - 60 of 66 in total

Abstract:
Sort:
  1. Shimul IM, Moshikur RM, Nabila FH, Moniruzzaman M, Goto M
    Food Chem, 2023 Dec 15;429:136911.
    PMID: 37478610 DOI: 10.1016/j.foodchem.2023.136911
    Flavonoids have diverse beneficial roles that potentiate their application as nutraceutical agents in nutritional supplements and as natural antimicrobial agents in food preservation. To address poor solubility and bioactivity issues, we developed water-soluble micellar formulations loaded with single and multiple flavonoids using the biocompatible surface-active ionic liquid choline oleate. The food preservation performance was investigated using luteolin, naringenin, and quercetin as model bioactive compounds. The micellar formulations formed spherical micelles with particle sizes of <150 nm and exhibited high aqueous solubility (>5.15 mg/mL). Co-delivery of multiple flavonoids (luteolin, naringenin, and quercetin in LNQ-MF) resulted in 84.85% antioxidant activity at 100 μg/mL. The effects on Staphylococcus aureus and Salmonella enterica were synergistic with fractional inhibitory concentration indices of 0.87 and 0.71, respectively. LNQ-MF hindered the growth of S. aureus in milk (0.83-0.89 log scale) compared to the control. Co-delivered encapsulated flavonoids are a promising alternative to chemical preservatives.
  2. Islam MR, Uddin S, Chowdhury MR, Wakabayashi R, Moniruzzaman M, Goto M
    ACS Appl Mater Interfaces, 2021 Sep 15;13(36):42461-42472.
    PMID: 34460218 DOI: 10.1021/acsami.1c11533
    Since injection administration for diabetes is invasive, it is important to develop an effective transdermal method for insulin. However, transdermal delivery remains challenging owing to the strong barrier function of the stratum corneum (SC) of the skin. Here, we developed ionic liquid (IL)-in-oil microemulsion formulations (MEFs) for transdermal insulin delivery using choline-fatty acids ([Chl][FAs])-comprising three different FAs (C18:0, C18:1, and C18:2)-as biocompatible surface-active ILs (SAILs). The MEFs were successfully developed using [Chl][FAs] as surfactants, sorbitan monolaurate (Span-20) as a cosurfactant, choline propionate IL as an internal polar phase, and isopropyl myristate as a continuous oil phase. Ternary phase behavior, dynamic light scattering, and transmission electron microscopy studies revealed that MEFs were thermodynamically stable with nanoparticle size. The MEFs significantly enhanced the transdermal permeation of insulin via the intercellular route by compromising the tight lamellar structure of SC lipids through a fluidity-enhancing mechanism. In vivo transdermal administration of low insulin doses (50 IU/kg) to diabetic mice showed that MEFs reduced blood glucose levels (BGLs) significantly compared with a commercial surfactant-based formulation by increasing the bioavailability of insulin in the systemic circulation and sustained the insulin level for a much longer period (half-life > 24 h) than subcutaneous injection (half-life 1.32 h). When [Chl][C18:2] SAIL-based MEF was transdermally administered, it reduced the BGL by 56% of its initial value. The MEFs were biocompatible and nontoxic (cell viability > 90%). They remained stable at room temperature for 3 months and their biological activity was retained for 4 months at 4 °C. We believe SAIL-based MEFs will alter current approaches to insulin therapy and may be a potential transdermal nanocarrier for protein and peptide delivery.
  3. Nabila FH, Islam R, Shimul IM, Moniruzzaman M, Wakabayashi R, Kamiya N, et al.
    Chem Commun (Camb), 2024 Apr 09;60(30):4036-4039.
    PMID: 38466016 DOI: 10.1039/d3cc06130b
    Herein, we report ethosome (ET) formulations composed of a safe amount of 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC)-based ionic liquid with various concentrations of ethanol as a carrier for the transdermal delivery of a high molecular weight drug, insulin. The Insulin-loaded ET vesicles exhibited long-term stability compared to conventional DMPC ETs, showing significantly higher drug encapsulation efficiency and increased skin permeation ability.
  4. Moniruzzaman M, Khan AR, Haq MA, Naznin RA, Haque M
    Cureus, 2022 Dec;14(12):e32842.
    PMID: 36570107 DOI: 10.7759/cureus.32842
    Background The cardinal area of managing fire wounds is guided by adequately evaluating the burn-induced lesion's profundity and size. Superficial second-degree burns are often treated through daily reinstating with fresh sterile bandaging with appropriate topical antimicrobials to allow rapid spontaneous epithelialization. Around the world, a wide variety of substances are used to treat these wounds, from honey to synthetic biological dressings. Objective This study intended to determine honey's therapeutic potential compared with 1% silver sulfadiazine (Ag-SD) in arsenal-caused contusion medicament fulfillment. Methods A total of 70 cases were evaluated in this research work after fulfilling the required selection criteria during the study period of January 2014 to December 2014 and January 2017 to December 2017. Purposive selection criteria were adopted in the study to select research patients. The patients in Group-1 (n = 35) relied on honey as medication, while patients in Group-2 (n = 35) relied on 1% Ag-SD. Results In Group-1, exudation (68.4%) and sloughing (82.9%) were substantially reduced by Days 3 and 5 of therapeutic intervention, respectively. However, in Group-2, a reduction of exudation (17.1%) and sloughing (22.9%) occurred after Days 3 and 5 of treatment, respectively. Completion of the epithelialization process was observed among Group-1 and Group-2 cases. It was detected after Days 7 and 10 of treatment at 36.3% and 77% (Group-1) and 27% and 67% (Group-2), respectively. Around 3 ml of 1% honey was required per body surface area per dressing in Group-1. On the other hand, in Group-2, 2 gm Ag-SD was needed per body surface area per dressing. Conclusion Patients treated with honey found better clinical outcomes in managing superficial partial-thickness burns.
  5. Jalil MA, Moniruzzaman M, Parvez MS, Siddika A, Gafur MA, Repon MR, et al.
    Heliyon, 2021 Aug;7(8):e07861.
    PMID: 34485740 DOI: 10.1016/j.heliyon.2021.e07861
    This research aims to study the spinnability of pristine PALF and PALF blended cotton using the existing spinning machines. Apron draft ring spinning frame and flyer jute spinning frame were used to produce 100% PALF yarn and the yarns count were found 121 tex and 138 tex separately. Besides, 90:10 and 80:20 cotton-PALF blended 30 tex yarn spun in a cotton spinning system with different twist factors. With both yarns, two samples; 1/1 plain and 3/1 twill fabrics, were fabricated through equal density. For plain and twill fabric, PALF yarn of 121 tex and 138 tex were used in the warp way, respectively and PALF blended cotton yarn of 60 tex was used in the weft way. Through the study, physio-mechanical properties of the samples were explored and FTIR & XRD patterns were analyzed to perform the task for diversified use as an ultimate fiber in industrial and domestic purposes.
  6. Elgharbawy AA, Alam MZ, Moniruzzaman M, Kabbashi NA, Jamal P
    3 Biotech, 2018 May;8(5):236.
    PMID: 29744268 DOI: 10.1007/s13205-018-1253-8
    The pretreatment of empty fruit bunch (EFB) was conducted using an integrated system of IL and cellulases (IL-E), with simultaneous fermentation in one vessel. The cellulase mixture (PKC-Cel) was derived from Trichoderma reesei by solid-state fermentation. Choline acetate [Cho]OAc was utilized for the pretreatment due to its biocompatibility and biodegradability. The treated EFB and its hydrolysate were characterized by the Fourier transform infrared spectroscopy, scanning electron microscopy, and chemical analysis. The results showed that there were significant structural changes in EFB after the treatment in IL-E system. The sugar yield after enzymatic hydrolysis by the PKC-Cel was increased from 0.058 g/g of EFB in the crude sample (untreated) to 0.283 and 0.62 ± 06 g/g in IL-E system after 24 and 48 h of treatment, respectively. The EFB hydrolysate showed the eligibility for ethanol production without any supplements where ethanol yield was 0.275 g ethanol/g EFB in the presence of the IL, while lower yield obtained without IL-pretreatment. Moreover, it was demonstrated that furfural and phenolic compounds were not at the level of suppressing the fermentation process.
  7. Elgharbawy AA, Alam MZ, Kabbashi NA, Moniruzzaman M, Jamal P
    3 Biotech, 2016 Dec;6(2):128.
    PMID: 28330203 DOI: 10.1007/s13205-016-0440-8
    Lignocellulosic biomasses, exhibit resistance to enzymatic hydrolysis due to the presence of lignin and hemicellulose. Ionic liquids proved their applicability in lignin degradation, however, ionic liquid removal has to be performed to proceed to hydrolysis. Therefore, this study reports an in situ hydrolysis of empty fruit bunches (EFB) that combined an ionic liquid (IL) pretreatment and enzymatic hydrolysis. For enzyme production, palm kernel cake (PKC) was used as the primary media for microbial cellulase (PKC-Cel) from Trichoderma reesei (RUTC30). The obtained enzyme exhibited a promising stability in several ionic liquids. Among few, in choline acetate [Cho]OAc, PKC-Cel retained 63.16 % of the initial activity after 6 h and lost only 10 % of its activity in 10 % IL/buffer mixture. Upon the confirmation of the PKC-Cel stability, EFB was subjected to IL-pretreatment followed by hydrolysis in a single step without further removal of the IL. The findings revealed that choline acetate [Cho]OAc and choline butyrate [Cho]Bu were among the best ILs used in the study since 0.332 ± 0.05 g glucose/g and 0.565 ± 0.08 g total reducing sugar/g EFB were obtained after 24 h of enzymatic hydrolysis. Compared to the untreated EFB, the amount of reducing sugar obtained after enzymatic hydrolysis increased by three-fold in the case of [Cho]OAc and [Cho]Bu, two-fold with [EMIM]OAc and phosphate-based ILs whereas the lowest concentration was obtained in [TBPH]OAc. Pretreatment of EFB with [Cho]OAc and [Cho]Bu showed significant differences in the morphology of EFB samples when observed with SEM. Analysis of the lignin, hemicellulose and hemicellulose showed that the total lignin content from the raw EFB was reduced from 37.8 ± 0.6 to 25.81 ± 0.35 % (w/w) upon employment of [Cho]OAc in the compatible system. The PKC-Cel from T. reesei (RUTC30) exhibited promising characteristics that need to be investigated further towards a single-step process for bioethanol production.
  8. Yenugu VMR, Ambavaram VBR, Moniruzzaman M, Madhavi G
    J Sep Sci, 2018 Nov;41(21):3966-3973.
    PMID: 30138541 DOI: 10.1002/jssc.201800626
    In the present study, a sensitive and fully validated liquid chromatography with mass spectrometry method was developed for the quantification of three potential genotoxic impurities in rabeprazole drug substance. The separation was achieved on Symmetry C18 column (100 × 4.6 mm, 3.5 μm) using 0.1% formic acid in water as mobile phase A and acetonitrile as mobile phase B in gradient elution mode at 0.5 mL/min flow rate. Triple quadrupole mass detection with electrospray ionization was operated in selected ion recording mode for the quantification of impurities. The calibration curves were demonstrated good linearity over the concentration range of 1.0-4.5 ppm for O-phenylenediamine, 1.8-4.5 ppm for 4-nitrolutidine-N-oxide and 1.0-4.5 ppm for benzyltriethylammonium chloride with respect to 10 mg/mL of rabeprazole. The correlation coefficient obtained in each case was >0.998. The recoveries were found satisfactory over the range between 94.22 and 106.84% for all selected impurities. The method validation was carried out following International Conference on Harmonization guidelines, from which the developed method was able to quantitate the impurities at 1.0 ppm for O-phenylenediamine, 1.8 ppm for 4-nitrolutidine-N-oxide and 1.0 ppm for benzyltriethylammonium chloride. Furthermore, the proposed method was successfully evaluated for the determination of selected impurities from bulk drug and formulation samples of rabeprazole within the acceptable limits.
  9. Lieu T, Yusup S, Moniruzzaman M
    Bioresour Technol, 2016 Jul;211:248-56.
    PMID: 27019128 DOI: 10.1016/j.biortech.2016.03.105
    Recently, a great attention has been paid to advanced microwave technology that can be used to markedly enhance the biodiesel production process. Ceiba pentandra Seed Oil containing high free fatty acids (FFA) was utilized as a non-edible feedstock for biodiesel production. Microwave-assisted esterification pretreatment was conducted to reduce the FFA content for promoting a high-quality product in the next step. At optimum condition, the conversion was achieved 94.43% using 2wt% of sulfuric acid as catalyst where as 20.83% conversion was attained without catalyst. The kinetics of this esterification reaction was also studied to determine the influence of factors on the rate of reaction and reaction mechanisms. The results indicated that microwave-assisted esterification was of endothermic second-order reaction with the activation energy of 53.717kJ/mol.
  10. Shahinuzzaman M, Yaakob Z, Moniruzzaman M
    J Cosmet Dermatol, 2016 Jun;15(2):185-93.
    PMID: 26777540 DOI: 10.1111/jocd.12209
    Soap is the most useful things which we use our everyday life in various cleansing and cosmetics purposes. Jatropha oil is nonedible oil which has more benefits to soap making. It has also cosmetics and medicinal properties. But the presence of toxic Phorbol esters in Jatropha oil is the main constrains to use it. So it is necessary to search a more suitable method for detoxifying the Jatropha oil before the use as the main ingredient of soap production. This review implies a more suitable method for removing phorbol esters from Jatropha oil. Several parameters such as the % yield of pure Jatropha oil soap, TFM value of soap, total alkali content, free caustic alkalinity content, pH, the antimicrobial activity, and CMC value of general soap should be taken into consideration for soap from detoxified Jatropha oil.
  11. Mahmood H, Shakeel A, Abdullah A, Khan MI, Moniruzzaman M
    Polymers (Basel), 2021 Jul 29;13(15).
    PMID: 34372105 DOI: 10.3390/polym13152504
    The thermal kinetic modeling is crucial for development of sustainable processes where lignocellulosic fuels are a part of chemical system and their thermal degradation eventuates. In this paper, thermal decomposition of three lignocellulosic materials (bagasse, rice husk, and wheat straw) was obtained by the thermogravimetric (TG) technique and kinetics was analyzed by both model-fitting and isoconversional (model-free) methods to compare their effectiveness. Two models selected from each class include Arrhenius and Coats-Redfern (model-fitting), and Kissinger-Akahira-Sunose (KAS) and Flynn-Wall-Ozawa (FWO) (model-free). The formal model-fitting approach simulating the thermal decomposition of solids by assuming a fixed mechanism was found to be unduly facile. However, activation energy (E) values calculated from two model-fitting techniques were considerably different from each other with a percentage difference in the range of 1.36% to 7.65%. Particularly, both model-fitting methods predicted different reaction mechanism for thermal disintegration of lignocellulosic materials (two-dimensional diffusion (D2) by Arrhenius and one-dimensional diffusion (D1) by Coat-Redfern method). Conversely, the model-free routine offers a transformation of mechanism and activation energy values throughout reaction and is, therefore, more authentic to illustrate the complexity of thermal disintegration of lignocellulosic particles. Based on the model-free kinetic analysis, the lignocellulosic materials may be devised in following order of activation energy: rice husk > bagasse > wheat straw, by both KAS and FWO methods with a percentage difference no more than 0.84% for fractional conversion up to 0.7. Isoconversional approach could be recommended as more realistic and precise for modeling non-isothermal kinetics of lignocellulosic residues compared to model-fitting approach.
  12. Hassan Shah MU, Bhaskar Reddy AV, Yusup S, Goto M, Moniruzzaman M
    Environ Pollut, 2021 Sep 01;284:117119.
    PMID: 33906032 DOI: 10.1016/j.envpol.2021.117119
    The well-known toxicity of conventional chemical oil spill dispersants demands the development of alternative and environmentally friendly dispersant formulations. Therefore, in the present study we have developed a pair of less toxic and green dispersants by combining lactonic sophorolipid (LS) biosurfactant individually with choline myristate and choline oleate ionic liquid surfactants. The aggregation behavior of resulted surfactant blends and their dispersion effectiveness was investigated using the baffled flask test. The introduction of long hydrophobic alkyl chain with unsaturation (attached to choline cation) provided synergistic interactions between the binary surfactant mixtures. The maximum dispersion effectiveness was found to be 78.23% for 80:20 (w/w) lactonic sophorolipid-choline myristate blends, and 81.15% for 70:30 (w/w) lactonic sophorolipid-choline oleate blends at the dispersant-to-oil ratio of 1:25 (v/v). The high dispersion effectiveness of lactonic sophorolipid-choline oleate between two developed blends is attributed to the stronger synergistic interactions between surfactants and slower desorption rate of blend from oil-water interface. The distribution of dispersed oil droplets at several DOR were evaluated and it was observed that oil droplets become smaller with increasing DOR. In addition, the acute toxicity analysis of developed formulations against zebra fish (Danio rerio) confirmed their non-toxic behavior with LC50 values higher than 400 ppm after 96 h. Overall, the proposed new blends/formulations could effectively substitute the toxic and unsafe chemical dispersants.
  13. Mahmood H, Moniruzzaman M
    Biotechnol J, 2019 Dec;14(12):e1900072.
    PMID: 31677240 DOI: 10.1002/biot.201900072
    The evolution of petroleum-derived polymers is one of the crowning accomplishments of the past century. Although the significant economic gains from this industrial model of resource utilization are achieved, the environmental impacts are fatal. One of the principles of sustainable development is to replace such polymers with potential alternatives derived from renewable materials. Biopolymers derived from natural resources afford a new, versatile, environmentally benign feedstock that could exhibit closed-loop life cycles as part of a future material's industrial ecology. However, the solubility and processability of biopolymer materials provoke a serious bottleneck owing to their dense networks of inter - and intramolecular bondings and structural heterogeneity. Recently, ionic liquids (ILs) have emerged as promising green solvents and acquired augmented appreciation for their peerless power of biopolymer processing. Among the fourteen principle of green chemistry, the two key elements encourage the exploitation of renewable raw materials by using environmentally benign solvents that cover in dissolution of biopolymers using ILs. This mini review represents a brief overview of the comprehensive ILs assisted extraction and processing of various biopolymeric materials for value-added applications.
  14. Mustahil NA, Baharuddin SH, Abdullah AA, Reddy AVB, Abdul Mutalib MI, Moniruzzaman M
    Chemosphere, 2019 May 04;229:349-357.
    PMID: 31078892 DOI: 10.1016/j.chemosphere.2019.05.026
    Ionic liquids (ILs) based surfactants have been emerged as attractive alternatives to the conventional surfactants owing to their tailor-made and eco-friendly properties. Therefore, present study described the synthesis of nine new fatty amino acids based IL surfactants utilizing lauroyl sarcosinate anion and pyrrolidinium, imidazolium, pyridinium, piperidinium, morpholinium and cholinium cations for the first time. The synthesized surface active lauroyl sarcosinate ionic liquids (SALSILs) were characterized by 1H NMR, 13C NMR and TGA. Next, the surface tension and critical micellar concentrations were determined and compared with the surface properties of ILs based surfactants. Further, the toxicity and biodegradability of the synthesized SALSIILs were evaluated to confirm their safe and efficient process applications. The studies revealed that three out of nine synthesized SALSILs containing pyridinium cation have showed strong activity towards the tested microbial growth. The remaining six SALSILs met the biocompatible measures demonstrating moderate to low activity depends on the tested microbes. The alicyclic SALSILs containing morpholinium and piperidinium cations have demonstrated 100% biodegradation after 28 days of the test period. Overall, it is believed that the synthesized SALSILs could effectively replace the conventional surfactants in a wide variety of applications.
  15. Baharuddin SH, Mustahil NA, Reddy AVB, Abdullah AA, Mutalib MIA, Moniruzzaman M
    Chemosphere, 2020 Jun;249:126125.
    PMID: 32058133 DOI: 10.1016/j.chemosphere.2020.126125
    The application of chemical dispersants in marine oil spill remediation is comprehensively reported across the globe. But, the augmented toxicity and poor biodegradability of reported chemical dispersants have created necessity for their replacement with the bio-based green dispersants. Therefore, in the present study, we have synthesized five ionic liquids (ILs) namely 1-butyl-3-methylimidazolium lauroylsarcosinate, 1,1'-(1,4-butanediyl)bis(1-H-pyrrolidinium) dodecylbenzenesulfonate, tetrabutylammonium citrate, tetrabutylammonium polyphosphate and tetrabutylammonium ethoxylate oleyl ether glycolate, and formulated a water based ILs dispersant combining the synthesized ILs at specified compositions. The effectiveness of formulated ILs dispersant was found between 70.75% and 94.71% for the dispersion of various crude oils ranging from light to heavy. Further, the acute toxicity tests against zebra fish and grouper fish have revealed the practically non-toxic behaviour of formulated ILs dispersant with LC50 value greater than 100 ppm after 96 h. In addition, the formulated ILs dispersant has provided excellent biodegradability throughout the test period. Overall, the formulated new ILs dispersant is deemed to facilitate environmentally benign oil spill remediation and could effectively substitute the use of hazardous chemical dispersants in immediate future.
  16. Hamidi RM, Siyal AA, Luukkonen T, Shamsuddin RM, Moniruzzaman M
    RSC Adv, 2022 Nov 15;12(51):33187-33199.
    PMID: 36425209 DOI: 10.1039/d2ra06056f
    Nitrogen loss from urea fertiliser due to its high solubility characteristics has led to the invention of controlled release urea (CRU). Majority of existing CRU coatings are produced from a non-biodegradable, toxic and expensive synthetic polymers. This study determines the feasibility of fly ash-based geopolymer as a coating material for urea fertilizer. The effects of fly ash particle size (15.2 μm, 12.0 μm, and 8.6 μm) and solid to liquid (S : L) ratio (3 : 1, 2.8 : 1, 2.6 : 1, 2.4 : 1 and 2.2 : 1) on the geopolymer coating, the characterization such as FTIR analysis, XRD analysis, surface area and pore size analysis, setting time analysis, coating thickness, and crushing strength, and the release kinetics of geopolymer coated urea in water and soil were determined. Lower S : L ratio was beneficial in terms of workability, but it had an adverse impact on geopolymer properties where it increased porosity and decreased mechanical strength to an undesirable level for the CRU application. Geopolymer coated urea prepared from the finest fly ash fraction and lowest S : L ratio demonstrated high mechanical strength and slower urea release profile. Complete urea release was obtained in 132 minutes in water and 15 days in soil from geopolymer-coated urea whereas for uncoated urea it took only 20 minutes in water and 3 days in soil. Thus, geopolymer can potentially be used as a coating material for urea fertilizer to replace commonly used expensive and biodegradable polymer-based coatings.
  17. Reddy AVB, Rafiq R, Ahmad A, Maulud AS, Moniruzzaman M
    Molecules, 2022 Nov 11;27(22).
    PMID: 36431876 DOI: 10.3390/molecules27227775
    In the current study, we have synthesized an imidazolium based cross-linked polymer, namely, 1-vinyl-3-ethylimidazolium bis(trifluoromethylsulfonyl)imide (poly[veim][Tf2N]-TRIM) using trimethylolpropane trimethacrylate as cross linker, and demonstrated its efficiency for the removal of two extensively used ionic dyes—methylene blue and orange-II—from aqueous systems. The detailed characterization of the synthesized poly[veim][Tf2N]-TRIM was performed with the help of 1H NMR, TGA, FT-IR and FE-SEM analysis. The concentration of dyes in aqueous samples before and after the adsorption process was measured using an UV-vis spectrophotometer. The process parameters were optimised, and highest adsorption was obtained at a solution pH of 7.0, adsorbent dosage of 0.75 g/L, contact time of 7 h and dye concentrations of 100 mg/L and 5.0 mg/L for methylene blue and orange-II, respectively. The adsorption kinetics for orange-II and methylene blue were well described by pseudo-first-order and pseudo−second-order models, respectively. Meanwhile, the process of adsorption was best depicted by Langmuir isotherms for both the dyes. The highest monolayer adsorption capacities for methylene blue and orange-II were found to be 1212 mg/g and 126 mg/g, respectively. Overall, the synthesized cross-linked poly[veim][Tf2N]-TRIM effectively removed the selected ionic dyes from aqueous samples and provided >90% of adsorption efficiency after four cycles of adsorption. A possible adsorption mechanism between the synthesised polymeric adsorbent and proposed dyes is presented. It is further suggested that the proposed ionic liquid polymer adsorbent could effectively remove other ionic dyes and pollutants from contaminated aqueous systems.
  18. Khan HW, Elgharbawy AAM, Bustam MA, Goto M, Moniruzzaman M
    Molecules, 2023 Mar 03;28(5).
    PMID: 36903590 DOI: 10.3390/molecules28052345
    Ibuprofen (Ibf) is a biologically active drug (BADs) and an emerging contaminant of concern (CECs) in aqueous streams. Due to its adverse effects upon aquatic organisms and humans, the removal and recovery of Ibf are essential. Usually, conventional solvents are employed for the separation and recovery of ibuprofen. Due to environmental limitations, alternative green extracting agents need to be explored. Ionic liquids (ILs), emerging and greener alternatives, can also serve this purpose. It is essential to explore ILs that are effective for recovering ibuprofen, among millions of ILs. The conductor-like screening model for real solvents (COSMO-RS) is an efficient tool that can be used to screen ILs specifically for ibuprofen extraction. The main objective of this work was to identify the best IL for the extraction of ibuprofen. A total of 152 different cation-anion combinations consisting of eight aromatic and non-aromatic cations and nineteen anions were screened. The evaluation was based upon activity coefficients, capacity, and selectivity values. Furthermore, the effect of alkyl chain length was studied. The results suggest that quaternary ammonium (cation) and sulfate (anion) have better extraction ability for ibuprofen than the other combinations tested. An ionic liquid-based green emulsion liquid membrane (ILGELM) was developed using the selected ionic liquid as the extractant, sunflower oil as the diluent, Span 80 as the surfactant, and NaOH as the stripping agent. Experimental verification was carried out using the ILGELM. The experimental results indicated that the predicted COSMO-RS and the experimental results were in good agreement. The proposed IL-based GELM is highly effective for the removal and recovery of ibuprofen.
  19. Nazar M, Ul Hassan Shah M, Ahmad A, Goto M, Zaireen Nisa Yahya W, Moniruzzaman M
    Chemosphere, 2023 Dec;344:140412.
    PMID: 37827466 DOI: 10.1016/j.chemosphere.2023.140412
    Chemical dispersants are extensively used for marine oil spill remediation. However, the increased toxicity and low biodegradability of these dispersants restrict their employment in the marine environment. Hence, in this work, we have developed an eco-friendly formulation composed of an ionic liquid,1-butyl-3-methylimidazolium lauroyl sarcosinate [BMIM][Lausar] and sorbitan monooleate (Span) 80. Micellar and interfacial parameters, dispersion effectiveness, as well as the toxicity and biodegradability of the developed formulation were investigated. Micellar properties confirmed a high degree of synergism among the surfactant molecules and the formation of stable micelle. The dispersion effectiveness, at dispersant-to-oil ratio (DOR) of 1:25 (v/v), against three crude oils (Arab, Ratawi, and Doba) was assessed. We achieved a dispersion effectiveness of 68.49%, 74.05%, and 83.43% for Ratawi, Doba, and Arab crude oil, respectively, using a 70:30 (w/w) ratio of Span 80 to [BMIM][Lausar]. Furthermore, the results obtained from optical microscopy and particle size analysis (PSA) indicated that the oil droplet size decreased with higher DOR. Additionally, acute toxicity experiments were conducted on zebrafish (Danio rerio) using the developed formulation, confirming its non-toxic behavior, with LC50 values of 800 mg/L after 96 h. The formulation also exhibited high biodegradability, with only 25.01% of the original quantity remaining after 28 days. Hence, these results suggest that the new formulation has the potential to be a highly effective and environmentally friendly dispersant for oil spill remediation.
  20. Khan HW, Zailan AA, Bhaskar Reddy AV, Goto M, Moniruzzaman M
    Environ Technol, 2023 Jul 18.
    PMID: 37415504 DOI: 10.1080/09593330.2023.2234669
    In the present investigation, a total of 108 combinations of ionic liquids (ILs) were screened using the conductor-like screening model for real solvents (COSMO-RS) with the aid of six cations and eighteen anions for the extraction of succinic acid (SA) from aqueous streams through dispersive liquid-liquid microextraction (DLLME). Using the screened ILs, an ionic liquid-based DLLME (IL-DLLME) was developed to extract SA and the role of different reaction parameters in the effectiveness of IL-DLLME approach was investigated. COSMO-RS results suggested that, quaternary ammonium and choline cations form effective IL combinations with [OH¯], [F¯], and [SO42¯] anions due to hydrogen bonding. In view of these results, one of the screened ILs, tetramethylammonium hydroxide [TMAm][OH] was chosen as the extractant in IL-DLLME process and acetonitrile was adopted as the dispersive solvent. The highest SA removal efficiency of 97.8% was achieved using 25 μL of IL [TMAm][OH] as a carrier and 500 μL of acetonitrile as dispersive solvent. The highest amount of SA was extracted with a stir time of 20 min at 300 rpm, followed by centrifugation for 5 min at 4500 rpm. Overall, the findings showed that IL-DLLME is efficient in extracting succinic acid from aqueous environments while adhering to the first-order kinetics.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links