Displaying publications 41 - 60 of 81 in total

Abstract:
Sort:
  1. Mok PL, Leow SN, Koh AE, Mohd Nizam HH, Ding SL, Luu C, et al.
    Int J Mol Sci, 2017 Feb 08;18(2).
    PMID: 28208719 DOI: 10.3390/ijms18020345
    Mesenchymal stem cells are widely used in many pre-clinical and clinical settings. Despite advances in molecular technology; the migration and homing activities of these cells in in vivo systems are not well understood. Labelling mesenchymal stem cells with gold nanoparticles has no cytotoxic effect and may offer suitable indications for stem cell tracking. Here, we report a simple protocol to label mesenchymal stem cells using 80 nm gold nanoparticles. Once the cells and particles were incubated together for 24 h, the labelled products were injected into the rat subretinal layer. Micro-computed tomography was then conducted on the 15th and 30th day post-injection to track the movement of these cells, as visualized by an area of hyperdensity from the coronal section images of the rat head. In addition, we confirmed the cellular uptake of the gold nanoparticles by the mesenchymal stem cells using transmission electron microscopy. As opposed to other methods, the current protocol provides a simple, less labour-intensive and more efficient labelling mechanism for real-time cell tracking. Finally, we discuss the potential manipulations of gold nanoparticles in stem cells for cell replacement and cancer therapy in ocular disorders or diseases.
  2. Lim J, Razi ZRM, Law JX, Nawi AM, Idrus RBH, Chin TG, et al.
    Tissue Eng Regen Med, 2018 Feb;15(1):75-87.
    PMID: 30603536 DOI: 10.1007/s13770-017-0086-6
    Umbilical cord (UC) is a discarded product from the operating theatre and a ready source of mesenchymal stromal cells (MSCs). MSCs from UC express both embryonic and adult mesenchymal stem cell markers and are known to be hypoimmunogenic and non-tumorigenic and thus suitable for allogeneic cell transplantation. Our study aimed to determine the degree of immunotolerance and bone-forming capacity of osteodifferentiated human Wharton's jelly-derived mesenchymal stromal cells (hWJ-MSCs) from different segments of UC in an allogenic setting. UCs were obtained from healthy donors delivering a full-term infant by elective Caesarean section. hWJ-MSCs were isolated from 3 cm length segment from the maternal and foetal ends of UCs. Three-dimensional fibrin constructs were formed and implanted intramuscularly into immunocompetent mice. The mice were implanted with 1) fibrin construct with maternal hWJ-MSCs, 2) fibrin construct with foetal hWJ-MSCs, or 3) fibrin without cells; the control group received sham surgery. After 1 month, the lymphoid organs were analysed to determine the degree of immune rejection and bone constructs were analysed to determine the amount of bone formed. A pronounced immune reaction was noted in the fibrin group. The maternal segment constructs demonstrated greater osteogenesis than the foetal segment constructs. Both maternal and foetal segment constructs caused minimal immune reaction and thus appear to be safe for allogeneic bone transplant. The suppression of inflammation may be a result of increased anti-inflammatory cytokine production mediated by the hWJ-MSC. In summary, this study demonstrates the feasibility of using bone constructs derived from hWJ-MSCs in an allogenic setting.
  3. Mahindran E, Law JX, Ng MH, Nordin F
    Int J Mol Sci, 2021 Sep 29;22(19).
    PMID: 34638883 DOI: 10.3390/ijms221910542
    Projected life expectancy continues to grow worldwide owing to the advancement of new treatments and technologies leading to rapid growth of geriatric population. Thus, age-associated diseases especially in the musculoskeletal system are becoming more common. Loss of bone (osteoporosis) and muscle (sarcopenia) mass are conditions whose prevalence is increasing because of the change in population distribution in the world towards an older mean age. The deterioration in the bone and muscle functions can cause severe disability and seriously affects the patients' quality of life. Currently, there is no treatment to prevent and reverse age-related musculoskeletal frailty. Existing interventions are mainly to slow down and control the signs and symptoms. Mesenchymal stem cell (MSC) transplantation is a promising approach to attenuate age-related musculoskeletal frailty. This review compiles the present knowledge of the causes and changes of the musculoskeletal frailty and the potential of MSC transplantation as a regenerative therapy for age-related musculoskeletal frailty.
  4. Mohamed Haflah NH, Ng MH, Mohd Yunus MH, Naicker AS, Htwe O, Abdul Razak KA, et al.
    JBJS Case Connect, 2018 6 15;8(2):e38.
    PMID: 29901479 DOI: 10.2106/JBJS.CC.17.00250
    CASE: A 22-year-old man sustained a laceration that measured 180 cm, after debridement, over the anterolateral aspect of the right leg following a road traffic accident. The wound was treated with MyDerm (Universiti Kebangsaan Malaysia), a cell-based, bilayered, bioengineered dermal substitute that contains no animal-derived components and is fully autologous. For its construction, only a small area of skin was harvested from the left groin, which was closed primarily with absorbable sutures.

    CONCLUSION: MyDerm is an alternative option for the treatment of a massive skin defect in patients who desire removal of only a negligible amount of skin from the donor site and when use of an autograft is insufficient.

  5. Lim J, Razi ZR, Law J, Nawi AM, Idrus RB, Ng MH
    Cytotherapy, 2016 12;18(12):1493-1502.
    PMID: 27727016 DOI: 10.1016/j.jcyt.2016.08.003
    BACKGROUND AIMS: Human Wharton's jelly-derived mesenchymal stromal cells (hWJMSCs) are possibly the most suitable allogeneic cell source for stromal cell therapy and tissue engineering applications because of their hypo-immunogenic and non-tumorigenic properties, easy availability and minimal ethical concerns. Furthermore, hWJMSCs possess unique properties of both adult mesenchymal stromal cells and embryonic stromal cells. The human umbilical cord (UC) is approximately 50-60 cm long and the existing studies in the literature have not provided information on which segment of the UC was studied. In this study, hWJMSCs derived from three anatomical segments of the UC are compared.

    METHODS: Three segments of the whole UC, each 3 cm in length, were identified anatomically as the maternal, middle and fetal segments. The hWJMSCs from the different segments were analyzed via trypan blue exclusion assay to determine the growth kinetics and cell viability, flow cytometry for immunophenotyping and immunofluorescence and reverse transcriptase polymerase chain reaction (RT-PCR) for expression of stromal cell transcriptional factors. Furthermore, the trilineage differentiation potential (osteogenic, adipogenic and chondrogenic) of these cells was also assessed.

    RESULTS: hWJMSCs isolated from the maternal and fetal segments displayed greater viability and possessed a significantly higher proliferation rate compared with cells from the middle segment. Immunophenotyping revealed that hWJMSCs derived from all three segments expressed the MSC markers CD105, CD73, CD90, CD44, CD13 and CD29, as well as HLA-ABC and HLA-DR, but were negative for hematopoietic markers CD14, CD34 and CD45. Analysis of the embryonic markers showed that all three segments expressed Nanog and Oct 3/4, but only the maternal and fetal segments expressed SSEA 4 and TRA-160. Cells from all three segments were able to differentiate into chondrogenic, osteogenic and adipogenic lineages with the middle segments showing much lower differentiation potential compared with the other two segments.

    CONCLUSIONS: hWJMSCs derived from the maternal and fetal segments of the UC are a good source of MSCs compared with cells from the middle segment because of their higher proliferation rate and viability. Fetal and maternal segments are the preferred cell source for bone regeneration.

  6. Ude CC, Shamsul BS, Ng MH, Chen HC, Ohnmar H, Amaramalar SN, et al.
    Exp Gerontol, 2018 04;104:43-51.
    PMID: 29421350 DOI: 10.1016/j.exger.2018.01.020
    BACKGROUND: Hyaline articular cartilage, which protects the bones of diarthrodial joints from forces associated with load bearing, frictions, and impacts has very limited capacities for self-repair. Over the years, the trend of treatments has shifted to regenerations and researchers have been on the quest for a lasting regeneration. We evaluated the treatment of osteoarthritis by chondrogenically induced ADSCs and BMSCs for a long time functional recovery.

    METHODS: Osteoarthritis was induced at the right knee of sheep by complete resection of ACL and medial meniscus. Stem cells from sheep were induced to chondrogenic lineage. Test sheep received 5 mls single doses of 2 × 107 autologous PKH26-labelled ADSCs or BMSCs, while controls received basal medium. Functional recovery of the knees was evaluated via electromyography.

    RESULTS: Induced ADSCs had 625, 255, 393, 908, 409, 157 and 1062 folds increases of collagen I, collagen II, aggrecan, SOX9, cartilage oligomeric protein, chondroadherin and fibromodullin compare to uninduced cells, while BMSCs had 702, 657, 321, 276, 337, 233 and 1163 respectively; p = .001. Immunocytochemistry was positive for these chondrogenic markers. 12 months post-treatment, controls scored 4 in most regions using ICRS, while the treated had 8; P = .001. Regenerated cartilages were positive to PKH26 and demonstrated the presence of condensing cartilages on haematoxylin and eosin; and Safranin O. OA degenerations caused significant amplitude shift from right to left hind limb. After treatments, controls persisted with significant decreases; while treated samples regained balance.

    CONCLUSIONS: Both ADSCs and BMSCs had increased chondrogenic gene expressions using TGF-β3 and BMP-6. The treated knees had improved cartilage scores; PKH26 can provide elongated tracking, while EMG results revealed improved joint recoveries. These could be suitable therapies for osteoarthritis.

  7. Parvaneh M, Karimi G, Jamaluddin R, Ng MH, Zuriati I, Muhammad SI
    Clin Interv Aging, 2018;13:1555-1564.
    PMID: 30214175 DOI: 10.2147/CIA.S169223
    Purpose: Osteoporosis is one of the major health concerns among the elderly population, especially in postmenopausal women. Many menopausal women over 50 years of age lose their bone density and suffer bone fractures. In addition, many mortality and morbidity cases among the elderly are related to hip fracture. This study aims to investigate the effect of Lactobacillus helveticus (L. helveticus) on bone health status among ovariectomized (OVX) bone loss-induced rats.

    Methods: The rats were either OVX or sham OVX (sham), then were randomly assigned into three groups, G1: sham, G2: OVX and G3: OVX+L. helveticus (1 mL of 108-109 colony forming units). The supplementation was force-fed to the rats once a day for 16 weeks while control groups were force-fed with demineralized water.

    Results: L. helveticus upregulated the expression of Runx2 and Bmp2, increased serum osteocalcin, bone volume/total volume and trabecular thickness, and decreased serum C-terminal telopeptide and total porosity percentage. It also altered bone microstructure, as a result increasing bone mineral density and bone strength.

    Conclusion: Our results indicate that L. helveticus attenuates bone remodeling and consequently improves bone health in OVX rats by increasing bone formation along with bone resorption reduction. This study suggests a potential therapeutic effect of L. helveticus (ATCC 27558) on postmenopausal osteoporosis.

  8. Mirzasadeghi A, Narayanan SS, Ng MH, Sanaei R, Cheng CH, Bajuri MY, et al.
    Biomed Mater Eng, 2014;24(6):2177-86.
    PMID: 25226916 DOI: 10.3233/BME-141029
    The application of bone substitutes and cements has a long standing history in augmenting fractures as a complement to routine fracture fixation techniques. Nevertheless, such use is almost always in conjunction with definite means of fracture fixation such as intramedullary pins or bone plates. The idea of using biomaterials as the primary fixation bears the possibility of simultaneous fixation and bone enhancement. Intramedullary recruitment of bone cements is suggested in this study to achieve this goal. However, as the method needs primary testings in animal models before human implementation, and since the degree of ambulation is not predictable in animals, this pilot study only evaluates the outcomes regarding the feasibility and safety of this method in the presence of primary bone fixators. A number of two sheep were used in this study. Tibial transverse osteotomies were performed in both animals followed by external skeletal fixation. The medullary canals, which have already been prepared by removing the marrow through proximal and distal drill holes, were then injected with calcium phosphate cement (CPC). The outcomes were evaluated postoperatively by standard survey radiographs, morphology, histology and biomechanical testings. Healing processes appeared uncomplicated until week four where one bone fracture recurred due to external fixator failure. The results showed 56% and 48% cortical thickening, compared to the opposite site, in the fracture site and proximal and distal diaphyses respectively. This bone augmentative effect resulted in 264% increase in bending strength of the fracture site and 148% increase of the same value in the adjacent areas of diaphyses. In conclusion, IMCO, using CPC in tibia of sheep, is safe and biocompatible with bone physiology and healing. It possibly can carry the osteopromotive effect of the CPCs to provide a sustained source of bone augmentation throughout the diaphysis. Although the results must be considered preliminary, this method has possible advantages over conventional methods of bone fixation at least in bones with compromised quality (i.e. osteoporosis and bone cysts), where rigid metal implants may jeopardize eggshell cortices.
  9. Yew CT, Gurumoorthy N, Nordin F, Tye GJ, Wan Kamarul Zaman WS, Tan JJ, et al.
    PeerJ, 2022;10:e13704.
    PMID: 35979475 DOI: 10.7717/peerj.13704
    HIV-1 derived lentiviral vector is an efficient transporter for delivering desired genetic materials into the targeted cells among many viral vectors. Genetic material transduced by lentiviral vector is integrated into the cell genome to introduce new functions, repair defective cell metabolism, and stimulate certain cell functions. Various measures have been administered in different generations of lentiviral vector systems to reduce the vector's replicating capabilities. Despite numerous demonstrations of an excellent safety profile of integrative lentiviral vectors, the precautionary approach has prompted the development of integrase-deficient versions of these vectors. The generation of integrase-deficient lentiviral vectors by abrogating integrase activity in lentiviral vector systems reduces the rate of transgenes integration into host genomes. With this feature, the integrase-deficient lentiviral vector is advantageous for therapeutic implementation and widens its clinical applications. This short review delineates the biology of HIV-1-erived lentiviral vector, generation of integrase-deficient lentiviral vector, recent studies involving integrase-deficient lentiviral vectors, limitations, and prospects for neoteric clinical use.
  10. Loh EYX, Fauzi MB, Ng MH, Ng PY, Ng SF, Mohd Amin MCI
    Int J Biol Macromol, 2020 Sep 15;159:497-509.
    PMID: 32387606 DOI: 10.1016/j.ijbiomac.2020.05.011
    In skin tissue engineering, a biodegradable scaffold is usually used where cells grow, produce its own cytokines, growth factors, and extracellular matrix, until the regenerated tissue gradually replaces the scaffold upon its degradation. However, the role of non-biodegradable scaffold remains unexplored. This study investigates the potential of a non-biodegradable bacterial nanocellulose/acrylic acid (BNC/AA) hydrogel to transfer human dermal fibroblasts (HDF) to the wound and the resulting healing effects of transferred HDF in athymic mice. Results demonstrated that the fabricated hydrogel successfully transferred >50% of HDF onto the wound site within 24 h, with evidence of HDF detected on day 7. The gene and protein study unveiled faster wound healing in the hydrogel with HDF group and characterized more mature newly formed skin microstructure on day 7, despite no visible differences. These findings give a new perspective regarding the role of non-biodegradable materials in skin tissue engineering, in the presence of exogenous cells, mainly at the molecular level.
  11. Salem SA, Rashidbenam Z, Jasman MH, Ho CCK, Sagap I, Singh R, et al.
    Tissue Eng Regen Med, 2020 08;17(4):553-563.
    PMID: 32583275 DOI: 10.1007/s13770-020-00271-7
    BACKGROUND: The urinary tract can be affected by both congenital abnormalities as well as acquired disorders, such as cancer, trauma, infection, inflammation, and iatrogenic injuries, all of which may lead to organ damage requiring eventual reconstruction. As a gold standard, gastrointestinal segment is used for urinary bladder reconstruction. However, one major problem is that while bladder tissue prevents reabsorption of specific solutes, gastrointestinal tissue actually absorbs them. Therefore, tissue engineering approach had been attempted to provide an alternative tissue graft for urinary bladder reconstruction.

    METHODS: Human adipose-derived stem cells isolated from fat tissues were differentiated into smooth muscle cells and then seeded onto a triple-layered PLGA sheet to form a bladder construct. Adult athymic rats underwent subtotal urinary bladder resection and were divided into three treatment groups (n = 3): Group 1 ("sham") underwent anastomosis of the remaining basal region, Group 2 underwent reconstruction with the cell-free scaffold, and Group 3 underwent reconstruction with the tissue-engineered bladder construct. Animals were monitored on a daily basis and euthanisation was performed whenever a decline in animal health was detected.

    RESULTS: All animals in Groups 1, 2 and 3 survived for at least 7 days and were followed up to a maximum of 12 weeks post-operation. It was found that by Day 14, substantial ingrowth of smooth muscle and urothelial cells had occurred in Group 2 and 3. In the long-term follow up of group 3 (tissue-engineered bladder construct group), it was found that the urinary bladder wall was completely regenerated and bladder function was fully restored. Urodynamic and radiological evaluations of the reconstructed bladder showed a return to normal bladder volume and function.Histological analysis revealed the presence of three muscular layers and a urothelium similar to that of a normal bladder. Immunohistochemical staining using human-specific myocyte markers (myosin heavy chain and smoothelin) confirmed the incorporation of the seeded cells in the newly regenerated muscular layers.

    CONCLUSION: Implantation of PLGA construct seeded with smooth muscle cells derived from human adipose stem cells can lead to regeneration of the muscular layers and urothelial ingrowth, leading to formation of a completely functional urinary bladder.

  12. Mohamad N, Loh EYX, Fauzi MB, Ng MH, Mohd Amin MCI
    Drug Deliv Transl Res, 2019 04;9(2):444-452.
    PMID: 29302918 DOI: 10.1007/s13346-017-0475-3
    The healing of wounds, including those from burns, currently exerts a burden on healthcare systems worldwide. Hydrogels are widely used as wound dressings and in the field of tissue engineering. The popularity of bacterial cellulose-based hydrogels has increased owing to their biocompatibility. Previous study demonstrated that bacterial cellulose/acrylic acid (BC/AA) hydrogel increased the healing rate of burn wound. This in vivo study using athymic mice has extended the use of BC/AA hydrogel by the addition of human epidermal keratinocytes and human dermal fibroblasts. The results showed that hydrogel loaded with cells produces the greatest acceleration on burn wound healing, followed by treatment with hydrogel alone, compared with the untreated group. The percentage wound reduction on day 13 in the mice treated with hydrogel loaded with cells (77.34 ± 6.21%) was significantly higher than that in the control-treated mice (64.79 ± 6.84%). Histological analysis, the expression of collagen type I via immunohistochemistry, and transmission electron microscopy indicated a greater deposition of collagen in the mice treated with hydrogel loaded with cells than in the mice administered other treatments. Therefore, the BC/AA hydrogel has promising application as a wound dressing and a cell carrier.
  13. Ude CC, Ng MH, Chen CH, Htwe O, Amaramalar NS, Hassan S, et al.
    Osteoarthritis Cartilage, 2015 Aug;23(8):1294-306.
    PMID: 25887366 DOI: 10.1016/j.joca.2015.04.003
    OBJECTIVES: Our previous studies on osteoarthritis (OA) revealed positive outcome after chondrogenically induced cells treatment. Presently, the functional improvements of these treated OA knee joints were quantified followed by evaluation of the mechanical properties of the engineered cartilages.
    METHODS: Baseline electromyogram (EMGs) were conducted at week 0 (pre-OA), on the locomotory muscles of nine un-castrated male sheep (Siamese long tail cross) divided into controls, adipose-derived stem cells (ADSCs) and bone marrow stem cells (BMSCs), before OA inductions. Subsequent recordings were performed at week 7 and week 31 which were post-OA and post-treatments. Afterwards, the compression tests of the regenerated cartilage were performed.
    RESULTS: Post-treatment EMG analysis revealed that the control sheep retained significant reductions in amplitudes at the right medial gluteus, vastus lateralis and bicep femoris, whereas BMSCs and ADSCs samples had no further significant reductions (P < 0.05). Grossly and histologically, the treated knee joints demonstrated the presence of regenerated neo cartilages evidenced by the fluorescence of PKH26 tracker. Based on the International Cartilage Repair Society scores (ICRS), they had significantly lower grades than the controls (P < 0.05). The compression moduli of the native cartilages and the engineered cartilages differed significantly at the tibia plateau, patella femoral groove and the patella; whereas at the medial femoral condyle, they had similar moduli of 0.69 MPa and 0.40-0.64 MPa respectively. Their compression strengths at all four regions were within ±10 MPa.
    CONCLUSION: The tissue engineered cartilages provided evidence of functional recoveries associated to the structural regenerations, and their mechanical properties were comparable with the native cartilage.
    KEYWORDS: Cartilage; Cell therapy; Function; Osteoarthritis; Regeneration
  14. Ng MH, Choo YM
    J Chromatogr Sci, 2016 Apr;54(4):633-8.
    PMID: 26941414 DOI: 10.1093/chromsci/bmv241
    Palm oil is the richest source of natural carotenes, comprising 500-700 ppm in crude palm oil (CPO). Its concentration is found to be much higher in oil extracted from palm-pressed fiber, a by-product from the milling of oil palm fruits. There are 11 types of carotenes in palm oil, excluding the cis/trans isomers of some of the carotenes. Qualitative separation of these individual carotenes is particularly useful for the identification and confirmation of different types of oil as the carotenes profile is unique to each type of vegetable oil. Previous studies on HPLC separation of the individual palm carotenes reported a total analyses time of up to 100 min using C30 stationary phase. In this study, the separation was completed in <5 min. The qualitative separation was successfully carried out using a commonly used stationary phase, C18.
  15. Chowdhury SR, Ng MH, Hassan NS, Aminuddin BS, Ruszymah BH
    Hum. Cell, 2012 Sep;25(3):69-77.
    PMID: 22968953
    This study was undertaken in order to identify the best culture strategy to expand and osteogenic differentiation of human bone marrow stem cells (hBMSCs) for subsequent bone tissue engineering. In this regard, the experiment was designed to evaluate whether it is feasible to bypass the expansion phase during hBMSCs differentiation towards osteogenic lineages by early induction, if not identification of suitable culture media for enhancement of hBMSCs expansion and osteogenic differentiation. It was found that introduction of osteogenic factors in alpha-minimum essential medium (αMEM) during expansion phase resulted in significant reduction of hBMSCs growth rate and osteogenic gene expressions. In an approach to identify suitable culture media, the growth and differentiation potential of hBMSCs were evaluated in αMEM, F12:DMEM (1:1; FD), and FD with growth factors. It was found that αMEM favors the expansion and osteogenic differentiation of hBMSCs compared to that in FD. However, supplementation of growth factors in FD, only during expansion phase, enhances the hBMSCs growth rate and significantly up-regulates the expression of CBFA-1 (the early markers of osteogenic differentiation) during expansion, and, other osteogenic genes at the end of induction compared to the cells in αMEM and FD. These results suggested that the expansion and differentiation phase of the hBMSCs should be separately and carefully timed. For bone tissue engineering, supplementation of growth factors in FD only during the expansion phase was sufficient to promote hBMSCs expansion and differentiation, and preferably the most efficient culture condition.
  16. Ramli K, Aminath Gasim I, Ahmad AA, Hassan S, Law ZK, Tan GC, et al.
    Cell Biol Int, 2019 Mar;43(3):233-252.
    PMID: 30362196 DOI: 10.1002/cbin.11067
    In peripheral nerve injuries, Schwann cells (SC) play pivotal roles in regenerating damaged nerve. However, the use of SC in clinical cell-based therapy is hampered due to its limited availability. In this study, we aim to evaluate the effectiveness of using an established induction protocol for human bone marrow derived-MSC (hBM-MSCs) transdifferentiation into a SC lineage. A relatively homogenous culture of hBM-MSCs was first established after serial passaging (P3), with profiles conforming to the minimal criteria set by International Society for Cellular Therapy (ISCT). The cultures (n = 3) were then subjected to a series of induction media containing β-mercaptoethanol, retinoic acid, and growth factors. Quantitative RT-PCR, flow cytometry, and immunocytochemistry analyses were performed to quantify the expression of specific SC markers, that is, S100, GFAP, MPZ and p75 NGFR, in both undifferentiated and transdifferentiated hBM-MSCs. Based on these analyses, all markers were expressed in undifferentiated hBM-MSCs and MPZ expression (mRNA transcripts) was consistently detected before and after transdifferentiation across all samples. There was upregulation at the transcript level of more than twofolds for NGF, MPB, GDNF, p75 NGFR post-transdifferentiation. This study highlights the existence of spontaneous expression of specific SC markers in cultured hBM-MSCs, inter-donor variability and that MSC transdifferentiation is a heterogenous process. These findings strongly oppose the use of a single marker to indicate SC fate. The heterogenous nature of MSC may influence the efficiency of SC transdifferentiation protocols. Therefore, there is an urgent need to re-define the MSC subpopulations and revise the minimal criteria for MSC identification.
  17. Yap WH, Cheah TY, Yong LC, Chowdhury SR, Ng MH, Kwan Z, et al.
    J Biosci, 2021;46.
    PMID: 34475316
    Psoriasis is a chronic skin disease characterized by thickening and disorganization of the skin's protective barrier. Although current models replicate some aspects of the disease, development of therapeutic strategies have been hindered by absence of more relevant models. This study aimed to develop and characterize an in vitro psoriatic human skin equivalent (HSE) using human keratinocytes HaCat cell line grown on fibroblasts-derived matrices (FDM). The constructed HSEs were treated with cytokines (IL-1α, TNF-α, IL-6, and IL22) to allow controlled induction of psoriasis-associated features. Histological stainings showed that FDMHSE composed of a fully differentiated epidermis and fibroblast-populated dermis comparable to native skin and rat tail collagen-HSE. Hyperproliferation (CK16 and Ki67) and inflammatory markers (TNF-α and IL-6) expression were significantly enhanced in the cytokine-induced FDM- and rat tail collagen HSEs compared to non-treated HSE counterparts. The characteristics were in line with those observed in psoriasis punch biopsies. Treatment with all-trans retinoic acid (ATRA) has shown to suppress these effects, where HSE models treated with both ATRA and cytokines exhibit histological characteristics, hyperproliferation and differentiation markers expression like non-treated control HSEs. Cytokine-induced FDM-HSE, constructed entirely from human cell lines, provides an excellent opportunity for psoriasis research and testing new therapeutics.
  18. Liau LL, Hassan MNFB, Tang YL, Ng MH, Law JX
    Int J Mol Sci, 2021 Jan 28;22(3).
    PMID: 33525349 DOI: 10.3390/ijms22031269
    Osteoarthritis (OA) is a degenerative joint disease that affects a lot of people worldwide. Current treatment for OA mainly focuses on halting or slowing down the disease progress and to improve the patient's quality of life and functionality. Autologous chondrocyte implantation (ACI) is a new treatment modality with the potential to promote regeneration of worn cartilage. Traditionally, foetal bovine serum (FBS) is used to expand the chondrocytes. However, the use of FBS is not ideal for the expansion of cells mean for clinical applications as it possesses the risk of animal pathogen transmission and animal protein transfer to host. Human platelet lysate (HPL) appears to be a suitable alternative to FBS as it is rich in biological factors that enhance cell proliferation. Thus far, HPL has been found to be superior in promoting chondrocyte proliferation compared to FBS. However, both HPL and FBS cannot prevent chondrocyte dedifferentiation. Discrepant results have been reported for the maintenance of chondrocyte redifferentiation potential by HPL. These differences are likely due to the diversity in the HPL preparation methods. In the future, more studies on HPL need to be performed to develop a standardized technique which is capable of producing HPL that can maintain the chondrocyte redifferentiation potential reproducibly. This review discusses the in vitro expansion of chondrocytes with FBS and HPL, focusing on its capability to promote the proliferation and maintain the chondrogenic characteristics of chondrocytes.
  19. Rashidbenam Z, Jasman MH, Tan GH, Goh EH, Fam XI, Ho CCK, et al.
    Int J Mol Sci, 2021 Mar 25;22(7).
    PMID: 33805910 DOI: 10.3390/ijms22073350
    Long urethral strictures are often treated with autologous genital skin and buccal mucosa grafts; however, risk of hair ingrowth and donor site morbidity, restrict their application. To overcome this, we introduced a tissue-engineered human urethra comprising adipose-derived stem cell (ASC)-based self-assembled scaffold, human urothelial cells (UCs) and smooth muscle cells (SMCs). ASCs were cultured with ascorbic acid to stimulate extracellular matrix (ECM) production. The scaffold (ECM) was stained with collagen type-I antibody and the thickness was measured under a confocal microscope. Results showed that the thickest scaffold (28.06 ± 0.59 μm) was achieved with 3 × 104 cells/cm2 seeding density, 100 μg/mL ascorbic acid concentration under hypoxic and dynamic culture condition. The biocompatibility assessment showed that UCs and SMCs seeded on the scaffold could proliferate and maintain the expression of their markers (CK7, CK20, UPIa, and UPII) and (α-SMA, MHC and Smootheline), respectively, after 14 days of in vitro culture. ECM gene expression analysis showed that the ASC and dermal fibroblast-based scaffolds (control) were comparable. The ASC-based scaffold can be handled and removed from the plate. This suggests that multiple layers of scaffold can be stacked to form the urothelium (seeded with UCs), submucosal layer (ASCs only), and smooth muscle layer (seeded with SMCs) and has the potential to be developed into a fully functional human urethra for urethral reconstructive surgeries.
  20. Phang MY, Ng MH, Tan KK, Aminuddin BS, Ruszymah BH, Fauziah O
    Med J Malaysia, 2004 May;59 Suppl B:198-9.
    PMID: 15468886
    Tricalcium phosphate/hydroxyapatite (TCP/HA), hydroxyapatite (HA), chitosan and calcium sulphate (CaSO4) were studied and evaluated for possible bone tissue engineered construct acting as good support for osteogenic cells to proliferate, differentiate, and eventually spread and integrate into the scaffold. Surface morphology visualized by SEM showed that scaffold materials with additional fibrin had more cell densities attached than those without, depicting that the presence of fibrin and collagen fibers were truly a favourite choice of cells to attach. In comparison of various biomaterials used incorporated with fibrin, TCP/HA had the most cluster of cells attached.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links