Displaying publications 41 - 60 of 155 in total

Abstract:
Sort:
  1. Yap TW, Gan HM, Lee YP, Leow AH, Azmi AN, Francois F, et al.
    PLoS One, 2016;11(3):e0151893.
    PMID: 26991500 DOI: 10.1371/journal.pone.0151893
    BACKGROUND: Accumulating evidence shows that Helicobacter pylori protects against some metabolic and immunological diseases in which the development of these diseases coincide with temporal or permanent dysbiosis. The aim of this study was to assess the effect of H. pylori eradication on the human gut microbiome.

    METHODS: As part of the currently on-going ESSAY (Eradication Study in Stable Adults/Youths) study, we collected stool samples from 17 H. pylori-positive young adult (18-30 years-old) volunteers. The same cohort was followed up 6, 12 and 18 months-post H. pylori eradication. The impact of H. pylori on the human gut microbiome pre- and post-eradication was investigated using high throughput 16S rRNA gene (V3-V4 region) sequencing using the Illumina Miseq followed by data analysis using Qiime pipeline.

    RESULTS: We compared the composition and diversity of bacterial communities in the fecal microbiome of the H. pylori-positive volunteers, before and after H. pylori eradication therapy. The 16S rRNA gene was sequenced at an average of 150,000-170,000 reads/sample. The microbial diversity were similar pre- and post-H. pylori eradication with no significant differences in richness and evenness of bacterial species. Despite that the general profile of the gut microbiome was similar pre- and post-eradication, some changes in the bacterial communities at the phylum and genus levels were notable, particularly the decrease in relative abundance of Bacterioidetes and corresponding increase in Firmicutes after H. pylori eradication. The significant increase of short-chain fatty acids (SCFA)-producing bacteria genera could also be associated with increased risk of metabolic disorders.

    CONCLUSIONS: Our preliminary stool metagenomics study shows that eradication of H. pylori caused perturbation of the gut microbiome and may indirectly affect the health of human. Clinicians should be aware of the effect of broad spectrum antibiotics used in H. pylori eradication regimen and be cautious in the clinical management of H. pylori infection, particularly in immunocompromised patients.

  2. Khosravi Y, Bunte RM, Chiow KH, Tan TL, Wong WY, Poh QH, et al.
    Gut Microbes, 2016;7(1):48-53.
    PMID: 26939851 DOI: 10.1080/19490976.2015.1119990
    Helicobacter pylori have been shown to influence physiological regulation of metabolic hormones involved in food intake, energy expenditure and body mass. It has been proposed that inducing H. pylori-induced gastric atrophy damages hormone-producing endocrine cells localized in gastric mucosal layers and therefore alter their concentrations. In a recent study, we provided additional proof in mice under controlled conditions that H. pylori and gut microbiota indeed affects circulating metabolic gut hormones and energy homeostasis. In this addendum, we presented data from follow-up investigations that demonstrated H. pylori and gut microbiota-associated modulation of metabolic gut hormones was independent and precedes H. pylori-induced histopathological changes in the gut of H. pylori-infected mice. Thus, H. pylori-associated argumentation of energy homeostasis is not caused by injury to endocrine cells in gastric mucosa.
  3. Lee WC, Goh KL, Loke MF, Vadivelu J
    Helicobacter, 2017 Feb;22(1).
    PMID: 27258354 DOI: 10.1111/hel.12321
    Helicobacter pylori colonizes almost half of the human population worldwide. H. pylori strains are genetically diverse, and the specific genotypes are associated with various clinical manifestations including gastric adenocarcinoma, peptic ulcer disease (PUD), and nonulcer dyspepsia (NUD). However, our current knowledge of the H. pylori metabolism is limited. To understand the metabolic differences among H. pylori strains, we investigated four Malaysian H. pylori clinical strains, which had been previously sequenced, and a standard strain, H. pylori J99, at the phenotypic level.
  4. Khosravi Y, Loke MF, Chua EG, Tay ST, Vadivelu J
    ScientificWorldJournal, 2016;2016:9562039.
    PMID: 27314061
    [This corrects the article DOI: 10.1100/2012/654939.].
  5. Suwarnalata G, Tan AH, Isa H, Gudimella R, Anwar A, Loke MF, et al.
    PLoS One, 2016;11(4):e0153725.
    PMID: 27100827 DOI: 10.1371/journal.pone.0153725
    Parkinson's disease (PD) is the second most common chronic and progressive neurodegenerative disorder. Its etiology remains elusive and at present only symptomatic treatments exists. Helicobacter pylori chronically colonizes the gastric mucosa of more than half of the global human population. Interestingly, H. pylori positivity has been found to be associated with greater of PD motor severity. In order to investigate the underlying cause of this association, the Sengenics Immunome protein array, which enables simultaneous screening for autoantibodies against 1636 human proteins, was used to screen the serum of 30 H. pylori-seropositive PD patients (case) and 30 age- and gender-matched H. pylori-seronegative PD patients (control) in this study. In total, 13 significant autoantibodies were identified and ranked, with 8 up-regulated and 5 down-regulated in the case group. Among autoantibodies found to be elevated in H. pylori-seropositive PD were included antibodies that recognize Nuclear factor I subtype A (NFIA), Platelet-derived growth factor B (PDGFB) and Eukaryotic translation initiation factor 4A3 (eIFA3). The presence of elevated autoantibodies against proteins essential for normal neurological functions suggest that immunomodulatory properties of H. pylori may explain the association between H. pylori positivity and greater PD motor severity.
  6. Sidahmed HM, Hashim NM, Mohan S, Abdelwahab SI, Taha MM, Dehghan F, et al.
    Drug Des Devel Ther, 2016;10:297-313.
    PMID: 26834460 DOI: 10.2147/DDDT.S80625
    PURPOSE: β-Mangostin (BM) from Cratoxylum arborescens demonstrated various pharmacological activities such as anticancer and anti-inflammatory. In this study, we aimed to investigate its antiulcer activity against ethanol ulcer model in rats.

    MATERIALS AND METHODS: BM was isolated from C. arborescens. Gastric acid output, ulcer index, gross evaluation, mucus production, histological evaluation using hematoxylin and eosin and periodic acid-Schiff staining and immunohistochemical localization for heat shock protein 70 (HSP70) and Bax proteins were investigated. Possible involvement of reduced glutathione, lipid peroxidation, prostaglandin E2, antioxidant enzymes, superoxide dismutase and catalase enzymes, radical scavenging, nonprotein sulfhydryl compounds, and anti-Helicobacter pylori were investigated.

    RESULTS: BM showed antisecretory activity against the pylorus ligature model. The pretreatment with BM protect gastric mucosa from ethanol damaging effect as seen by the improved gross and histological appearance. BM significantly reduced the ulcer area formation, the submucosal edema, and the leukocytes infiltration compared to the ulcer control. The compound showed intense periodic acid-Schiff staining to the gastric mucus layer and marked amount of alcian blue binding to free gastric mucus. BM significantly increased the gastric homogenate content of prostaglandin E2 glutathione, superoxide dismutase, catalase, and nonprotein sulfhydryl compounds. The compound inhibited the lipid peroxidation revealed by the reduced gastric content of malondialdehyde. Moreover, BM upregulate HSP70 expression and downregulate Bax expression. Furthermore, the compound showed interesting anti-H. pylori activity.

    CONCLUSION: Thus, it could be concluded that BM possesses gastroprotective activity, which could be attributed to the antisecretory, mucus production, antioxidant, HSP70, antiapoptotic, and anti-H. pylori mechanisms.

  7. Lee WC, Anton BP, Wang S, Baybayan P, Singh S, Ashby M, et al.
    BMC Genomics, 2015;16:424.
    PMID: 26031894 DOI: 10.1186/s12864-015-1585-2
    The genome of the human gastric pathogen Helicobacter pylori encodes a large number of DNA methyltransferases (MTases), some of which are shared among many strains, and others of which are unique to a given strain. The MTases have potential roles in the survival of the bacterium. In this study, we sequenced a Malaysian H. pylori clinical strain, designated UM032, by using a combination of PacBio Single Molecule, Real-Time (SMRT) and Illumina MiSeq next generation sequencing platforms, and used the SMRT data to characterize the set of methylated bases (the methylome).
  8. Wong KT, Puthucheary SD, Vadivelu J
    Histopathology, 1995 Jan;26(1):51-5.
    PMID: 7713483
    We examined human tissues infected by Burkholderia (Pseudomonas) pseudomallei which is endemic in Malaysia to study the types of inflammation invoked, and to look for histopathological clues to its diagnosis. The lesions which varied from acute to chronic granulomatous inflammation were not tissue-specific. In five autopsy cases, the inflammation was usually a focal or diffuse, acute necrotising inflammation with varying numbers of neutrophils, macrophages, lymphocytes and 'giant cells'. The 'giant cells' probably represent giant macrophages with phagocytosed leukocytes. There were numerous gram-negative, non-acid-fast, intra- and extracellular bacilli, occurring either singly or in chains. Intracellular bacteria within macrophages and 'giant cells' were so numerous as to resemble globi. This feature has not been previously reported and may be a useful diagnostic clue in melioidosis. In 14 surgical cases biopsies showed acute inflammatory lesions that appeared no different from acute inflammation due to other causes. In many biopsies, however, the inflammation was either an acute-on-chronic inflammation with a focal granulomatous component, or was purely granulomatous in character. Bacilli were difficult to demonstrate in surgical biopsies even with the gram strain.
  9. Loke MF, Chua EG, Gan HM, Thulasi K, Wanyiri JW, Thevambiga I, et al.
    PLoS One, 2018;13(12):e0208584.
    PMID: 30576312 DOI: 10.1371/journal.pone.0208584
    Colorectal cancer (CRC) is ranked the third most common cancer in human worldwide. However, the exact mechanisms of CRC are not well established. Furthermore, there may be differences between mechanisms of CRC in the Asian and in the Western populations. In the present study, we utilized a liquid chromatography-mass spectrometry (LC-MS) metabolomic approach supported by the 16S rRNA next-generation sequencing to investigate the functional and taxonomical differences between paired tumor and unaffected (normal) surgical biopsy tissues from 17 Malaysian patients. Metabolomic differences associated with steroid biosynthesis, terpenoid biosynthesis and bile metabolism could be attributed to microbiome differences between normal and tumor sites. The relative abundances of Anaerotruncus, Intestinimonas and Oscillibacter displayed significant relationships with both steroid biosynthesis and terpenoid and triterpenoid biosynthesis pathways. Metabolites involved in serotonergic synapse/ tryptophan metabolism (Serotonin and 5-Hydroxy-3-indoleacetic acid [5-HIAA]) were only detected in normal tissue samples. On the other hand, S-Adenosyl-L-homocysteine (SAH), a metabolite involves in methionine metabolism and methylation, was frequently increased in tumor relative to normal tissues. In conclusion, this study suggests that local microbiome dysbiosis may contribute to functional changes at the cancer sites. Results from the current study also contributed to the list of metabolites that are found to differ between normal and tumor sites in CRC and supported our quest for understanding the mechanisms of carcinogenesis.
  10. Khosravi Y, Rehvathy V, Wee WY, Wang S, Baybayan P, Singh S, et al.
    Gut Pathog, 2013;5:25.
    PMID: 23957912 DOI: 10.1186/1757-4749-5-25
    Helicobacter pylori is a Gram-negative bacterium that persistently infects the human stomach inducing chronic inflammation. The exact mechanisms of pathogenesis are still not completely understood. Although not a natural host for H. pylori, mouse infection models play an important role in establishing the immunology and pathogenicity of H. pylori. In this study, for the first time, the genome sequences of clinical H. pylori strain UM032 and mice-adapted derivatives, 298 and 299, were sequenced using the PacBio Single Molecule, Real-Time (SMRT) technology.
  11. Chua EG, Wise MJ, Khosravi Y, Seow SW, Amoyo AA, Pettersson S, et al.
    DNA Res, 2017 Feb 01;24(1):37-49.
    PMID: 27803027 DOI: 10.1093/dnares/dsw046
    Helicobacter pylori is a highly successful gastric pathogen. High genomic plasticity allows its adaptation to changing host environments. Complete genomes of H. pylori clinical isolate UM032 and its mice-adapted serial derivatives 298 and 299, generated using both PacBio RS and Illumina MiSeq sequencing technologies, were compared to identify novel elements responsible for host-adaptation. The acquisition of a jhp0562-like allele, which encodes for a galactosyltransferase, was identified in the mice-adapted strains. Our analysis implies a new β-1,4-galactosyltransferase role for this enzyme, essential for Ley antigen expression. Intragenomic recombination between babA and babB genes was also observed. Further, we expanded on the list of candidate genes whose expression patterns have been mediated by upstream homopolymer-length alterations to facilitate host adaption. Importantly, greater than four-fold reduction of mRNA levels was demonstrated in five genes. Among the down-regulated genes, three encode for outer membrane proteins, including BabA, BabB and HopD. As expected, a substantial reduction in BabA protein abundance was detected in mice-adapted strains 298 and 299 via Western analysis. Our results suggest that the expression of Ley antigen and reduced outer membrane protein expressions may facilitate H. pylori colonisation of mouse gastric epithelium.
  12. Al-Maleki AR, Vellasamy KM, Mariappan V, Venkatraman G, Tay ST, Vadivelu J
    Genomics, 2020 01;112(1):501-512.
    PMID: 30980902 DOI: 10.1016/j.ygeno.2019.04.002
    Differences in expression of potential virulence and survival genes were associated with B. pseudomallei colony morphology variants. Microarray was used to investigate B. pseudomallei transcriptome alterations among the wild type and small colony variant (SCV) pre- and post-exposed to A549 cells. SCV pre- and post-exposed have lower metabolic requirements and consume lesser energy than the wild type pre- and post-exposed to A549. However, both the wild type and SCV limit their metabolic activities post- infection of A549 cells and this is indicated by the down-regulation of genes implicated in the metabolism of amino acids, carbohydrate, lipid, and other amino acids. Many well-known virulence and survival factors, including T3SS, fimbriae, capsular polysaccharides and stress response were up-regulated in both the wild type and SCV pre- and post-exposed to A549 cells. Microarray analysis demonstrated essential differences in bacterial response associated with virulence and survival pre- and post-exposed to A549 cells.
  13. Teh CSJ, Yap PSX, Zulkefli NJ, Subramaniam P, Sit PS, Kong ZX, et al.
    Transbound Emerg Dis, 2021 Jan 27.
    PMID: 33506647 DOI: 10.1111/tbed.14005
    Burkholderia pseudomallei, a Gram-negative bacterial pathogen that causes melioidosis, is of public health importance in endemic areas including Malaysia. An investigation of the molecular epidemiology links of B. pseudomallei would contribute to better understanding of the clonal relationships, transmission dynamics and evolutionary change. Multi-locus sequence typing (MLST) of 45 clinical B. pseudomallei isolates collected from sporadic meliodosis cases in Malaysia was performed. In addition, a total of 449 B. pseudomallei Malaysian strains submitted to the MLST database from 1964 until 2019 were included in the temporal analysis to determine the endemic sequence types (STs), emergence and re-emergence of ST(s). In addition, strain-specific distribution was evaluated using BURST tool. Genotyping of 45 clinical strains were resolved into 12 STs and the majority were affiliated with ST46 (n=11) and ST1342 (n=7). Concomitantly, ST46 was the most prevalent ST in Malaysia which first reported in 1964. All the Malaysian B. pseudomallei strains were resolved into 76 different STs with 36 of them uniquely present only in Malaysia. ST1342 was most closely related to ST1034, in which both STs were unique to Malaysia and first isolated from soil samples in Pahang, a state in Malaysia. The present study revealed a high diversity of B. pseudomallei in Malaysia. Localised evolution giving rise to the emergence of new STs was observed, suggesting that host and environmental factors play a crucial role in the evolutionary changes of B. pseudomallei.
  14. Gunaletchumy SP, Teh X, Khosravi Y, Ramli NS, Chua EG, Kavitha T, et al.
    J Bacteriol, 2012 Oct;194(20):5695-6.
    PMID: 23012278
    Helicobacter pylori is the main bacterial causative agent of gastroduodenal disorders and a risk factor for gastric adenocarcinoma and mucosa-associated lymphoid tissue (MALT) lymphoma. The draft genomes of 10 closely related H. pylori isolates from the multiracial Malaysian population will provide an insight into the genetic diversity of isolates in Southeast Asia. These isolates were cultured from gastric biopsy samples from patients with functional dyspepsia and gastric cancer. The availability of this genomic information will provide an opportunity for examining the evolution and population structure of H. pylori isolates from Southeast Asia, where the East meets the West.
  15. Khosravi Y, Tay ST, Vadivelu J
    J Med Microbiol, 2011 Jul;60(Pt 7):988-994.
    PMID: 21436370 DOI: 10.1099/jmm.0.029868-0
    In this study, 90 non-replicate imipenem-resistant Pseudomonas aeruginosa (IRPA) Malaysian isolates collected between October 2005 and March 2008 were subjected to a screening test for detection of the integron and the gene cassette. Class 1 integrons were detected in 54 IRPA clinical isolates, whilst three isolates contained class 2 integrons. Analysis of the gene cassettes associated with the class 1 integrons showed the detection of accC1 in isolates carrying bla(IMP-7) and aacA7 in isolates carrying bla(VIM-2). aadA6 was detected in two isolates carrying bla(IMP-4). Using random amplification of polymorphic DNA analysis, 14 PCR fingerprint patterns were generated from the 32 isolates carrying metallo-β-lactamase (MBL) genes (35.5 %), whilst 20 patterns were generated from the 58 non-MBL gene isolates (64.4 %). Based on the differences in the fingerprinting patterns, two clusters (A and B) were identified among the MBL-producing isolates. Cluster A comprised 18 isolates (56 %) carrying the bla(VIM) gene, whereas cluster B comprised 14 (44 %) isolates carrying the bla(IMP) gene. The non-MBL isolates were divided into clusters C and D. Cluster C comprised 22 non-MBL isolates harbouring class 1 integrons, whilst cluster D consisted of three isolates carrying class 2 integrons. These findings suggest that the class 1 integron is widespread among P. aeruginosa isolated in Malaysia and that characterization of cassette arrays of integrons will be a useful epidemiological tool to study the evolution of multidrug resistance and the dissemination of antibiotic resistance genes.
  16. Barathan M, Zulpa AK, Vellasamy KM, Mariappan V, Shivashekaregowda NKH, Ibrahim ZA, et al.
    In Vivo, 2021 8 20;35(5):2675-2685.
    PMID: 34410956 DOI: 10.21873/invivo.12551
    BACKGROUND/AIM: Isoniazid is an antibiotic used for the treatment of tuberculosis. Previously, we found that the isoniazid derivative (E)-N'-(2,3,4-trihydroxybenzylidene) isonicotinohydrazide (ITHB4) could be developed as novel antimycobacterial agent by lead optimization. We further explored the ability of this compound compared to zerumbone in inhibiting the growth of MCF-7 breast cancer cells.

    MATERIALS AND METHODS: Cytotoxicity was measured by the MTT assay and further confirmed via apoptosis, ROS, cell cycle, DNA fragmentation and cytokine assays.

    RESULTS: ITHB4 demonstrated a lower IC50 compared to zerumbone in inhibiting the proliferation of MCF-7 cells. ITHB4 showed no toxicity against normal breast and human immune cells. Apoptosis assay revealed that ITHB4, at a concentration equal to the IC50, induces apoptosis of MCF-7 cells and cell cycle arrest at the sub-G1 and G2/M phases. ITHB4 triggered accumulation of intracellular ROS and nuclear DNA fragmentation. Secretion of pro-inflammatory cytokines induced inflammation and potentially immunogenic cell death.

    CONCLUSION: ITHB4 has almost similar chemotherapeutic properties as zerumbone in inhibiting MCF-7 growth, and hence provide the basis for further experiments in animal models.

  17. Lee SS, Samarasekera DD, Sim JH, Hong WH, Foong CC, Pallath V, et al.
    Med Sci Educ, 2020 Mar;30(1):271-280.
    PMID: 34457667 DOI: 10.1007/s40670-019-00894-z
    Purpose: Research has shown that many undergraduate students struggle with self-regulated learning (SRL) in clinical year as they are insufficiently supported by the staff in the early year to prepare them for the transition. Hence, this study aims to find out the SRL strategies and the approaches that could promote SRL among pre-clinical students in two medical schools.

    Method: This is a mixed-method study. The Motivated Strategies for Learning Questionnaire (MSLQ) was used to collect student SRL strategies while semi-structured interviews with faculty members and focus group discussions with students were used to gather data on the approaches that promote SRL. Student MSLQ was analysed using descriptive statistics while interviews were transcribed verbatim and thematically analysed.

    Results: A pilot using MSLQ with 413 students recorded a Cronbach's alpha of 0.928 for the questionnaire. The actual study involved 457 Years 1 & 2 students. Students from both institutions are motivated by the Task Value, and they use Elaboration and Organisation strategies the most in their pre-clinical year. Three themes emerged from the qualitative analysis of this study: characteristics of strategies that promote SRL, hindrance in promoting SRL, and opportunities in promoting SRL.

    Conclusions: Our findings indicate that students' intrinsic motivation is generally high in pre-clinical year. However, metacognition and critical thinking strategies will need to be enhanced among students. Despite knowing teaching and learning approaches could promote these strategies, many teachers are still not confident in doing so and hence training dang sharing best practices might be helpful in promoting SRL.

  18. Mariappan V, Vellasamy KM, Barathan M, Girija ASS, Shankar EM, Vadivelu J
    Front Immunol, 2021;12:718719.
    PMID: 34456925 DOI: 10.3389/fimmu.2021.718719
    Burkholderia pseudomallei (B. pseudomallei) causes melioidosis, a potentially fatal disease for which no licensed vaccine is available thus far. The host-pathogen interactions in B. pseudomallei infection largely remain the tip of the iceberg. The pathological manifestations are protean ranging from acute to chronic involving one or more visceral organs leading to septic shock, especially in individuals with underlying conditions similar to COVID-19. Pathogenesis is attributed to the intracellular ability of the bacterium to 'step into' the host cell's cytoplasm from the endocytotic vacuole, where it appears to polymerize actin filaments to spread across cells in the closer vicinity. B. pseudomallei effectively evades the host's surveillance armory to remain latent for prolonged duration also causing relapses despite antimicrobial therapy. Therefore, eradication of intracellular B. pseudomallei is highly dependent on robust cellular immune responses. However, it remains ambiguous why certain individuals in endemic areas experience asymptomatic seroconversion, whereas others succumb to sepsis-associated sequelae. Here, we propose key insights on how the host's surveillance radars get commandeered by B. pseudomallei.
  19. Vellasamy KM, Mariappan V, Shankar EM, Vadivelu J
    PLoS Negl Trop Dis, 2016 07;10(7):e0004730.
    PMID: 27367858 DOI: 10.1371/journal.pntd.0004730
    BACKGROUND: Burkholderia pseudomallei, the causative agent of melioidosis poses a serious threat to humankind. B. pseudomallei secretes numerous virulence proteins that alter host cell functions to escape from intracellular immune sensors. However, the events underlying disease pathogenesis are poorly understood.

    METHODS: We determined the ability of B. pseudomallei to invade and survive intracellularly in A549 human lung epithelial cells, and also investigated the early transcriptional responses using an Illumina HumanHT-12 v4 microarray platform, after three hours of exposure to live B. pseudomallei (BCMS) and its secreted proteins (CCMS).

    RESULTS: We found that the ability of B. pseudomallei to invade and survive intracellularly correlated with increase of multiplicity of infection and duration of contact. Activation of host carbohydrate metabolism and apoptosis as well as suppression of amino acid metabolism and innate immune responses both by live bacteria and its secreted proteins were evident. These early events might be linked to initial activation of host genes directed towards bacterial dissemination from lungs to target organs (via proposed in vivo mechanisms) or to escape potential sensing by macrophages.

    CONCLUSION: Understanding the early responses of A549 cells toward B. pseudomallei infection provide preliminary insights into the likely pathogenesis mechanisms underlying melioidosis, and could contribute to development of novel intervention strategies to combat B. pseudomallei infections.

Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links