Displaying publications 41 - 60 of 92 in total

Abstract:
Sort:
  1. Nair RS, Nair S
    Curr Drug Deliv, 2015;12(5):517-23.
    PMID: 25675336
    Mortality rate due to heart diseases increases dramatically with age. Captopril is an angiotensin converting enzyme inhibitor (ACE) used effectively for the management of hypertension. Due to short elimination half-life of captopril the oral dose is very high. Captopril is prone to oxidation and it has been reported that the oxidation rate of captopril in skin tissues is considerably low when compared to intestinal tissues. All these factors make captopril an ideal drug candidate for transdermal delivery. In this research work an effort was made to formulate transdermal films of captopril by utilizing polyvinylpyrrolidone (PVP) and polyvinyl alcohol (PVA) as film formers and polyethylene glycol 400 (PEG400) as a plasticizer. Dimethyl sulfoxide (DMSO) and dimethylformamide (DMF) were used as permeation enhancers. Physicochemical parameters of the films such as appearance, thickness, weight variation and drug content were evaluated. The invitro permeation studies were carried out through excised human cadaver skin using Franz diffusion cells. The in-vitro permeation studies demonstrated that the film (P4) having the polymer ratio (PVP:PVA = 80:20) with DMSO (10%) resulted a promising drug release of 79.58% at 24 hours with a flux of 70.0 µg/cm(2)/hr. No signs of erythema or oedema were observed on the rabbit skin as a result of skin irritation study by Draize test. Based on the stability report it was confirmed that the films were physically and chemically stable, hence the prepared films are very well suited for transdermal application.
    Matched MeSH terms: Administration, Cutaneous
  2. Nair RS, Morris A, Billa N, Leong CO
    AAPS PharmSciTech, 2019 Jan 10;20(2):69.
    PMID: 30631984 DOI: 10.1208/s12249-018-1279-6
    Curcumin-loaded chitosan nanoparticles were synthesised and evaluated in vitro for enhanced transdermal delivery. Zetasizer® characterisation of three different formulations of curcumin nanoparticles (Cu-NPs) showed the size ranged from 167.3 ± 3.8 nm to 251.5 ± 5.8 nm, the polydispersity index (PDI) values were between 0.26 and 0.46 and the zeta potential values were positive (+ 18.1 to + 20.2 mV). Scanning electron microscopy (SEM) images supported this size data and confirmed the spherical shape of the nanoparticles. All the formulations showed excellent entrapment efficiency above 80%. FTIR results demonstrate the interaction between chitosan and sodium tripolyphosphate (TPP) and confirm the presence of curcumin in the nanoparticle. Differential scanning calorimetry (DSC) studies of Cu-NPs indicate the presence of curcumin in a disordered crystalline or amorphous state, suggesting the interaction between the drug and the polymer. Drug release studies showed an improved drug release at pH 5.0 than in pH 7.4 and followed a zero order kinetics. The in vitro permeation studies through Strat-M® membrane demonstrated an enhanced permeation of Cu-NPs compared to aqueous curcumin solution (p ˂ 0.05) having a flux of 0.54 ± 0.03 μg cm-2 h-1 and 0.44 ± 0.03 μg cm-2 h-1 corresponding to formulations 5:1 and 3:1, respectively. The cytotoxicity assay on human keratinocyte (HaCat) cells showed enhanced percentage cell viability of Cu-NPs compared to curcumin solution. Cu-NPs developed in this study exhibit superior drug release and enhanced transdermal permeation of curcumin and superior percentage cell viability. Further ex vivo and in vivo evaluations will be conducted to support these findings.
    Matched MeSH terms: Administration, Cutaneous
  3. Nair RS, Billa N, Leong CO, Morris AP
    Pharm Dev Technol, 2021 Feb;26(2):243-251.
    PMID: 33274672 DOI: 10.1080/10837450.2020.1860087
    Tocotrienol (TRF) ethosomes were developed and evaluated in vitro for potential transdermal delivery against melanoma. The optimised TRF ethosomal size ranged between 64.9 ± 2.2 nm to 79.6 ± 3.9 nm and zeta potential (ZP) between -53.3 mV to -62.0 ± 2.6 mV. Characterisation of the ethosomes by ATR-FTIR indicated the successful formation of TRF-ethosomes. Scanning electron microscopy (SEM) images demonstrated the spherical shape of ethosomes, and the entrapment efficiencies of all the formulations were above 66%. In vitro permeation studies using full-thickness human skin showed that the permeation of gamma-T3 from the TRF ethosomal formulations was significantly higher (p 
    Matched MeSH terms: Administration, Cutaneous
  4. Nadia Ahmad NF, Nik Ghazali NN, Wong YH
    Biosens Bioelectron, 2021 May 30;189:113384.
    PMID: 34090154 DOI: 10.1016/j.bios.2021.113384
    The advanced stimuli-responsive approaches for on-demand drug delivery systems have received tremendous attention as they have great potential to be integrated with sensing and multi-functional electronics on a flexible and stretchable single platform (all-in-one concept) in order to develop skin-integration with close-loop sensation for personalized diagnostic and therapeutic application. The wearable patch pumps have evolved from reservoir-based to matrix patch and drug-in-adhesive (single-layer or multi-layer) type. In this review, we presented the basic requirements of an artificial pancreas, surveyed the design and technologies used in commercial patch pumps available on the market and provided general information about the latest wearable patch pump. We summarized the various advanced delivery strategies with their mechanisms that have been developed to date and representative examples. Mechanical, electrical, light, thermal, acoustic and glucose-responsive approaches on patch form have been successfully utilized in the controllable transdermal drug delivery manner. We highlighted key challenges associated with wearable transdermal delivery systems, their research direction and future development trends.
    Matched MeSH terms: Administration, Cutaneous
  5. Nabila FH, Islam R, Shimul IM, Moniruzzaman M, Wakabayashi R, Kamiya N, et al.
    Chem Commun (Camb), 2024 Apr 09;60(30):4036-4039.
    PMID: 38466016 DOI: 10.1039/d3cc06130b
    Herein, we report ethosome (ET) formulations composed of a safe amount of 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC)-based ionic liquid with various concentrations of ethanol as a carrier for the transdermal delivery of a high molecular weight drug, insulin. The Insulin-loaded ET vesicles exhibited long-term stability compared to conventional DMPC ETs, showing significantly higher drug encapsulation efficiency and increased skin permeation ability.
    Matched MeSH terms: Administration, Cutaneous
  6. Moshikur RM, Chowdhury MR, Wakabayashi R, Tahara Y, Moniruzzaman M, Goto M
    Int J Pharm, 2018 Jul 30;546(1-2):31-38.
    PMID: 29751143 DOI: 10.1016/j.ijpharm.2018.05.021
    The technological utility of active pharmaceutical ingredients (APIs) is greatly enhanced when they are transformed into ionic liquids (ILs). API-ILs have better solubility, thermal stability, and the efficacy in topical delivery than solid or crystalline drugs. However, toxicological issue of API-ILs is the main challenge for their application in drug delivery. To address this issue, 11 amino acid esters (AAEs) were synthesized and investigated as biocompatible counter cations for the poorly water-soluble drug salicylic acid (Sal) to form Sal-ILs. The AAEs were characterized using 1H and 13C NMR, FTIR, elemental, and thermogravimetric analyses. The cytotoxicities of the AAE cations, Sal-ILs, and free Sal were investigated using mammalian cell lines (L929 and HeLa). The toxicities of the AAE cations greatly increased with inclusion of long alkyl chains, sulfur, and aromatic rings in the side groups of the cations. Ethyl esters of alanine, aspartic acid, and proline were selected as a low cytotoxic AAE. The cytotoxicities of the Sal-ILs drastically increased compared with the AAEs on incorporation of Sal into the cations, and were comparable to that of free Sal. Interestingly, the water miscibilities of the Sal-ILs were higher than that of free Sal, and the Sal-ILs were miscible with water at any ratio. A skin permeation study showed that the Sal-ILs penetrated through skin faster than the Sal sodium salt. These results suggest that AAEs could be used in biomedical applications to eliminate the use of traditional toxic solvents for transdermal delivery of poorly water-soluble drugs.
    Matched MeSH terms: Administration, Cutaneous
  7. Mitra NK, Siong HH, Nadarajah VD
    Ann Agric Environ Med, 2008;15(2):211-6.
    PMID: 19061257
    Dermal absorption of chlorpyrifos, an organophosphate insecticide is important because of its use in agriculture and control of household pests. The objectives of this study are to investigate firstly, the biochemical changes in the blood and secondly, histomorphometric changes in the hippocampus of adult mice following dermal application of chlorpyrifos in sub-toxic doses. Male Swiss albino mice (60 days) were segregated into one control and two treated groups (n=10). Chlorpyrifos, diluted with xylene, was applied in doses of 1/2 of LD(50) (E1) and 1/5 of LD(50) (E2) over the tail of mice of the two treated groups, 6 hours daily for 3 weeks. AChE levels in the serum and brain were estimated using a spectrophotometric method (Amplex Red reagent). Coronal serial sections were stained with 0.2 % thionin in acetate buffer and pyramidal neurons of Cornu Ammonis of hippocampus were counted at 400x magnification using Image Pro Express software. At the end of 3 weeks, body weights were reduced significantly in E1 group. Serum AChE concentrations were reduced by 97 % in E1 and 74 % in E2 groups compared to controls. The neurons of CA 3 and CA 1 in the hippocampus showed evidences of morphological damage in both treated groups. Furthermore, the neuronal count was significantly reduced in CA 3 layer of hippocampus in E1 group.
    Matched MeSH terms: Administration, Cutaneous
  8. Md S, Karim S, Saker SR, Gie OA, Hooi LC, Yee PH, et al.
    Curr Pharm Des, 2020;26(19):2222-2232.
    PMID: 32175832 DOI: 10.2174/1381612826666200316154300
    Rotigotine is a non-ergoline, high lipophilic dopamine agonist. It is indicated as the first-line therapy for Parkinson's disease (PD) and Restless Leg Syndrome (RLS). However, the precise mechanism of rotigotine is yet to be known. Rotigotine has similar safety and tolerability to the other oral non-ergolinic dopamine antagonists in clinical trials, which include nausea, dizziness and somnolence. Neupro® was the first marketed transdermal patch formulation having rotigotine. The transdermal delivery system is advantageous as it enables continuous administration of the drug, thus providing steady-state plasma drug concentration for 24-hours. Intranasal administration of rotigotine allows the drug to bypass the blood-brain barrier enabling it to reach the central nervous system within minutes. Rotigotine can also be formulated as an extended-release microsphere for injection. Some challenges remain in other routes of rotigotine administration such as oral, parenteral and pulmonary, whereby resolving these challenges will be beneficial to patients as they are less invasive and comfortable in terms of administration. This review compiles recent work on rotigotine delivery, challenges and its future perspective.
    Matched MeSH terms: Administration, Cutaneous
  9. Md Moshikur R, Shimul IM, Uddin S, Wakabayashi R, Moniruzzaman M, Goto M
    ACS Appl Mater Interfaces, 2022 Dec 21;14(50):55332-55341.
    PMID: 36508194 DOI: 10.1021/acsami.2c15636
    The transdermal delivery of hydrophilic drugs remains challenging owing to their poor ability to permeate the skin; formulation with oil media is difficult without adding chemical permeation enhancers or co-solvents. Herein, we synthesized 12 oil-miscible ionic liquid (IL) drugs comprising lidocaine-, imipramine-, and levamisole (Lev)-hydrochloride with fatty acid permeation enhancers, i.e., laurate, oleate, linoleate, and stearate as counterions. A set of in vitro and in vivo studies was performed to investigate the potency and deliverability of the transdermal drug formulations. All of the synthesized compounds were freely miscible with pharmaceutically acceptable solvents/agents (i.e., ethanol, N-methyl pyrrolidone, Tween 20, and isopropyl myristate (IPM)). In vitro permeation studies revealed that the oleate-based Lev formulation had 2.6-fold higher skin permeation capability than the Lev salts and also superior ability compared with the laurate-, linoleate-, and stearate-containing samples. Upon in vivo transdermal administration to mice, the peak plasma concentration, elimination half-life, and area under the plasma concentration curve values of Lev-IL were 4.6-, 2.9-, and 5.4-fold higher, respectively, than those of the Lev salt. Furthermore, in vitro skin irritation and in vivo histological studies have demonstrated that Lev-IL has excellent biocompatibility compared with a conventional ionic liquid-based carrier. The results indicate that oil-miscible IL-based drugs provide a simple and scalable strategy for the design of effective transdermal drug delivery systems.
    Matched MeSH terms: Administration, Cutaneous
  10. Malviya R, Tyagi A, Fuloria S, Subramaniyan V, Sathasivam K, Sundram S, et al.
    Polymers (Basel), 2021 May 10;13(9).
    PMID: 34068768 DOI: 10.3390/polym13091531
    Transdermal drug delivery is used to deliver a drug by eliminating the first-pass metabolism, which increases the bioavailability of the drug. The present study aims to formulate the chitosan-tamarind seed polysaccharide composite films and evaluate for the delivery of protein/peptide molecules. Nine formulations were prepared and evaluated by using different parameters, such as physical appearance, folding endurance, thickness of film, surface pH, weight variation, drug content, surface morphology, percentage moisture intake and uptake, drug release kinetics, and drug permeability. The film weight variance was observed between 0.34 ± 0.002 to 0.47 ± 0.003 g. The drug level of the prepared films was found to be between 96 ± 1.21 and 98 ± 1.33μg. Their intake of moisture ranged between 2.83 ± 0.002 and 3.76 ± 0.001 (%). The moisture absorption of the films ranged from 5.33 ± 0.22 to 10.02 ± 0.61 (%). SEM images revealed a smooth film surface, while minor cracks were found in the film after permeation tests. During the first 4 days, drug release was between 13.75 ± 1.64% and 22.54 ± 1.34% and from day 5 to day 6, it was between 72.67 ± 2.13% and 78.33 ± 3.13%. Drug permeation during the first 4 days was 15.78 ± 1.23 %. Drug permeation (%) during the first 4 days was between 15.78 ± 1.23 and 22.49 ± 1.29 and from day 5 to day 6, it was between 71.49 ± 3.21 and 77.93 ± 3.20.
    Matched MeSH terms: Administration, Cutaneous
  11. Mahmood S, Taher M, Mandal UK
    Int J Nanomedicine, 2014;9:4331-46.
    PMID: 25246789 DOI: 10.2147/IJN.S65408
    Raloxifene hydrochloride, a highly effective drug for the treatment of invasive breast cancer and osteoporosis in post-menopausal women, shows poor oral bioavailability of 2%. The aim of this study was to develop, statistically optimize, and characterize raloxifene hydrochloride-loaded transfersomes for transdermal delivery, in order to overcome the poor bioavailability issue with the drug. A response surface methodology experimental design was applied for the optimization of transfersomes, using Box-Behnken experimental design. Phospholipon(®) 90G, sodium deoxycholate, and sonication time, each at three levels, were selected as independent variables, while entrapment efficiency, vesicle size, and transdermal flux were identified as dependent variables. The formulation was characterized by surface morphology and shape, particle size, and zeta potential. Ex vivo transdermal flux was determined using a Hanson diffusion cell assembly, with rat skin as a barrier medium. Transfersomes from the optimized formulation were found to have spherical, unilamellar structures, with a homogeneous distribution and low polydispersity index (0.08). They had a particle size of 134±9 nM, with an entrapment efficiency of 91.00%±4.90%, and transdermal flux of 6.5±1.1 μg/cm(2)/hour. Raloxifene hydrochloride-loaded transfersomes proved significantly superior in terms of amount of drug permeated and deposited in the skin, with enhancement ratios of 6.25±1.50 and 9.25±2.40, respectively, when compared with drug-loaded conventional liposomes, and an ethanolic phosphate buffer saline. Differential scanning calorimetry study revealed a greater change in skin structure, compared with a control sample, during the ex vivo drug diffusion study. Further, confocal laser scanning microscopy proved an enhanced permeation of coumarin-6-loaded transfersomes, to a depth of approximately160 μM, as compared with rigid liposomes. These ex vivo findings proved that a raloxifene hydrochloride-loaded transfersome formulation could be a superior alternative to oral delivery of the drug.
    Matched MeSH terms: Administration, Cutaneous
  12. Mahmood S, Mandal UK, Chatterjee B
    Int J Pharm, 2018 May 05;542(1-2):36-46.
    PMID: 29501737 DOI: 10.1016/j.ijpharm.2018.02.044
    Raloxifene HCl belongs to a class of selective estrogen receptor modulators (SERMs) which is used for the management of breast cancer. The major problem reported with raloxifene is its poor bioavailability which is only up to 2%. The main objective of the present work was to formulate raloxifene loaded ethosomal preparation for transdermal application and compare it with an oral formulation of the drug. Five ethosomal formulations with different concentrations of ethanol and a conventional liposomes formulation were prepared by rotary evaporation method. The prepared systems were characterised by high resolution transmission electron microscopy (HRTEM), force emission electron microscopy (FESEM), atomic force microscopy (AFM), X-ray diffraction (XRD) and 31P NMR study. All these advanced characterization study established that the ethosome formulation was well defined by its size, shape and its bilayer formation. Transdermal flux of the optimized ethosome formulation was 22.14 ± 0.83 µg/ml/cm2 which was 21 times higher when compared to the conventional liposomes. Confocal microscopy study revealed an enhanced permeation of coumarin-6 dye loaded ethosomes to much deeper layers of skin when compared with conventional liposomes. The gel was found to be pseudoplastic with elastic behaviour. In-vivo studies on rats showed a higher bioavailability of RXL (157% times) for ethosomal formulation when compared with the oral formulation. In conclusion, RXL loaded ethosomal formulation via transdermal route showed superior drug delivery properties as compared to oral formulation.
    Matched MeSH terms: Administration, Cutaneous
  13. Lim JL, Yusof NS, Md Tarekh NA, Abdul Rahman R
    Cureus, 2020 Nov 19;12(11):e11580.
    PMID: 33364104 DOI: 10.7759/cureus.11580
    Dermatomyositis is often presented as paraneoplastic syndrome. The diagnosis of dermatomyositis can prompt clinicians to further investigate the underlying cause, in particular malignancy. This case report illustrates the association of lung adenocarcinoma and dermatomyositis with antecedent presentation of cutaneous and musculoskeletal manifestations, one year prior to the diagnosis of carcinoma.
    Matched MeSH terms: Administration, Cutaneous
  14. Lim CP, Quek SS, Peh KK
    J Pharm Biomed Anal, 2003 Feb 05;31(1):159-68.
    PMID: 12560060
    This paper investigates the use of a neural-network-based intelligent learning system for the prediction of drug release profiles. An experimental study in transdermal iontophoresis (TI) is employed to evaluate the applicability of a particular neural network (NN) model, i.e. the Gaussian mixture model (GMM), in modeling and predicting drug release profiles. A number of tests are systematically designed using the face-centered central composite design (CCD) approach to examine the effects of various process variables simultaneously during the iontophoresis process. The GMM is then applied to model and predict the drug release profiles based on the data samples collected from the experiments. The GMM results are compared with those from multiple regression models. In addition, the bootstrap method is used to assess the reliability of the network predictions by estimating confidence intervals associated with the results. The results demonstrate that the combination of the face-centered CCD and GMM can be employed as a useful intelligent tool for the prediction of time-series profiles in pharmaceutical and biomedical experiments.
    Matched MeSH terms: Administration, Cutaneous
  15. Lew LC, Liong MT
    J Appl Microbiol, 2013 May;114(5):1241-53.
    PMID: 23311666 DOI: 10.1111/jam.12137
    Probiotics have been extensively reviewed for decades, emphasizing on improving general gut health. Recently, more studies showed that probiotics may exert other health-promoting effects beyond gut well-being, attributed to the rise of the gut-brain axis correlations. Some of these new benefits include skin health such as improving atopic eczema, atopic dermatitis, healing of burn and scars, skin-rejuvenating properties and improving skin innate immunity. Increasing evidence has also showed that bacterial compounds such as cell wall fragments, their metabolites and dead bacteria can elicit certain immune responses on the skin and improve skin barrier functions. This review aimed to underline the mechanisms or the exact compounds underlying the benefits of bacterial extract on the skin based on evidences from in vivo and in vitro studies. This review could be of help in screening of probiotic strains with potential dermal enhancing properties for topical applications.
    Matched MeSH terms: Administration, Cutaneous
  16. Lee KH, Ng YP, Cheah PS, Lim CK, Toh MS
    Br J Dermatol, 2017 Jan;176(1):159-167.
    PMID: 27363533 DOI: 10.1111/bjd.14832
    BACKGROUND: Glycation is a nonenzymatic reaction that cross-links a sugar molecule and protein macromolecule to form advanced glycation products (AGEs) that are associated with various age-related disorders; thus glycation plays an important role in skin chronological ageing.

    OBJECTIVES: To develop a novel in vitro skin glycation model as a screening tool for topical formulations with antiglycation properties and to further characterize, at the molecular level, the glycation stress-driven skin ageing mechanism.

    METHODS: The glycation model was developed using human reconstituted full-thickness skin; the presence of N(ε) -(carboxymethyl) lysine (CML) was used as evidence of the degree of glycation. Topical application of emulsion containing a well-known antiglycation compound (aminoguanidine) was used to verify the sensitivity and robustness of the model. Cytokine immunoassay, quantitative real-time polymerase chain reaction and histological analysis were further implemented to characterize the molecular mechanisms of skin ageing in the skin glycation model.

    RESULTS: Transcriptomic and cytokine profiling analyses in the skin glycation model demonstrated multiple biological changes, including extracellular matrix catabolism, skin barrier function impairment, oxidative stress and subsequently the inflammatory response. Darkness and yellowness of skin tone observed in the in vitro skin glycation model correlated well with the degree of glycation stress.

    CONCLUSIONS: The newly developed skin glycation model in this study has provided a new technological dimension in screening antiglycation properties of topical pharmaceutical or cosmeceutical formulations. This study concomitantly provides insights into skin ageing mechanisms driven by glycation stress, which could be useful in formulating skin antiageing therapy in future studies.

    Matched MeSH terms: Administration, Cutaneous
  17. Künzi V, Klap JM, Seiberling MK, Herzog C, Hartmann K, Kürsteiner O, et al.
    Vaccine, 2009 Jun 2;27(27):3561-7.
    PMID: 19464535 DOI: 10.1016/j.vaccine.2009.03.062
    Despite the established benefit of intramuscular (i.m.) influenza vaccination, new adjuvants and delivery methods for comparable or improved immunogenicity are being explored. Intradermal (i.d.) antigen administration is hypothesized to initiate an efficient immune response at reduced antigen doses similar to that observed after i.m. full dose vaccination.
    Matched MeSH terms: Administration, Cutaneous
  18. Kumar Singla S, Muthuraman A, Sahai D, Mangal N, Dhamodharan J
    Front Biosci (Elite Ed), 2021 01 01;13:158-184.
    PMID: 33048780
    Transdermal drug-delivery systems (TDDS) offer an attractive alternative to the oral route for delivery of biotherapeutics. Technological advancements in the past few decades have revolutionized the fabrication of micro-structured devices including creation of microneedles (MC). These devices are used for delivering peptides, macromolecules such as proteins and DNA, and other therapeutics through the skin. Here, we review the current use of MCs as a cost effective method for the self-administration of therapeutics. We will then review the current and common use of MCs as an effective treatment strategy for a broad range of diseases and their utility in the generation of effective vaccination delivery platforms. Finally, we will summarize the currently FDA approved MCs and their applications, along with the ongoing clinical trials that use such devices.
    Matched MeSH terms: Administration, Cutaneous
  19. Kuche K, Maheshwari R, Tambe V, Mak KK, Jogi H, Raval N, et al.
    Nanoscale, 2018 May 17;10(19):8911-8937.
    PMID: 29722421 DOI: 10.1039/c8nr01383g
    The search for effective and non-invasive delivery modules to transport therapeutic molecules across skin has led to the discovery of a number of nanocarriers (viz.: liposomes, ethosomes, dendrimers, etc.) in the last few decades. However, available literature suggests that these delivery modules face several issues including poor stability, low encapsulation efficiency, and scale-up hurdles. Recently, carbon nanotubes (CNTs) emerged as a versatile tool to deliver therapeutics across skin. Superior stability, high loading capacity, well-developed synthesis protocol as well as ease of scale-up are some of the reason for growing interest in CNTs. CNTs have a unique physical architecture and a large surface area with unique surface chemistry that can be tailored for vivid biomedical applications. CNTs have been thus largely engaged in the development of transdermal systems such as tuneable hydrogels, programmable nonporous membranes, electroresponsive skin modalities, protein channel mimetic platforms, reverse iontophoresis, microneedles, and dermal buckypapers. In addition, CNTs were also employed in the development of RNA interference (RNAi) based therapeutics for correcting defective dermal genes. This review expounds the state-of-art synthesis methodologies, skin penetration mechanism, drug liberation profile, loading potential, characterization techniques, and transdermal applications along with a summary on patent/regulatory status and future scope of CNT based skin therapeutics.
    Matched MeSH terms: Administration, Cutaneous
  20. Krishnan K, Mitra NK, Yee LS, Yang HM
    J Neural Transm (Vienna), 2012 Mar;119(3):345-52.
    PMID: 21922192 DOI: 10.1007/s00702-011-0715-5
    Chlorpyrifos (CPF), an organophosphate pesticide inhibits acetylcholinesterase (AChE) and causes neuromuscular incoordination among children and elderly. The objectives of the present study were to compare the neurotoxic effects of dermal application of CPF on the cerebellum in the parameters of glial fibrillary acidic protein (GFAP) expression in young and adult mice and to correlate with the changes in acetylcholinesterase levels. Male Balb/c mice, 150 days old (adult) and 18 days old (young) were dermally applied with ½ LD(50) of CPF over the tails for 14 days. Serum AChE concentration was estimated and GFAP immunostaining was performed on sagittal paraffin sections through the vermis of cerebellum. Although reduced in both age-groups exposed to CPF, percentage of reduction in serum AChE was more in adult compared to the young. Under GFAP immunostaining, brown colour fibres and glial cells were observed in cerebellar cortex and medulla in both the experimental groups. The mean GFAP-positive glial cell count in cerebellar medulla per mm(2) of section was significantly (p 
    Matched MeSH terms: Administration, Cutaneous
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links