Displaying publications 41 - 60 of 1459 in total

Abstract:
Sort:
  1. Zhang B, Rahmatullah B, Wang SL, Almutairi HM, Xiao Y, Liu X, et al.
    Med Biol Eng Comput, 2023 Nov;61(11):2971-3002.
    PMID: 37542682 DOI: 10.1007/s11517-023-02874-3
    Since the COVID-19 pandemic, telemedicine or non-face-to-face medicine has increased significantly. In practice, various types of medical images are essential to achieve effective telemedicine. Medical image encryption algorithms play an irreplaceable role in the fast and secure transmission and storage of these medical images. However, most of the existing medical image encryption algorithms are full encryption algorithms, which are inefficient and time-consuming, so they are not suitable for emergency medical scenarios. To improve the efficiency of encryption, a small number of works have focused on partial or selective encryption algorithms for medical images, in which different levels of encryption strategies were adopted for different information content regions of medical images. However, these encryption algorithms have inadequate security more or less. In this paper, based on the Logistic map, we designed an improved variable dimension map. Then, an encryption algorithm for medical images was proposed based on it. This algorithm has two modes: (1) full encryption mode and (2) semi-full encryption mode, which can better adapt to different medical scenarios, respectively. In full encryption mode, all pixels of medical images are encrypted by using the confusion-diffusion structure. In semi-full encryption mode, the region of interest of medical images is extracted. The confusion was first adopted to encrypt the region of interest, and then, the diffusion was adopted to encrypt the entire image. In addition, no matter which encryption mode is used, the algorithm provides the function of medical image integrity verification. The proposed algorithm was simulated and analyzed to evaluate its effectiveness. The results show that in semi-full encryption mode, the algorithm has good security performance and lower time consumption; while in full encryption mode, the algorithm has better security performance and is acceptable in time.
    Matched MeSH terms: Algorithms
  2. Low TY
    Proteomics, 2023 Nov;23(21-22):e2300209.
    PMID: 37986683 DOI: 10.1002/pmic.202300209
    Most proteins function by forming complexes within a dynamic interconnected network that underlies various biological mechanisms. To systematically investigate such interactomes, high-throughput techniques, including CF-MS, have been developed to capture, identify, and quantify protein-protein interactions (PPIs) on a large scale. Compared to other techniques, CF-MS allows the global identification and quantification of native protein complexes in one setting, without genetic manipulation. Furthermore, quantitative CF-MS can potentially elucidate the distribution of a protein in multiple co-elution features, informing the stoichiometries and dynamics of a target protein complex. In this issue, Youssef et al. (Proteomics 2023, 00, e2200404) combined multiplex CF-MS and a new algorithm to study the dynamics of the PPI network for Escherichia coli grown under ten different conditions. Although the results demonstrated that most proteins remained stable, the authors were able to detect disrupted interactions that were growth condition specific. Further bioinformatics analyses also revealed the biophysical properties and structural patterns that govern such a response.
    Matched MeSH terms: Algorithms
  3. Tehrany PM, Zabihi MR, Ghorbani Vajargah P, Tamimi P, Ghaderi A, Norouzkhani N, et al.
    Int Wound J, 2023 Nov;20(9):3768-3775.
    PMID: 37312659 DOI: 10.1111/iwj.14275
    Pressure injury (PI), or local damage to soft tissues and skin caused by prolonged pressure, remains controversial in the medical world. Patients in intensive care units (ICUs) were frequently reported to suffer PIs, with a heavy burden on their life and expenditures. Machine learning (ML) is a Section of artificial intelligence (AI) that has emerged in nursing practice and is increasingly used for diagnosis, complications, prognosis, and recurrence prediction. This study aims to investigate hospital-acquired PI (HAPI) risk predictions in ICU based on a ML algorithm by R programming language analysis. The former evidence was gathered through PRISMA guidelines. The logical analysis was applied via an R programming language. ML algorithms based on usage rate included logistic regression (LR), Random Forest (RF), Distributed tree (DT), Artificial neural networks (ANN), SVM (Support Vector Machine), Batch normalisation (BN), GB (Gradient Boosting), expectation-maximisation (EM), Adaptive Boosting (AdaBoost), and Extreme Gradient Boosting (XGBoost). Six cases were related to risk predictions of HAPI in the ICU based on an ML algorithm from seven obtained studies, and one study was associated with the Detection of PI risk. Also, the most estimated risksSerum Albumin, Lack of Activity, mechanical ventilation (MV), partial pressure of oxygen (PaO2), Surgery, Cardiovascular adequacy, ICU stay, Vasopressor, Consciousness, Skin integrity, Recovery Unit, insulin and oral antidiabetic (INS&OAD), Complete blood count (CBC), acute physiology and chronic health evaluation (APACHE) II score, Spontaneous bacterial peritonitis (SBP), Steroid, Demineralized Bone Matrix (DBM), Braden score, Faecal incontinence, Serum Creatinine (SCr) and age. In sum, HAPI prediction and PI risk detection are two significant areas for using ML in PI analysis. Also, the current data showed that the ML algorithm, including LR and RF, could be regarded as the practical platform for developing AI tools for diagnosing, prognosis, and treating PI in hospital units, especially ICU.
    Matched MeSH terms: Algorithms
  4. Li X, Wang X, Ong P, Yi Z, Ding L, Han C
    Sensors (Basel), 2023 Oct 13;23(20).
    PMID: 37896537 DOI: 10.3390/s23208444
    Dragon fruit (Hylocereus undatus) is a tropical and subtropical fruit that undergoes multiple ripening cycles throughout the year. Accurate monitoring of the flower and fruit quantities at various stages is crucial for growers to estimate yields, plan orders, and implement effective management strategies. However, traditional manual counting methods are labor-intensive and inefficient. Deep learning techniques have proven effective for object recognition tasks but limited research has been conducted on dragon fruit due to its unique stem morphology and the coexistence of flowers and fruits. Additionally, the challenge lies in developing a lightweight recognition and tracking model that can be seamlessly integrated into mobile platforms, enabling on-site quantity counting. In this study, a video stream inspection method was proposed to classify and count dragon fruit flowers, immature fruits (green fruits), and mature fruits (red fruits) in a dragon fruit plantation. The approach involves three key steps: (1) utilizing the YOLOv5 network for the identification of different dragon fruit categories, (2) employing the improved ByteTrack object tracking algorithm to assign unique IDs to each target and track their movement, and (3) defining a region of interest area for precise classification and counting of dragon fruit across categories. Experimental results demonstrate recognition accuracies of 94.1%, 94.8%, and 96.1% for dragon fruit flowers, green fruits, and red fruits, respectively, with an overall average recognition accuracy of 95.0%. Furthermore, the counting accuracy for each category is measured at 97.68%, 93.97%, and 91.89%, respectively. The proposed method achieves a counting speed of 56 frames per second on a 1080ti GPU. The findings establish the efficacy and practicality of this method for accurate counting of dragon fruit or other fruit varieties.
    Matched MeSH terms: Algorithms
  5. Mohd Faizal AS, Hon WY, Thevarajah TM, Khor SM, Chang SW
    Med Biol Eng Comput, 2023 Oct;61(10):2527-2541.
    PMID: 37199891 DOI: 10.1007/s11517-023-02841-y
    Acute myocardial infarction (AMI) or heart attack is a significant global health threat and one of the leading causes of death. The evolution of machine learning has greatly revamped the risk stratification and death prediction of AMI. In this study, an integrated feature selection and machine learning approach was used to identify potential biomarkers for early detection and treatment of AMI. First, feature selection was conducted and evaluated before all classification tasks with machine learning. Full classification models (using all 62 features) and reduced classification models (using various feature selection methods ranging from 5 to 30 features) were built and evaluated using six machine learning classification algorithms. The results showed that the reduced models performed generally better (mean AUPRC via random forest (RF) algorithm for recursive feature elimination (RFE) method ranges from 0.8048 to 0.8260, while for random forest importance (RFI) method, it ranges from 0.8301 to 0.8505) than the full models (mean AUPRC via RF: 0.8044). The most notable finding of this study was the identification of a five-feature model that included cardiac troponin I, HDL cholesterol, HbA1c, anion gap, and albumin, which had achieved comparable results (mean AUPRC via RF: 0.8462) as to the models that containing more features. These five features were proven by the previous studies as significant risk factors for AMI or cardiovascular disease and could be used as potential biomarkers to predict the prognosis of AMI patients. From the medical point of view, fewer features for diagnosis or prognosis could reduce the cost and time of a patient as lesser clinical and pathological tests are needed.
    Matched MeSH terms: Algorithms*
  6. Za'im NAN, Al-Dhief FT, Azman M, Alsemawi MRM, Abdul Latiff NMA, Mat Baki M
    J Otolaryngol Head Neck Surg, 2023 Sep 20;52(1):62.
    PMID: 37730624 DOI: 10.1186/s40463-023-00661-6
    BACKGROUND: A multidimensional voice quality assessment is recommended for all patients with dysphonia, which requires a patient visit to the otolaryngology clinic. The aim of this study was to determine the accuracy of an online artificial intelligence classifier, the Online Sequential Extreme Learning Machine (OSELM), in detecting voice pathology. In this study, a Malaysian Voice Pathology Database (MVPD), which is the first Malaysian voice database, was created and tested.

    METHODS: The study included 382 participants (252 normal voices and 130 dysphonic voices) in the proposed database MVPD. Complete data were obtained for both groups, including voice samples, laryngostroboscopy videos, and acoustic analysis. The diagnoses of patients with dysphonia were obtained. Each voice sample was anonymized using a code that was specific to each individual and stored in the MVPD. These voice samples were used to train and test the proposed OSELM algorithm. The performance of OSELM was evaluated and compared with other classifiers in terms of the accuracy, sensitivity, and specificity of detecting and differentiating dysphonic voices.

    RESULTS: The accuracy, sensitivity, and specificity of OSELM in detecting normal and dysphonic voices were 90%, 98%, and 73%, respectively. The classifier differentiated between structural and non-structural vocal fold pathology with accuracy, sensitivity, and specificity of 84%, 89%, and 88%, respectively, while it differentiated between malignant and benign lesions with an accuracy, sensitivity, and specificity of 92%, 100%, and 58%, respectively. Compared to other classifiers, OSELM showed superior accuracy and sensitivity in detecting dysphonic voices, differentiating structural versus non-structural vocal fold pathology, and between malignant and benign voice pathology.

    CONCLUSION: The OSELM algorithm exhibited the highest accuracy and sensitivity compared to other classifiers in detecting voice pathology, classifying between malignant and benign lesions, and differentiating between structural and non-structural vocal pathology. Hence, it is a promising artificial intelligence that supports an online application to be used as a screening tool to encourage people to seek medical consultation early for a definitive diagnosis of voice pathology.

    Matched MeSH terms: Algorithms
  7. Magsi A, Mahar JA, Maitlo A, Ahmad M, Razzaq MA, Bhuiyan MAS, et al.
    Sci Rep, 2023 Sep 16;13(1):15381.
    PMID: 37717081 DOI: 10.1038/s41598-023-41727-9
    Date palm is an important domestic cash crop in most countries. Sudden Decline Syndrome (SDS) causes a huge loss to the crop both in quality and quantity. The literature reports the significance of early detection of disease towards preventive measures to improve the quality of the crop. The number of prevailing detection methods limits to consideration of a certain aspect of disease identification. This study proposes a new hybrid fuzzy fast multi-Otsu K-Means (FFMKO) algorithm integrating the date palm image enhancement, robust thresholding, and optimal clustering for significant disease identification. The algorithm adopts a multi-operator image resizing cost function based on image energy and the dominant color descriptor, the adaptive Fuzzy noise filter, and Otsu image thresholding combined with K-Means clustering enhancements. Besides, we validate the process with histogram equalization and threshold transformation towards enhanced color feature extraction of date palm images. The algorithm authenticates findings on a local dataset of 3293 date palm images and, on a benchmarked data set as well. It achieves an accuracy of 94.175% for successful detection of SDS that outperforms the existing similar algorithms. The impactful findings of this study assure the fast and authentic detection of the disease at an earlier stage to uplift the quality and quantity of the date palm and boost the agriculture-based economy.
    Matched MeSH terms: Algorithms
  8. Sheikh Khozani Z, Ehteram M, Mohtar WHMW, Achite M, Chau KW
    Environ Sci Pollut Res Int, 2023 Sep;30(44):99362-99379.
    PMID: 37610542 DOI: 10.1007/s11356-023-29406-8
    A wastewater treatment plant (WWTP) is an essential part of the urban water cycle, which reduces concentration of pollutants in the river. For monitoring and control of WWTPs, researchers develop different models and systems. This study introduces a new deep learning model for predicting effluent quality parameters (EQPs) of a WWTP. A method that couples a convolutional neural network (CNN) with a novel version of radial basis function neural network (RBFNN) is proposed to simultaneously predict and estimate uncertainty of data. The multi-kernel RBFNN (MKRBFNN) uses two activation functions to improve the efficiency of the RBFNN model. The salp swarm algorithm is utilized to set the MKRBFNN and CNN parameters. The main advantage of the CNN-MKRBFNN-salp swarm algorithm (SSA) is to automatically extract features from data points. In this study, influent parameters (if) are used as inputs. Biological oxygen demand (BODif), chemical oxygen demand (CODif), total suspended solids (TSSif), volatile suspended solids (VSSif), and sediment (SEDef) are used to predict EQPs, including CODef, BODef, and TSSef. At the testing level, the Nash-Sutcliffe efficiencies of CNN-MKRBFNN-SSA are 0.98, 0.97, and 0.98 for predicting CODef, BODef, and TSSef. Results indicate that the CNN-MKRBFNN-SSA is a robust model for simulating complex phenomena.
    Matched MeSH terms: Algorithms*
  9. Tang TQ, Jan R, Khurshaid A, Shah Z, Vrinceanu N, Racheriu M
    Sci Rep, 2023 Sep 01;13(1):14398.
    PMID: 37658134 DOI: 10.1038/s41598-023-41440-7
    The burden of vector-borne infections is significant, particularly in low- and middle-income countries where vector populations are high and healthcare infrastructure may be inadequate. Further, studies are required to investigate the key factors of vector-borne infections to provide effective control measure. This study focuses on formulating a mathematical framework to characterize the spread of chikungunya infection in the presence of vaccines and treatments. The research is primarily dedicated to descriptive study and comprehension of dynamic behaviour of chikungunya dynamics. We use Banach's and Schaefer's fixed point theorems to investigate the existence and uniqueness of the suggested chikungunya framework resolution. Additionally, we confirm the Ulam-Hyers stability of the chikungunya system. To assess the impact of various parameters on the dynamics of chikungunya, we examine solution pathways using the Laplace-Adomian method of disintegration. Specifically, to visualise the impacts of fractional order, vaccination, bite rate and treatment computer algorithms are employed on the infection level of chikungunya. Our research identified the framework's essential input settings for managing chikungunya infection. Notably, the intensity of chikungunya infection can be reduced by lowering mosquito bite rates in the affected area. On the other hand, vaccination, memory index or fractional order, and treatment could be used as efficient controlling variables.
    Matched MeSH terms: Algorithms
  10. Hai T, Abd El-Salam NM, Kh TI, Chaturvedi R, El-Shafai W, Farhang B
    Chemosphere, 2023 Sep;336:139160.
    PMID: 37327820 DOI: 10.1016/j.chemosphere.2023.139160
    In the third millennium, developing countries will confront significant environmental problems such as ozone depletion, global warming, the shortage of fossil resources, and greenhouse gas emissions. This research looked at a multigenerational system that can generate clean hydrogen, fresh water, electricity, heat, and cooling. The system's components include Rankine and Brayton cycles, an Organic Rankine Cycle (ORC), flash desalination, an Alkaline electrolyzer, and a solar heliostat. The proposed process has been compared for two different start-up modes with a combustion chamber and solar heliostat to compare renewable and fossil fuel sources. This research evaluated various characteristics, including turbine pressure, system efficiency, solar radiation, and isentropic efficiency. The energy and exergy efficiency of the proposed system were obtained at around 78.93% and 47.56%, respectively. Exergy study revealed that heat exchangers and alkaline electrolyzers had the greatest exergy destruction rates, at 78.93% and 47.56%, respectively. The suggested system produces 0.04663 kg/s of hydrogen. Results indicate that at the best operational conditions, the exergetic efficiency, power, and hydrogen generation of 56%, 6000 kW, and 1.28 kg/s is reached, respectively. Also, With a 15% improvement in the Brayton cycle's isentropic efficacy, the quantity of hydrogen produced increases from 0.040 kg/s to 0.0520 kg/s.
    Matched MeSH terms: Algorithms
  11. Lin G, Dong L, Cheng KK, Xu X, Wang Y, Deng L, et al.
    Anal Chem, 2023 Aug 22;95(33):12505-12513.
    PMID: 37557184 DOI: 10.1021/acs.analchem.3c02246
    Metabolic pathways are regarded as functional and basic components of the biological system. In metabolomics, metabolite set enrichment analysis (MSEA) is often used to identify the altered metabolic pathways (metabolite sets) associated with phenotypes of interest (POI), e.g., disease. However, in most studies, MSEA suffers from the limitation of low metabolite coverage. Random walk (RW)-based algorithms can be used to propagate the perturbation of detected metabolites to the undetected metabolites through a metabolite network model prior to MSEA. Nevertheless, most of the existing RW-based algorithms run on a general metabolite network constructed based on public databases, such as KEGG, without taking into consideration the potential influence of POI on the metabolite network, which may reduce the phenotypic specificities of the MSEA results. To solve this problem, a novel pathway analysis strategy, namely, differential correlation-informed MSEA (dci-MSEA), is proposed in this paper. Statistically, differential correlations between metabolites are used to evaluate the influence of POI on the metabolite network, so that a phenotype-specific metabolite network is constructed for RW-based propagation. The experimental results show that dci-MSEA outperforms the conventional RW-based MSEA in identifying the altered metabolic pathways associated with colorectal cancer. In addition, by incorporating the individual-specific metabolite network, the dci-MSEA strategy is easily extended to disease heterogeneity analysis. Here, dci-MSEA was used to decipher the heterogeneity of colorectal cancer. The present results highlight the clustering of colorectal cancer samples with their cluster-specific selection of differential pathways and demonstrate the feasibility of dci-MSEA in heterogeneity analysis. Taken together, the proposed dci-MSEA may provide insights into disease mechanisms and determination of disease heterogeneity.
    Matched MeSH terms: Algorithms
  12. Laya BF, Concepcion NDP, Andronikou S, Abdul Manaf Z, Atienza MIM, Sodhi KS
    Pediatr Radiol, 2023 Aug;53(9):1782-1798.
    PMID: 37074457 DOI: 10.1007/s00247-023-05650-5
    Despite advances in diagnosis and treatment in recent years, tuberculosis (TB) remains a global health concern. Children are amongst the most vulnerable groups affected by this disease. Although TB primarily involves the lungs and mediastinal lymph nodes, it can affect virtually any organ system of the body. Along with clinical history combined with physical examination and laboratory tests, various medical imaging tools help establish the diagnosis. Medical imaging tests are also helpful for follow-up during therapy, to assess complications and exclude other underlying pathologies. This article aims to discuss the utility, strengths and limitations of medical imaging tools in the evaluation of suspected extrathoracic TB in the pediatric population. Imaging recommendations for the diagnosis will be presented along with practical and evidence-based imaging algorithms to serve as a guide for both radiologists and clinicians.
    Matched MeSH terms: Algorithms
  13. Erten M, Tuncer I, Barua PD, Yildirim K, Dogan S, Tuncer T, et al.
    J Digit Imaging, 2023 Aug;36(4):1675-1686.
    PMID: 37131063 DOI: 10.1007/s10278-023-00827-8
    Microscopic examination of urinary sediments is a common laboratory procedure. Automated image-based classification of urinary sediments can reduce analysis time and costs. Inspired by cryptographic mixing protocols and computer vision, we developed an image classification model that combines a novel Arnold Cat Map (ACM)- and fixed-size patch-based mixer algorithm with transfer learning for deep feature extraction. Our study dataset comprised 6,687 urinary sediment images belonging to seven classes: Cast, Crystal, Epithelia, Epithelial nuclei, Erythrocyte, Leukocyte, and Mycete. The developed model consists of four layers: (1) an ACM-based mixer to generate mixed images from resized 224 × 224 input images using fixed-size 16 × 16 patches; (2) DenseNet201 pre-trained on ImageNet1K to extract 1,920 features from each raw input image, and its six corresponding mixed images were concatenated to form a final feature vector of length 13,440; (3) iterative neighborhood component analysis to select the most discriminative feature vector of optimal length 342, determined using a k-nearest neighbor (kNN)-based loss function calculator; and (4) shallow kNN-based classification with ten-fold cross-validation. Our model achieved 98.52% overall accuracy for seven-class classification, outperforming published models for urinary cell and sediment analysis. We demonstrated the feasibility and accuracy of deep feature engineering using an ACM-based mixer algorithm for image preprocessing combined with pre-trained DenseNet201 for feature extraction. The classification model was both demonstrably accurate and computationally lightweight, making it ready for implementation in real-world image-based urine sediment analysis applications.
    Matched MeSH terms: Algorithms*
  14. Wahab AA, Jauhary EJ, Ding CH
    Malays J Pathol, 2023 Aug;45(2):157-173.
    PMID: 37658526
    Anti-nuclear antibody test (ANA) is the test commonly requested for the working diagnosis of systemic autoimmune rheumatic diseases (SARDs) particularly in ANA-associated rheumatic diseases (AARDs) such as SLE, systemic sclerosis, Sjogren syndrome, mixed connective tissue diseases, and dermatomyositis. Dense fine speckled (DFS) pattern is an ANA fluorescence pattern that is commonly encountered in laboratories. This pattern is largely detected among the healthy population and in non-SARDs patients. Although this pattern is still can be observed among SARDs patients, the low prevalence of monospecific or isolated anti-DFS70 antibodies makes it useful for ruling out AARDs diagnosis. Thus, the inclusion of anti-DFS70 antibodies is perhaps logical for the exclusion of SARDs/AARDs. This review provides evidence of the prevalence of anti-DFS70 antibodies in different populations including healthy individuals, patients with SARDs and non- SARDs. The algorithm that includes the detection of anti-DFS70 antibodies during ANA screening is also suggested.
    Matched MeSH terms: Algorithms
  15. Devan PAM, Ibrahim R, Omar M, Bingi K, Abdulrab H
    Sensors (Basel), 2023 Jul 07;23(13).
    PMID: 37448072 DOI: 10.3390/s23136224
    A novel hybrid Harris Hawk-Arithmetic Optimization Algorithm (HHAOA) for optimizing the Industrial Wireless Mesh Networks (WMNs) and real-time pressure process control was proposed in this research article. The proposed algorithm uses inspiration from Harris Hawk Optimization and the Arithmetic Optimization Algorithm to improve position relocation problems, premature convergence, and the poor accuracy the existing techniques face. The HHAOA algorithm was evaluated on various benchmark functions and compared with other optimization algorithms, namely Arithmetic Optimization Algorithm, Moth Flame Optimization, Sine Cosine Algorithm, Grey Wolf Optimization, and Harris Hawk Optimization. The proposed algorithm was also applied to a real-world industrial wireless mesh network simulation and experimentation on the real-time pressure process control system. All the results demonstrate that the HHAOA algorithm outperforms different algorithms regarding mean, standard deviation, convergence speed, accuracy, and robustness and improves client router connectivity and network congestion with a 31.7% reduction in Wireless Mesh Network routers. In the real-time pressure process, the HHAOA optimized Fractional-order Predictive PI (FOPPI) Controller produced a robust and smoother control signal leading to minimal peak overshoot and an average of a 53.244% faster settling. Based on the results, the algorithm enhanced the efficiency and reliability of industrial wireless networks and real-time pressure process control systems, which are critical for industrial automation and control applications.
    Matched MeSH terms: Algorithms*
  16. Menon S, Anand D, Kavita, Verma S, Kaur M, Jhanjhi NZ, et al.
    Sensors (Basel), 2023 Jul 04;23(13).
    PMID: 37447981 DOI: 10.3390/s23136132
    With the increasing growth rate of smart home devices and their interconnectivity via the Internet of Things (IoT), security threats to the communication network have become a concern. This paper proposes a learning engine for a smart home communication network that utilizes blockchain-based secure communication and a cloud-based data evaluation layer to segregate and rank data on the basis of three broad categories of Transactions (T), namely Smart T, Mod T, and Avoid T. The learning engine utilizes a neural network for the training and classification of the categories that helps the blockchain layer with improvisation in the decision-making process. The contributions of this paper include the application of a secure blockchain layer for user authentication and the generation of a ledger for the communication network; the utilization of the cloud-based data evaluation layer; the enhancement of an SI-based algorithm for training; and the utilization of a neural engine for the precise training and classification of categories. The proposed algorithm outperformed the Fused Real-Time Sequential Deep Extreme Learning Machine (RTS-DELM) system, the data fusion technique, and artificial intelligence Internet of Things technology in providing electronic information engineering and analyzing optimization schemes in terms of the computation complexity, false authentication rate, and qualitative parameters with a lower average computation complexity; in addition, it ensures a secure, efficient smart home communication network to enhance the lifestyle of human beings.
    Matched MeSH terms: Algorithms
  17. Rajendran S, Lim JH, Yogalingam K, Kallarakkal TG, Zain RB, Jayasinghe RD, et al.
    Oral Dis, 2023 Jul;29(5):2230-2238.
    PMID: 35398971 DOI: 10.1111/odi.14206
    OBJECTIVE: To describe the development of a platform for image collection and annotation that resulted in a multi-sourced international image dataset of oral lesions to facilitate the development of automated lesion classification algorithms.

    MATERIALS AND METHODS: We developed a web-interface, hosted on a web server to collect oral lesions images from international partners. Further, we developed a customised annotation tool, also a web-interface for systematic annotation of images to build a rich clinically labelled dataset. We evaluated the sensitivities comparing referral decisions through the annotation process with the clinical diagnosis of the lesions.

    RESULTS: The image repository hosts 2474 images of oral lesions consisting of oral cancer, oral potentially malignant disorders and other oral lesions that were collected through MeMoSA® UPLOAD. Eight-hundred images were annotated by seven oral medicine specialists on MeMoSA® ANNOTATE, to mark the lesion and to collect clinical labels. The sensitivity in referral decision for all lesions that required a referral for cancer management/surveillance was moderate to high depending on the type of lesion (64.3%-100%).

    CONCLUSION: This is the first description of a database with clinically labelled oral lesions. This database could accelerate the improvement of AI algorithms that can promote the early detection of high-risk oral lesions.

    Matched MeSH terms: Algorithms*
  18. Kishore DJK, Mohamed MR, Sudhakar K, Peddakapu K
    Environ Sci Pollut Res Int, 2023 Jul;30(35):84167-84182.
    PMID: 37358770 DOI: 10.1007/s11356-023-28248-8
    At present, a photovoltaic (PV) system takes responsibility to reduce the risk of global warming and generate electricity. However, the PV system faces numerous problems to track global maximum peak power (GMPP) owing to the nonlinear nature of the environment especially due to partial shading conditions (PSC). To solve these difficulties, previous researchers have utilized various conventional methods for investigations. Nevertheless, these methods have oscillations around the GMPP. Hence, a new metaheuristic method such as an opposition-based equilibrium optimizer (OBEO) algorithm is used in this work for mitigating the oscillations around GMPP. To find the effectiveness of the proposed method, it can be evaluated with other methods such as SSA, GWO, and P&O. As per the simulation outcome, the proposed OBEO method provides maximum efficiency against all other methods. The efficiency for the proposed method under dynamic PSC is 95.09% in 0.16 s, similarly, 96.17% for uniform PSC and 86.25% for complex PSC.
    Matched MeSH terms: Algorithms
  19. Jeon J, Krishnan S, Manirathinam T, Narayanamoorthy S, Nazir Ahmad M, Ferrara M, et al.
    Sci Rep, 2023 Jun 23;13(1):10206.
    PMID: 37353615 DOI: 10.1038/s41598-023-37200-2
    The probabilistic hesitant elements (PHFEs) are a beneficial augmentation to the hesitant fuzzy element (HFE), which is intended to give decision-makers more flexibility in expressing their biases while using hesitant fuzzy information. To extrapolate a more accurate interpretation of the decision documentation, it is sufficient to standardize the organization of the elements in PHFEs without introducing fictional elements. Several processes for unifying and arranging components in PHFEs have been proposed so far, but most of them result in various disadvantages that are critically explored in this paper. The primary objective of this research is to recommend a PHFE unification procedure that avoids the deficiencies of operational practices while maintaining the inherent properties of PHFE probabilities. The prevailing study advances the hypothesis of permutation on PHFEs by suggesting a new sort of PHFS division and subtraction compared with the existing unification procedure. Eventually, the proposed PHFE-unification process will be used in this study, an innovative PHFEs based on the Weighted Aggregated Sum Product Assessment Method-Analytic Hierarchy Process (WASPAS-AHP) perspective for selecting flexible packaging bags after the prohibition on single-use plastics. As a result, we have included the PHFEs-WASPAS in our selection of the most effective fuzzy environment for bio-plastic bags. The ranking results for the suggested PHFEs-MCDM techniques surpassed the existing AHP methods in the research study by providing the best solution. Our solutions offer the best bio-plastic bag alternative strategy for mitigating environmental impacts.
    Matched MeSH terms: Algorithms
  20. Saad MA, Jaafar R, Chellappan K
    Sensors (Basel), 2023 Jun 12;23(12).
    PMID: 37420692 DOI: 10.3390/s23125526
    Data gathering in wireless sensor networks (WSNs) is vital for deploying and enabling WSNs with the Internet of Things (IoTs). In various applications, the network is deployed in a large-scale area, which affects the efficiency of the data collection, and the network is subject to multiple attacks that impact the reliability of the collected data. Hence, data collection should consider trust in sources and routing nodes. This makes trust an additional optimization objective of the data gathering in addition to energy consumption, traveling time, and cost. Joint optimization of the goals requires conducting multiobjective optimization. This article proposes a modified social class multiobjective particle swarm optimization (SC-MOPSO) method. The modified SC-MOPSO method is featured by application-dependent operators named interclass operators. In addition, it includes solution generation, adding and deleting rendezvous points, and moving to the upper and lower class. Considering that SC-MOPSO provides a set of nondominated solutions as a Pareto front, we employed one of the multicriteria decision-making (MCDM) methods, i.e., simple additive sum (SAW), for selecting one of the solutions from the Pareto front. The results show that both SC-MOPSO and SAW are superior in terms of domination. The set coverage of SC-MOPSO is 0.06 dominant over NSGA-II compared with only a mastery of 0.04 of NSGA-II over SC-MOPSO. At the same time, it showed competitive performance with NSGA-III.
    Matched MeSH terms: Algorithms*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links