Displaying publications 41 - 60 of 427 in total

Abstract:
Sort:
  1. Mohd Razip Wee MF, Dehzangi A, Bollaert S, Wichmann N, Majlis BY
    PLoS One, 2013;8(12):e82731.
    PMID: 24367548 DOI: 10.1371/journal.pone.0082731
    A multi-gate n-type In₀.₅₃Ga₀.₄₇As MOSFET is fabricated using gate-first self-aligned method and air-bridge technology. The devices with different gate lengths were fabricated with the Al2O3 oxide layer with the thickness of 8 nm. In this letter, impact of gate length variation on device parameter such as threshold voltage, high and low voltage transconductance, subthreshold swing and off current are investigated at room temperature. Scaling the gate length revealed good enhancement in all investigated parameters but the negative shift in threshold voltage was observed for shorter gate lengths. The high drain current of 1.13 A/mm and maximum extrinsic transconductance of 678 mS/mm with the field effect mobility of 364 cm(2)/Vs are achieved for the gate length and width of 0.2 µm and 30 µm, respectively. The source/drain overlap length for the device is approximately extracted about 51 nm with the leakage current in order of 10(-8) A. The results of RF measurement for cut-off and maximum oscillation frequency for devices with different gate lengths are compared.
    Matched MeSH terms: Aluminum Oxide
  2. Sidik NA, Safdari A
    Nanoscale Res Lett, 2012;7(1):648.
    PMID: 23176814 DOI: 10.1186/1556-276X-7-648
    This work presents some comments concerning the paper entitled 'Lattice Boltzmann simulation of alumina-water nanofluid in a square cavity' by Yurong He, Cong Qi, Yanwei Hu, Bin Qin, Fengchen Li and Yulong Ding which was published in Nanoscale Research Letters in 2011. The comments are related to the numerical parameters and the computed results of average Nusselt number.
    Matched MeSH terms: Aluminum Oxide
  3. Halimah M, Ismail BS, Nashriyah M, Maznah Z
    Bull Environ Contam Toxicol, 2016 Jan;96(1):120-4.
    PMID: 26546229 DOI: 10.1007/s00128-015-1685-3
    The mobility of (14)C-chlorpyrifos using soil TLC was investigated in this study. It was found that chlorpyrifos was not mobile in clay, clay loam and peat soil. The mobility of (14)C-chlorpyrifos and non-labelled chlorpyrifos was also tested with silica gel TLC using three types of developing solvent hexane (100%), hexane:ethyl acetate (95:5, v/v); and hexane:ethyl acetate (98:2, v/v). The study showed that both the (14)C-labelled and non-labelled chlorpyrifos have the same Retardation Factor (Rf) for different developing solvent systems. From the soil column study on mobility of chlorpyrifos, it was observed that no chlorpyrifos residue was found below 5 cm depth in three types of soil at simulation rainfall of 20, 50 and 100 mm. Therefore, the soil column and TLC studies have shown similar findings in the mobility of chlorpyrifos.
    Matched MeSH terms: Aluminum Silicates
  4. Buyong MR, Larki F, Faiz MS, Hamzah AA, Yunas J, Majlis BY
    Sensors (Basel), 2015;15(5):10973-90.
    PMID: 25970255 DOI: 10.3390/s150510973
    In this work, the dielectrophoretic force (F(DEP)) response of Aluminium Microelectrode Arrays with tapered profile is investigated through experimental measurements and numerical simulations. A standard CMOS processing technique with a step for the formation of a tapered profile resist is implemented in the fabrication of Tapered Aluminium Microelectrode Arrays (TAMA). The F(DEP) is investigated through analysis of the Clausius-Mossotti factor (CMF) and cross-over frequency (f(xo)). The performance of TAMA with various side wall angles is compared to that of microelectrodes with a straight cut sidewall profile over a wide range of frequencies through FEM numerical simulations. Additionally, electric field measurement (EFM) is performed through scanning probe microscopy (SPM) in order to obtain the region of force focus in both platforms. Results showed that the tapered profile microelectrodes with angles between 60° and 70° produce the highest electric field gradient on the particles. Also, the region of the strongest electric field in TAMA is located at the bottom and top edge of microelectrode while the strongest electric field in microelectrodes with straight cut profile is found at the top corner of the microelectrode. The latter property of microelectrodes improves the probability of capturing/repelling the particles at the microelectrode's side wall.
    Matched MeSH terms: Aluminum
  5. Nik Zarina Nik Mahmood, Noor Hayaty Abu Kasim, Mamat Azuddin, Noor Lide Abu Kassim
    Compendium of Oral Science, 2015;2(1):21-31.
    MyJurnal
    Objective: To evaluate the effect of type of viscosity and groove on surface detail reproduction of elastomeric impression materials. Methods: Two polyvinylsiloxane and polyether elastomeric impression materials were investigated. An aluminium cylindrical reference block with V- and U-shaped grooves of 1 mm and 2 mm in depth was machined using CAD-CAM system. Impressions of the block were taken to produce 35 master dies. Each die was immersed in distilled water for 5 minutes prior to impression making. Surface topography of the dies and impressions were captured using Alicona Imaging System. Mean difference in depth between the mas-ter dies and corresponding impressions’ grooves were analyzed. Results: Type of viscosities and groove showed significant main effects on surface detail (p < .01), but no significant interaction was observed between the two (p > .01). Express™ putty/light exhibited the lowest mean difference in depth for all grooves. The highest mean difference for U1 (38.3μm ± 21.55), U2 (52.96μm ± 30.39),V1 (45.02μm ± 34.82) and V2 (58.44μm ± 44.19) was obtained from Impregum medium, Aquasil medium, Impregum™ heavy/light and Impregum™ heavy/light groups respectively. Conclusion: Express putty/light-bodied material produced the best surface detail, and U-shaped groove showed superior detail reproduction.
    Matched MeSH terms: Aluminum
  6. Purwanti IF, Kurniawan SB, Ismail N', Imron MF, Abdullah SRS
    J Environ Manage, 2019 Nov 01;249:109412.
    PMID: 31445374 DOI: 10.1016/j.jenvman.2019.109412
    This paper elucidates the capability of isolated indigenous bacteria to remove aluminium from wastewater and soil. Two indigenous species of Brochothrix thermosphacta and Vibrio alginolyticus were isolated from an aluminium-contaminated site. These two species were used to treat aluminium-containing wastewater and contaminated soil using the bioaugmentation method. B. thermosphacta showed the highest aluminium removal of 57.87 ± 0.45% while V. alginolyticus can remove aluminium up to 59.72 ± 0.33% from wastewater. For aluminium-contaminated soil, B. thermosphacta and V. alginolyticus, showed a highest removal of only 4.58 ± 0.44% and 5.48 ± 0.58%, respectively. The bioaugmentation method is more suitable to be used to treat aluminium in wastewater compared to contaminated soil. The produced biomass separation after wastewater treatment was so much easier and applicable, compared to the produced biomass handling from contaminated soil treatment. A 48.55 ± 2.45% and 40.12 ± 4.55% of aluminium can be recovered from B. thermosphacta and V. alginolyticus biomass, respectively, with 100 mg/L initial aluminium concentration in wastewater.
    Matched MeSH terms: Aluminum
  7. Ahmad Fuad Ab Ghani, Mohamad Kamarul Anwar Sahar, Muhammad Ridzuan Husyairi Azmi, Nurul Izzati Medon, Muhammad Syazwan Samsuri, Muhammad Syurabil Abdani
    MyJurnal
    There are several types of grating, such as platform, bridge decks and filters. In design process, there
    are several important terms that have to be prioritised; engineering design, strength to weight ratio, cost,
    maintainability, reparability etcetera. Advanced materials, such as composite materials offer great
    strength to weight ratio and high mechanical properties for grating fabrication. Furthermore the
    reparability and maintenance problems could be solved as it is anti corrosion and the long service life
    attribute of composite makes it a great design material for replacement of conventional steel or
    aluminium. Bio composites, such as bamboo and coir fiber yield advantage in terms of less cost and
    abundance availability compared to commercial unidirectional composite materials, such as glass fiber
    reinforced polymer (GFRP) and carbon fiber reinforced polymer (CFRP) which is considerably
    expensive yet possess higher mechanical properties. This papers presents a conceptual design of
    grating design utilizing bamboo composite as material. Pugh method has been chosen as design criteria
    selection matrix in finalizing the design of industrial grating for scaffolding (Pugh, 1991).
    Matched MeSH terms: Aluminum
  8. Arab A, Sktani ZDI, Zhou Q, Ahmad ZA, Chen P
    Materials (Basel), 2019 Jul 31;12(15).
    PMID: 31370216 DOI: 10.3390/ma12152440
    Zirconia toughened alumina (ZTA) is a promising advanced ceramic material for a wide range of applications that are subjected to dynamic loading. Therefore, the investigation of dynamic compressive strength, fracture toughness and hardness is essential for ZTA ceramics. However, the relationship between these mechanical properties in ZTA has not yet been established. An example of this relationship is demonstrated using ZTA samples added with MgO prepared through conventional sintering. The microstructure and mechanical properties of ZTA composites were characterized. The hardness of ZTA composites increased for ≤0.7 wt.% MgO due to the pinning effect of MgO and decrease of the porosity in the microstructure. Oppositely, the fracture toughness of ZTA composites continuously decreased due to the size reduction of Al2O3 grains. This is the main reason of deteriorate of dynamic compressive strength more than 0.2 wt.% of MgO addition. Therefore, the SHPB test shows the improvement of the dynamic compressive strength only up to a tiny amount (0.2 wt.% of MgO addition) into ZTA ceramics.
    Matched MeSH terms: Aluminum Oxide
  9. Bassiri Nia A, Xin L, Yahya MY, Ayob A, Farokhi Nejad A, Rahimian Koloor SS, et al.
    Polymers (Basel), 2020 Sep 19;12(9).
    PMID: 32961655 DOI: 10.3390/polym12092139
    The present study investigates the effects of close-range blast loading of fibre metal laminates (FMLs) fabricated from woven glass polypropylene and aluminium alloy 2024-T3. The polypropylene layers and anodized aluminium are stacked in 3/2 layering configuration to investigate the impact energy absorbed through deformation and damage. In order to study the blast responses of FMLs, a 4-cable instrumented pendulum blast set-up is used. Effects of blast impulse and stand-off distance were examined. Investigation of the cross-section of FMLs are presented and damages such as fibre fracture, debonding, and global deformation are examined. Increasing stand-off distance from 4 to 14 mm resulted in a change of damage mode from highly localized perforation to global deformation.
    Matched MeSH terms: Aluminum
  10. Al-Asbahi BA, Haji Jumali MH, AlSalhi MS
    Polymers (Basel), 2016 Sep 06;8(9).
    PMID: 30974607 DOI: 10.3390/polym8090334
    The effect of TiO₂ nanoparticle (NP) content on the improvement of poly(9,9'-di-n-octylfluorenyl-2,7-diyl) (PFO)/Fluorol 7GA organic light emitting diode (OLED) performance is demonstrated here. The PFO/Fluorol 7GA blend with specific ratios of TiO₂ NPs was prepared via a solution blending method before being spin-coated onto an indium tin oxide (ITO) substrate to act as an emissive layer in OLEDs. A thin aluminum layer as top electrode was deposited onto the emissive layer using the electron beam chamber. Improvement electron injection from the cathode was achieved upon incorporation of TiO₂ NPs into the PFO/Fluorol 7GA blend, thus producing devices with intense luminance and lower turn-on voltage. The ITO/(PFO/Fluorol 7GA/TiO₂)/Al OLED device exhibited maximum electroluminescence intensity and luminance at 25 wt % of TiO₂ NPs, while maximum luminance efficiency was achieved with 15 wt % TiO₂ NP content. In addition, this work proved that the performance of the devices was strongly affected by the surface morphology, which in turn depended on the TiO₂ NP content.
    Matched MeSH terms: Aluminum
  11. Norshuhadah Hayat, Inayatullah Shah Sayed
    MyJurnal
    Bauxite mining in Kuantan district of Pahang has raised health concerns of communities residing near the mining areas. Bauxite mining and transportation activities have contributed a lot to the pollution of environment. There is a fear among the residents of the areas that whether the soil is free from naturally occurring radioactive substances or not. Therefore, the objective of this study was to detect the presence of natural radioactive elements in the soil of bauxite mining field at Bukit Goh, Kuantan.
    Matched MeSH terms: Aluminum Oxide
  12. Rashid NFA, Deivasigamani R, Wee MFMR, Hamzah AA, Buyong MR
    Sensors (Basel), 2021 Jul 21;21(15).
    PMID: 34372193 DOI: 10.3390/s21154957
    We present the integration of a flow focusing microfluidic device in a dielectrophoretic application that based on a tapered aluminum microelectrode array (TAMA). The characterization and optimization method of microfluidic geometry performs the hydrodynamic flow focusing on the channel. The sample fluids are hydrodynamically focused into the region of interest (ROI) where the dielectrophoresis force (FDEP) is dominant. The device geometry is designed using 3D CAD software and fabricated using the micro-milling process combined with soft lithography using PDMS. The flow simulation is achieved using COMSOL Multiphysics 5.5 to study the effect of the flow rate ratio between the sample fluids (Q1) and the sheath fluids (Q2) toward the width of flow focusing. Five different flow rate ratios (Q1/Q2) are recorded in this experiment, which are 0.2, 0.4, 0.6, 0.8 and 1.0. The width of flow focusing is increased linearly with the flow rate ratio (Q1/Q2) for both the simulation and the experiment. At the highest flow rate ratio (Q1/Q2 = 1), the width of flow focusing is obtained at 638.66 µm and at the lowest flow rate ratio (Q1/Q2 = 0.2), the width of flow focusing is obtained at 226.03 µm. As a result, the flow focusing effect is able to reduce the dispersion of the particles in the microelectrode from 2000 µm to 226.03 µm toward the ROI. The significance of flow focusing on the separation of particles is studied using 10 and 1 µm polystyrene beads by applying a non-uniform electrical field to the TAMA at 10 VPP, 150 kHz. Ultimately, we are able to manipulate the trajectories of two different types of particles in the channel. For further validation, the focusing of 3.2 µm polystyrene beads within the dominant FDEP results in an enhanced manipulation efficiency from 20% to 80% in the ROI.
    Matched MeSH terms: Aluminum
  13. Hussein MZ, Sarijo SH, Yahaya AH, Zainal Z
    J Nanosci Nanotechnol, 2007 Aug;7(8):2852-62.
    PMID: 17685307
    Layered organic-inorganic hybrid nanocomposite material was synthesised using 4-chlorophenoxyacetate (4CPA) as guest anion intercalated into the Zn-Al layered double hydroxide inorganic host by direct co-precipitation method at pH = 7.5 and Zn to Al molar ratio of 4. Both PXRD and FTIR results confirmed that the 4CPA was successfully intercalated into the Zn-AI-LDH interlayer. As a result, a well-ordered nanolayered organic-inorganic hybrid nanocomposite, with the expansion of the basal spacing from 8.9 angstroms in the layered double hydroxide to 20.1 angstroms in the resulting nanocomposite was observed. The FTIR spectrum of the nanocomposite (ZAC) showed that it composed spectral features of Zn-AI-LDH (ZAL) and 4CPA. The nanocomposites synthesized in this work are of mesoporous-type containing 39.8% (w/w) of 4CPA with mole fraction of Al3+ in the inorganic brucite-like layers (xAI) of 0.224. The release studies showed a rapid release of the 4CPA for the first 600 min, and more sustained thereafter. The total amount of 4CPA released from the nanocomposite interlayer into the aqueous solution were 21%, 66%, and 72% in 0.0001, 0.00025, and 0.0005 M sodium carbonate, respectively. In distilled water, about 75, 35, and 57% of 4CPA could be released in 1000 min, when the pH of the release media was set at 3, 6.25, and 12, respectively. In comparison with a structurally similar organic moiety with one more chlorine atom at the 2-position of the aromatic ring, namely 2,4-dichlorophenoxyacetate (24D), the 4CPA showed a slower release rate. The slightly bulkier organic moiety of 24D together with the presence of chlorine atom at the 2-position presumably had contributed to its higher release rate, and it seems that these factors may be exploited for tuning the release rate of intercalated guest anions with similar properties. This study suggests that layered double hydroxide can be used as a carrier for an active agent and the chemical structure of the intercalated moiety can be used to tune the desired release kinetics of the beneficial agent.
    Matched MeSH terms: Aluminum/chemistry*; Aluminum Hydroxide/chemistry
  14. Lin GSS, Ghani NRNA, Ismail NH, Singbal K, Noorani TY, Mamat N
    Contemp Clin Dent, 2021 03 20;12(1):21-27.
    PMID: 33967533 DOI: 10.4103/ccd.ccd_298_20
    Background: An ideal composite resin should demonstrate smooth surface after polishing and high hardness value to provide long-term success. Thus, this study aimed to compare the surface roughness and microhardness of new experimental zirconia-reinforced rice husk nanohybrid composite (Zr-Hybrid) with commercialized nanofilled (Filtek-Z350-XT) and microhybrid composite (Zmack-Comp) resins before and after artificial ageing.

    Methods: One hundred and eighty standardized disc samples were prepared, of which ninety samples each were used for surface roughness and microhardness test, respectively. They were divided equally into: Group 1 (Filtek-Z350-XT), Group 2 (Zmack-Comp), and Group 3 (Zr-Hybrid). For surface roughness test, all samples were polished with aluminium oxide discs and further subdivided into aged and unaged subgroups, in which composite samples in aged subgroups were subjected to 2500 thermal cycles. Next, all the samples were subjected to surface roughness test using a contact stylus profilometer. As for microhardness test, all the aged and unaged samples were tested using a Vickers hardness machine with a load of 300 kgf for 10 s and viewed under a digital microscope to obtain microhardness value. Data were analyzed using two-way ANOVA followed by post hoc Tukey's honestly significant difference and paired sample t-test with significance level set at P = 0.05.

    Results: In both the aged and unaged groups, Zr-Hybrid showed statistically significantly lower surface roughness (P < 0.05) than Filtek-Z350-XT and Zmack-Comp, but no statistically significant difference was noted between Filtek-Z350-XT and Zmack-Comp (P > 0.05). A similar pattern was noted in microhardness test, whereby Zr-Hybrid showed the highest value (P < 0.05) followed by Filtek-Z350-XT and lastly Zmack-Comp. Besides, significant differences in surface roughness and microhardness were noted between the aged and unaged groups.

    Conclusion: Zr-Hybrid seems to demonstrate better surface roughness and microhardness value before and after artificial ageing.

    Matched MeSH terms: Aluminum Oxide
  15. Muhd Norhasri Mohd Sidek, Mohd Fadzil Arshad, Megat Azmi Megat Johari, Zaid Mohd Yazid, Amir Khomeiny, R.
    MyJurnal
    Metakaolin is a manufactured pozzolan produced by thermal processing of purified kaolinitic clay using electrical furnace. This study has examined the effect of Metakaolin on the properties of cement and concrete at a replacement level of 0%, 5%, 10% and 15%. The parameters studied were divided into two groups which are chemical compositions, water requirement, setting time and soundness test were carried out for cementitous properties. Workability, compressive strength and bending strength were test for concrete properties. Hardened concrete was cured under different type of curing conditions and tested.. The result showed that the inclusions of Metakaolin as cement replacement minerals have change some of the cementitous and concrete properties. This research reveals, the optimum effect for cementitous and concrete properties for metakaolin was 10%.
    Matched MeSH terms: Aluminum Silicates
  16. Zal U’yun Wan Mahmood, Zaharudin Ahmad, Che Abd Rahim Mohamed, Abdul Kadir Ishak, Norfaizal Mohammed
    MyJurnal
    The distribution, enrichment and pollution status of metals in sediment cores from the Sabah-Sarawak coastal waters were studied. Seven sediment cores were taken in July 2004 using a gravity box corer. The metals of Cu, Zn and Pb were analyzed by ICP-MS to assess the pollution status of the sediments. The sediment fine fraction and organic carbon content was also analyzed. Enrichment Factor (EF), Geoaccumulation Index (Igeo) and Pollution Load Index (PLI) was calculated as criteria of possible contamination. The results showed that collected sediments were composed with clay, silt and sand as 12 – 74%, 27 – 72% and 0 – 20%, respectively. Meanwhile, organic carbon contents were relatively low and constant over time, based on sediment depth profiles, and it did not exceed 5% at any sampling station. The average metal concentrations in sediment cores at all sampling station were distributed in the ranges of 1.66 ± 1.36 – 6.61 ± 0.12 μgg-1 for Cu, 26.55 ± 1.04 – 57.94 ± 1.58 μgg-1 for Zn and 3.99 ± 0.10 – 14.48 ± 0.32μgg-1 for Pb. According to calculations of EF, Igeo and PLI, it can be concluded that concentrations of Cu, Zn and Pb were not significantly affected by pollution from anthropogenic sources at the seven sampling locations. Thus, the metal content of Cu, Zn and Pb in sediment should not cause pollution problem to the marine environment of Sabah-Sarawak coastal waters and further response measures are not needed.
    Matched MeSH terms: Aluminum Silicates
  17. Nashriyah Mat, Mazleha Maskin, Kubiak, Roland
    MyJurnal
    The soil plant transfer coefficient or f factor of 14 C-carbofuran pesticide was studied in outdoor lysimeter experiment consisting of Brassica sp. vegetable crop, riverine alluvial clayey soil and Bungor series sandy loam soil. Soil transfer coefficients at 0-10 cm soil depth were 4.38 + 0.30, 5.76 + 1.04, 0.99 + 0.25 and 2.66 + 0.71; from 1X recommended application rate in alluvial soil, 2X recommended application rate in alluvial soil, 1X recommended application rate in Bungor soil and 2X recommended application rate in Bungor soil, respectively. At 0-25 cm soil depth, soil plant transfer coefficients were 8.96 + 0.91, 10.40 + 2.63, 2.34 + 0.68 and 6.19 + 1.40; from 1X recommended application rate in alluvial soil, 2X recommended application rate in alluvial soil, 1X recommended application rate in Bungor soil and 2X recommended application rate in Bungor soil, respectively. At 77 days after treatment (DAT), the soil plant transfer coefficient was significantly higher in riverine alluvial soil than Bungor soil whereas shoot and root growth was significantly higher in Bungor soil than in riverine alluvial soil. At both 0-10 cm Brassica sp. rooting depth and 0-25 cm soil depth, the soil plant transfer coefficient was significantly higher in 2X recommended application rate of 14 C-carbofuran as compared to 1X recommended application rate, in both Bungor and riverine alluvial soils.
    Matched MeSH terms: Aluminum Silicates
  18. Muhamad Daud, Sarimah Mahat, Mohd Sharif Sattar
    MyJurnal
    Surface free energies have been evaluated from Young’s moduli and lattice parameter data of five aluminium alloys with varying amounts of stanum to determine the inter-correlation with anode capacity of the alloys. The composition containing ~1.47%Sn exhibits a minimum in the surface free energy which accounts for the decrease in the tendency of the alloy to undergo passivation thus resulting in a higher anode capacity of 2478Ah/kg at ≈ 0.08mA/cm 2 , current density. The results showed that aluminium alloy containing certain amount of stanum has lowered surface free energy, leading to reduction in passive film thickness and reduces metal/oxide bond strength. These factors in turn result in a better cathodic protection property of aluminium alloy containing stanum.
    Matched MeSH terms: Aluminum
  19. Ahmad Zahirani Ahmad Azhar, Hasmaliza Mohamed, Mani Maran Ratnam, Zainal Arifin Ahmad
    MyJurnal
    The microstructure and mechanical properties of ceramic composites produced from alumina, yttria stabilized zirconia and chromia oxide system was investigated. The Cr2O3 weight percent was varied from 0 wt% to 1.0 wt%. Each batch of composition was mixed, uniaxially pressed to 13mm diameter and sintered at 1600 ◦C for 4 h in pressureless conditions. Studies on the effects of the sample microstructures on their mechanical and physical properties such as fracture toughness and bulk density were carried out. Results show that an addition of 0.6 wt% of Cr2O3 produces the best mechanical properties. Furthermore, microstructural observations show that the Al2O3 grain size is significantly dependent on the amount of Cr2O3 additives used. Maximum value obtained with 0.6 wt % Cr2O3 for the fracture toughness is 5.36 MPa.m1/2.
    Matched MeSH terms: Aluminum Oxide
  20. Meor Yusoff, M.S., Latifah Amin
    MyJurnal
    XRF analysis was done on a local zircon samples and the result shows it has a high Fe, Th and U content. The high Fe content in Malaysian zircon had made the mineral to be classified as of a low-grade zircon. Presence of Fe in this mineral may be resulted from clay mineral coating found on the zircon surface. Chemical leaching technique was used for the removal of this Fe and the study also shows that a 600 o C heat pretreatment stage is important for the effectiveness of this process. Other parameters studied are the HCl concentration, leaching temperature and time. By using the optimum leaching parameters, the Fe content had been reduced to 0.049% and thus qualified it to be categorised as a premium grade zircon.
    Matched MeSH terms: Aluminum Silicates
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links