Displaying publications 41 - 60 of 229 in total

Abstract:
Sort:
  1. Hong X, Ajat M, Fakurazi S, Noor AM, Ismail IS
    J Ethnopharmacol, 2021 Mar 25;268:113647.
    PMID: 33271242 DOI: 10.1016/j.jep.2020.113647
    ETHNOPHARMACOLOGICAL RELEVANCE: Scurrula ferruginea (Jack) Danser (locally known as 'Dedalu' or 'dian nan ji sheng' in Malaysia and China) is a hemi-parasitic shrub that is widely used as herbal medicine to treat inflammation, rheumatism, and stroke. However, the scientific basis of its anti-inflammatory function and mechanism remain to be proven.

    AIM OF THE STUDY: To evaluate the anti-inflammatory activity as well as the preliminary mechanism of S. ferruginea parasitizing on Tecoma stans.

    MATERIALS AND METHODS: The anti-inflammatory capability of freeze-dried stem aqueous extract was assessed via inhibition of inflammatory cytokines interleukin- (IL-) 1β, IL-6, IL-10, and tumor necrosis factor-alpha (TNF-α) production in lipopolysaccharide (LPS) and interferon-γ (IFN-γ) stimulated RAW 264.7 macrophages. The underlying anti-inflammatory mechanism was deciphered through reverse transcriptase and real time quantitative polymerase chain reactions (RT-PCR and qPCR) for inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2), IL-1β, and TNF-α mRNA expression.

    RESULTS: The results exhibited that aqueous extract of freeze-dried S. ferruginea stem sample concentration-dependently inhibited IL-1β protein production along with the down regulation of iNOS and IL-1β mRNA expression. Moreover, it significantly suppressed the protein release of IL-6 and IL-10 in a concentration-dependent manner. However, it slightly reduced TNF-α at higher sample concentration (250 μg/mL) without affecting the mRNA expression levels of COX-2 and TNF-α.

    CONCLUSIONS: This study suggests that S. ferruginea parasitizing on Tecoma stans exerted anti-inflammatory capability attributed to inhibition of iNOS and IL-1β mRNA expression, NO creation, IL-1β, IL-6, IL-10, and TNF-α protein production, indicating this plant might be a useful plant-derived candidate against inflammation.

    Matched MeSH terms: Anti-Inflammatory Agents/pharmacology*
  2. Kuo X, Herr DR, Ong WY
    Neuromolecular Med, 2021 03;23(1):176-183.
    PMID: 33085066 DOI: 10.1007/s12017-020-08621-3
    Clinacanthus nutans (Lindau) (C. nutans) has diverse uses in traditional herbal medicine for treating skin rashes, insect and snake bites, lesions caused by herpes simplex virus, diabetes mellitus and gout in Singapore, Malaysia, Indonesia, Thailand and China. We previously showed that C. nutans has the ability to modulate the induction of cytosolic phospholipase A2 (cPLA2) expression in SH-SY5Y cells through the inhibition of histone deacetylases (HDACs). In the current study, we elucidated the effect of C. nutans on the hCMEC/D3 human brain endothelial cell line. Endothelial cells are exposed to high levels of the cholesterol oxidation product, 7-ketocholesterol (7KC), in patients with cardiovascular disease and diabetes, and this process is thought to mediate pathological inflammation. 7KC induced a dose-dependent loss of hCMEC/D3 cell viability, and such damage was significantly inhibited by C. nutans leaf extracts but not stem extracts. 7KC also induced a marked increase in mRNA expression of pro-inflammatory cytokines, IL-1β IL-6, IL-8, TNF-α and cyclooxygenase-2 (COX-2) in brain endothelial cells, and these increases were significantly inhibited by C. nutans leaf but not stem extracts. HPLC analyses showed that leaf extracts have a markedly different chemical profile compared to stem extracts, which might explain their different effects in counteracting 7KC-induced inflammation. Further study is necessary to identify the putative phytochemicals in C. nutans leaves that have anti-inflammatory properties.
    Matched MeSH terms: Anti-Inflammatory Agents/pharmacology*
  3. Aghaei M, Ramezanitaghartapeh M, Javan M, Hoseininezhad-Namin MS, Mirzaei H, Rad AS, et al.
    PMID: 33049473 DOI: 10.1016/j.saa.2020.119023
    The adsorption behavior of the amino acid, glycine (Gly), via the carboxyl, hydroxyl, and amino groups onto the surfaces of Al12N12 and Al16N16 fullerene-like cages were computationally evaluated by the combination of density functional theory (DFT) and molecular docking studies. It was found that Gly can chemically bond with the Al12N12 and Al16N16 fullerene-like cages as its amino group being more favorable to interact with the aluminum atoms of the adsorbents compared to carboxyl and hydroxyl groups. Oxygen and carbon doping were reported to reduce steric hindrance for Glycine interaction at Al site of Al12ON11/Gly and Al12CN11/Gly complexes. Interaction was further enhanced by oxygen doping due to its greater electron withdrawing effect. Herein, the Al12ON11/Gly complex where two carbonyl groups of Gly are bonded to the aluminum atoms of the Al12N12 fullerene-like cage is the most stable interaction configuration showing ∆adsH and ∆adsG values of -81.74 kcal/mol and -66.21 kcal/mol, respectively. Computational studies also revealed the frequency shifts that occurred due to the interaction process. Molecular docking analysis revealed that the Al12N12/Gly (-11.7 kcal/mol) and the Al12ON11/Gly (-9.2 kcal/mol) complexes have a good binding affinity with protein tumor necrosis factor alpha (TNF-α). TNF-α was implicated as a key cytokine in various diseases, and it has been a validated therapeutic target for the treatment of rheumatoid arthritis. These results suggest that the Al12N12/Gly complex in comparison with the Al16N16/Gly, Al12ON11/Gly, and the Al12CN11/Gly complexes could be efficient inhibitors of TNF-α.
    Matched MeSH terms: Anti-Inflammatory Agents/pharmacology
  4. Mohd Faudzi SM, Leong SW, Auwal FA, Abas F, Wai LK, Ahmad S, et al.
    Arch Pharm (Weinheim), 2021 Jan;354(1):e2000161.
    PMID: 32886410 DOI: 10.1002/ardp.202000161
    A new series of pyrazole, phenylpyrazole, and pyrazoline analogs of diarylpentanoids (excluding compounds 3a, 4a, 5a, and 5b) was pan-assay interference compounds-filtered and synthesized via the reaction of diarylpentanoids with hydrazine monohydrate and phenylhydrazine. Each analog was evaluated for its anti-inflammatory ability via the suppression of nitric oxide (NO) on IFN-γ/LPS-activated RAW264.7 macrophage cells. The compounds were also investigated for their inhibitory capability toward acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), using a modification of Ellman's spectrophotometric method. The most potent NO inhibitor was found to be phenylpyrazole analog 4c, followed by 4e, when compared with curcumin. In contrast, pyrazole 3a and pyrazoline 5a were found to be the most selective and effective BChE inhibitors over AChE. The data collected from the single-crystal X-ray diffraction analysis of compound 5a were then applied in a docking simulation to determine the potential binding interactions that were responsible for the anti-BChE activity. The results obtained signify the potential of these pyrazole and pyrazoline scaffolds to be developed as therapeutic agents against inflammatory conditions and Alzheimer's disease.
    Matched MeSH terms: Anti-Inflammatory Agents/pharmacology
  5. Assiry AA, Karobari MI, Bhavikatti SK, Marya A
    Biomed Res Int, 2021;2021:5510174.
    PMID: 34195261 DOI: 10.1155/2021/5510174
    Introduction: Illicium verum commonly known as star anise has been widely used in many Asian countries for pharmaceutical treatment for many diseases. The aim of the present study was to investigate the anti-inflammatory, astringent, and antimicrobial properties of an Illicium verum mouthwash.

    Methods: The present double blinded randomized clinical trial was conducted on fifty subjects, divided into groups A and B. Illicium verum mouthwash (group A) and placebo (group B) were provided to subjects for 21 days; after 14 days, washout period mouthwashes were switched as per crossover design between groups for 21 days. The gingival index (GI), papillary bleeding index (PBI), and oral microbial count were recorded at each stage of study.

    Results: The significant intragroup difference was observed, before crossover in group A and after crossover in group B for GI, PBI, and oral microbial count at different stages of study. On comparing both group A and group B at the first and second follow-up for GI, PBI, and oral microbial count, a statistically significant difference (p < 0.05) was observed. A statistically highly significant mean intergroup and intragroup difference was seen for all the clinical parameters at different stages of study.

    Conclusion: The study revealed that the Illicium verum/star anise has potent antibacterial, anti-inflammatory, and astringent properties.

    Matched MeSH terms: Anti-Inflammatory Agents/pharmacology*
  6. Teoh HL, Aminudin N, Abdullah N
    Int J Med Mushrooms, 2021;23(2):43-56.
    PMID: 33639080 DOI: 10.1615/IntJMedMushrooms.2021037649
    Nonalcoholic fatty liver disease (NAFLD) is currently one of the most common liver diseases worldwide. Lifestyle modifications through the diet are the mainstay of treatment. Auricularia nigricans is a popular edible mushroom known to possess medicinal properties. Gas chromatography-mass spectrometry and liquid chromatography-tandem mass spectrometry analysis indicated that linoleic acid ethyl ester, butyl 9,12-octadecadienoate, 9,12-octadecadienoic acid, ergosta-5,7,22-trien-3-ol, 2(3,4-dihydroxyphenyl)-7-hydroxy-5-benzene propanoic acid, and 3,30-di-0-methyl ellagic acid were present in the A. nigricans ethyl acetate (EA) fraction. The cytotoxicity assay showed that the EA fraction was noncytotoxic to HepG2 cells at concentrations < 100 μg/mL. In the antihepatic steatosis assay, 50 μg/mL of EA fraction caused a decline in absorbance to 0.20 ± 0.02 compared to palmitic acid (PA)-induced cells (0.24 ± 0.02). Furthermore, cells treated with 50 μg/mL and 25 μg/mL of EA fraction contributed an approximately 1.12-fold and 1.08-fold decrease in lipid accumulation compared to PA-induced cells. Coincubation with PA and 25 μg/mL of EA fraction decreased levels of tumor necrosis factor-α, interleukin (IL)-6, IL-8, and monocyte chemoattractant protein-1 to 140.48 ± 8.12, 91.16 ± 2.40, 184.00 ± 22.68, and 935.88 ± 39.36 pg/mL compared to PA-induced cells. The presence of the EA fraction also suppressed the stress-activated protein kinase/Jun amino-terminal kinase, p-38 mitogen-activated protein kinase, nuclear factor-κB, and signal transducer and activator of transcription 3 signaling pathways. In conclusion, these findings suggest that the A. nigricans EA fraction demonstrates antisteatotic effects involving antioxidant capacity, hypolipidemic effects, and anti-inflammatory capacity in the PA-induced NAFLD pathological cell model.
    Matched MeSH terms: Anti-Inflammatory Agents/pharmacology
  7. Khor BH, Tiong HC, Tan SC, Wong SK, Chin KY, Karupaiah T, et al.
    PLoS One, 2021;16(7):e0255205.
    PMID: 34297765 DOI: 10.1371/journal.pone.0255205
    Studies investigating the effects of tocotrienols on inflammation and oxidative stress have yielded inconsistent results. This systematic review and meta-analysis aimed to evaluate the effects of tocotrienols supplementation on inflammatory and oxidative stress biomarkers. We searched PubMed, Scopus, and Cochrane Central Register of Controlled Trials from inception until 13 July 2020 to identify randomized controlled trials supplementing tocotrienols and reporting circulating inflammatory or oxidative stress outcomes. Weighted mean difference (WMD) and corresponding 95% confidence interval (CI) were determined by pooling eligible studies. Nineteen studies were included for qualitative analysis, and 13 studies were included for the meta-analyses. A significant reduction in C-reactive protein levels (WMD: -0.52 mg/L, 95% CI: -0.73, -0.32, p < 0.001) following tocotrienols supplementation was observed, but this finding was attributed to a single study using δ-tocotrienols, not mixed tocotrienols. There were no effects on interleukin-6 (WMD: 0.03 pg/mL, 95% CI: -1.51, 1.58, p = 0.966), tumor necrosis factor-alpha (WMD: -0.28 pg/mL, 95% CI: -1.24, 0.68, p = 0.571), and malondialdehyde (WMD: -0.42 μmol/L, 95% CI: -1.05, 0.21, p = 0.189). A subgroup analysis suggested that tocotrienols at 400 mg/day might reduce malondialdehyde levels (WMD: -0.90 μmol/L, 95% CI: -1.20, -0.59, p < 0.001). Future well-designed studies are warranted to confirm the effects of tocotrienols on inflammatory and oxidative stress biomarkers, particularly on different types and dosages of supplementation. PROSPERO registration number: CRD42020198241.
    Matched MeSH terms: Anti-Inflammatory Agents/pharmacology*
  8. Saifullah B, Arulselvan P, El Zowalaty ME, Tan WS, Fakurazi S, Webster TJ, et al.
    Int J Nanomedicine, 2021;16:7035-7050.
    PMID: 34703226 DOI: 10.2147/IJN.S297040
    Introduction: Mycobacterium tuberculosis infections are associated with severe local inflammatory reactions, which may be life-threatening and lead to tuberculosis pathogenesis and associated complications. Inorganic nanolayers have been vastly exploited for biomedical applications (especially in drug delivery) because of their biocompatible and biodegradable nature with the ability to release a drug in a sustained manner. Herein, we report a new nanodelivery system of inorganic nanolayers based on magnesium layered hydroxides (MgLH) and a successfully intercalated anti-tuberculosis drug para-aminosalicylic acid (PAS).

    Methods: The designed anti-tuberculosis nanodelivery composite, MgLH-PAS, was prepared by a novel co-precipitation method using MgNO3 as well MgO as starting materials.

    Results: The designed nano-formulation, PAS-MgLH, showed good antimycobacterial and antimicrobial activities with significant synergistic anti-inflammatory effects on the suppression of lipopolysaccharide (LPS) stimulated inflammatory mediators in RAW 264.7 macrophages. The designed nano-formulation was also found to be biocompatible with human normal lung cells (MRC-5) and 3T3 fibroblast cells. Furthermore, the in vitro release of PAS from PAS-MgLH was found to be sustained in human body simulated phosphate buffer saline (PBS) solutions of pH 7.4 and pH 4.8.

    Discussion: The results of the present study are highly encouraging for further in vivo studies. This new nanodelivery system, MgLH, can be exploited in the delivery of other drugs and in numerous other biomedical applications as well.

    Matched MeSH terms: Anti-Inflammatory Agents/pharmacology
  9. Nik Salleh NNH, Othman FA, Kamarudin NA, Tan SC
    Molecules, 2020 Dec 02;25(23).
    PMID: 33276419 DOI: 10.3390/molecules25235677
    In Southeast Asia, traditional medicine has a longestablished history and plays an important role in the health care system. Various traditional medicinal plants have been used to treat diseases since ancient times and much of this traditional knowledge remains preserved today. Oroxylum indicum (beko plant) is one of the medicinal herb plants that is widely distributed throughout Asia. It is a versatile plant and almost every part of the plant is reported to possess a wide range of pharmacological activities. Many of the important bioactivities of this medicinal plant is related to the most abundant bioactive constituent found in this plant-the baicalein. Nonetheless, there is still no systematic review to report and vindicate the biological activities and therapeutic potential of baicalein extracted from O. indicum to treat human diseases. In this review, we aimed to systematically present in vivo and in vitro studies searched from PubMed, ScienceDirect, Scopus and Google Scholar database up to 31 March 2020 based on keywords "Oroxylum indicum" and "baicalein". After an initial screening of titles and abstracts, followed by a full-text analysis and validation, 20 articles that fulfilled all the inclusion and exclusion criteria were included in this systematic review. The searched data comprehensively reported the biological activities and therapeutic potential of baicalein originating from the O. indicum plant for anti-cancer, antibacterial, anti-hyperglycemia, neurogenesis, cardioprotective, anti-adipogenesis, anti-inflammatory and wound healing effects. Nonetheless, we noticed that there was a scarcity of evidence on the efficacy of this natural active compound in human clinical studies. In conclusion, this systematic review article provides new insight into O. indicum and its active constituent baicalein as a prospective complementary therapy from the perspective of modern and scientific aspect. We indicate the potential of this natural product to be developed into more conscientious and judicious evidencebased medicine in the future. However, we also recommend more clinical research to confirm the efficacy and safety of baicalein as therapeutic medicine for patients.
    Matched MeSH terms: Anti-Inflammatory Agents/pharmacology*
  10. Ejike UC, Chan CJ, Okechukwu PN, Lim RLH
    Crit Rev Biotechnol, 2020 Dec;40(8):1172-1190.
    PMID: 32854547 DOI: 10.1080/07388551.2020.1808581
    Fungal immunomodulatory proteins (FIPs) are fascinating small and heat-stable bioactive proteins in a distinct protein family due to similarities in their structures and sequences. They are found in fungi, including the fruiting bodies producing fungi comprised of culinary and medicinal mushrooms. Structurally, most FIPs exist as homodimers; each subunit consisting of an N-terminal α-helix dimerization and a C-terminal fibronectin III domain. Increasing numbers of identified FIPs from either different or same fungal species clearly indicates the growing research interests into its medicinal properties which include immunomodulatory, anti-inflammation, anti-allergy, and anticancer. Most FIPs increased IFN-γ production in peripheral blood mononuclear cells, potentially exerting immunomodulatory and anti-inflammatory effects by inhibiting overproduction of T helper-2 (Th2) cytokines common in an allergy reaction. Recently, FIP from Ganoderma microsporum (FIP-gmi) was shown to promote neurite outgrowth for potential therapeutic applications in neuro-disorders. This review discussed FIPs' structural and protein characteristics, their recombinant protein production for functional studies, and the recent advances in their development and applications as pharmaceutics and functional foods.
    Matched MeSH terms: Anti-Inflammatory Agents/pharmacology
  11. Saraswati, Giriwono PE, Iskandriati D, Tan CP, Andarwulan N
    Food Res Int, 2020 Nov;137:109702.
    PMID: 33233276 DOI: 10.1016/j.foodres.2020.109702
    Sargassum brown seaweed is well-known to contain several bioactive compounds which exhibit various biological activities, including anti-inflammatory and antioxidant activity. Lipophilic extracts and fractions of Sargassum were reported to possess promising anti-inflammatory activity. This study, therefore, aims to evaluate the anti-inflammatory and antioxidant activity of Sargassum cristaefolium crude lipid extract and its fractions. The brown seaweed was obtained from Awur Bay, Jepara - Indonesia. Crude lipid fractionation was performed using normal phase column chromatography, and three different fractions (dichloromethane, acetone, methanol) were produced. The results showed that treatment of acetone fraction exerted strongest nitric oxide inhibition in lipopolysaccharide-induced RAW 264.7 cells, both in pre-incubated and co-incubated cell culture models. This outcome was in accordance with its 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity and ferric reducing antioxidant power (FRAP). Metabolite profiling of lipid fractions was performed by ultra-high-performance liquid chromatography electrospray ionization orbitrap tandem mass spectrometry, while the orthogonal projection to latent structures analysis was conducted to determine some features with significant correlation to the bioactivity. There were 14 feature candidates considered from both positive and negative ionization mode datasets. Seven out of them were putatively identified as pheophytin a (1), all-trans fucoxanthin (2), 132-hydroxy-pheophytin a (3), pheophorbide a (4), 1-hexadecanoyl-2-(9Z-octadecenoyl)-3-O-β-D-galactosyl-sn-glycerol (6), 1-(5Z,8Z,11Z,14Z,17Z-eicosapentaenoyl)-2-(9Z,12Z,15Z-octadecatrienoyl)-3-O-β-D-galactosyl-sn-glycerol (10), and 1-(9Z,12Z,15Z-octadecatrienoyl)-2-(6Z,9Z,12Z,15Z-octadecatetraenoyl)-3-O-β-D-galactosyl-sn glycerol (12).
    Matched MeSH terms: Anti-Inflammatory Agents/pharmacology
  12. Gupta S, Mishra KP, Kumar B, Singh SB, Ganju L
    J Ethnopharmacol, 2020 Oct 28;261:113022.
    PMID: 32569719 DOI: 10.1016/j.jep.2020.113022
    ETHNOPHARMACOLOGICAL RELEVANCE: Traditional plant-derived medicines have enabled the mankind in curing the wide spectrum of diseases throughout the ages. Andrographis paniculata (Burm.f.) Nees, is one of the traditional plant used as a folk medicine for the management of inflammation, arthritis, viral-bacterial infections and other ailments in India, China, Malaysia and other South-East Asian countries. Its major bioactive compound; andrographolide, a diterpenoid, also exerts cytoprotective properties and is reported to be effective in neuroprotection, hepatoprotection, etc. AIM: The study is aimed to explore the role of andrographolide in treatment of complete freund's adjuvant (CFA) induced arthritis.

    MATERIALS AND METHODS: The influx of immune cells, release of pro-inflammatory cytokines and subsequent accumulation of synovial fluid (swelling) and pain manifest into the disease. The present study used CFA induced Balb/c mice model and treated them intraperitoneally with andrographolide and dexamethasone (used as a positive control) on alternate days for six days. After 6 days, blood and peritoneal macrophages were collected to evaluate the expression of various arthritic markers and paw edema was measured on all days.

    RESULTS: The in vitro and ex vivo experiments showed that andrographolide treated animal group had reduced paw edema, cell cytotoxicity and nitric oxide production than dexamethasone treated animal group. Further, the study revealed the mechanistic role of andrographolide in treatment of arthritis by suppressing battery of molecules like COX-2, NF-κB, p-p38, CD40, TNF-α, IL-1β and IL-6 involved in arthritis.

    CONCLUSION: The study showed the potent anti-arthritic effects of andrographolide and warrants further investigations on andrographolide for the development of safe and effective anti-arthritic drug.

    Matched MeSH terms: Anti-Inflammatory Agents/pharmacology*
  13. Faghfouri AH, Zarezadeh M, Tavakoli-Rouzbehani OM, Radkhah N, Faghfuri E, Kord-Varkaneh H, et al.
    Eur J Pharmacol, 2020 Oct 05;884:173368.
    PMID: 32726657 DOI: 10.1016/j.ejphar.2020.173368
    Prolonged inflammation could be considered as the leading cause of chronic diseases such as cardiovascular disorders, type two diabetes, and obesity. N-acetylcysteine (NAC) is considered an antioxidant. The present meta-analysis aims to determine the efficacy of NAC in alleviating inflammation and oxidative stress. PubMed-Medline, SCOPUS, Web of Science and Embase databases and Google Scholar were searched up to Nov 2019. Random effect analysis was used to perform meta-analysis. Subgroup analyses were carried out to find heterogeneity sources. Meta-regression analysis was used to explore linear relationship between effect size and variables. Trim and fill analysis were performed in case of the presence of publication bias. Quality assessment was performed using Cochrane Collaboration's tool. A total of 28 studies were included in meta-analysis. NAC significantly decreased malondialdehyde (MDA) (SMD = -1.44 μmol/L; 95% CI: -2.05, -0.84; P 
    Matched MeSH terms: Anti-Inflammatory Agents/pharmacology*
  14. Satija S, Mehta M, Gupta G, Chellappan DK, Dua K
    Future Med Chem, 2020 10;12(20):1805-1807.
    PMID: 33016120 DOI: 10.4155/fmc-2020-0190
    Matched MeSH terms: Anti-Inflammatory Agents/pharmacology*
  15. Abdel-Rahman RF, Abd-Elsalam RM, Amer MS, El-Desoky AM, Mohamed SO
    Food Funct, 2020 Sep 23;11(9):7960-7972.
    PMID: 32839804 DOI: 10.1039/d0fo01297a
    Osteoarthritis (OA) is a joint disease characterized by degeneration of cartilage, intra-articular inflammation, remodeling of subchondral bone and joint pain. The present study was designed to assess the therapeutic effects and the possible underlying mechanism of action of Manjarix, a herbal combination composed of ginger and turmeric powder extracts, on chemically induced osteoarthritis in rats. An OA model was generated by intra-articular injection of 50 μL (40 mg mL-1) of monosodium iodoacetate (MIA) into the right knee joint of rats. After one week of osteoarthritis induction, a comparison of the anti-inflammatory efficacy of indomethacin at an oral dose of 2 mg kg-1 daily for 4 successive weeks versus five decremental dose levels of Manjarix (1000, 500, 250, 125, and 62.5 mg kg-1) was performed. Serum inflammatory cytokines, interleukin 6, interleukin 8, and tumor necrosis factor alpha; C-telopeptide of type II collagen (CTX-II) and hyaluronic acid (HA) were measured, along with weekly assessment of the knee joint swelling. Pain-like behavior was assessed and knee radiographic and histological examination were performed to understand the extent of pain due to cartilage degradation. Manjarix significantly reduced the knee joint swelling, decreased the serum levels of IL6, TNF-α, CTX-II and HA, and reduced the pathological injury in joints, with no evidence of osteo-reactivity in the radiographic examination. Manjarix also significantly prevented MIA-induced pain behavior. These results demonstrate that Manjarix exhibits chondroprotective effects and can inhibit the OA pain induced by MIA, and thus it can be used as a potential therapeutic product for OA.
    Matched MeSH terms: Anti-Inflammatory Agents/pharmacology
  16. Abu Bakar MH, Shariff KA, Tan JS, Lee LK
    Eur J Pharmacol, 2020 Sep 15;883:173371.
    PMID: 32712089 DOI: 10.1016/j.ejphar.2020.173371
    Accumulating evidence indicates that adipose tissue inflammation and mitochondrial dysfunction in skeletal muscle are inextricably linked to obesity and insulin resistance. Celastrol, a bioactive compound derived from the root of Tripterygium wilfordii exhibits a number of attributive properties to attenuate metabolic dysfunction in various cellular and animal disease models. However, the underlying therapeutic mechanisms of celastrol in the obesogenic environment in vivo remain elusive. Therefore, the current study investigated the metabolic effects of celastrol on insulin sensitivity, inflammatory response in adipose tissue and mitochondrial functions in skeletal muscle of the high fat diet (HFD)-induced obese rats. Our study revealed that celastrol supplementation at 3 mg/kg/day for 8 weeks significantly reduced the final body weight and enhanced insulin sensitivity of the HFD-fed rats. Celastrol noticeably improved insulin-stimulated glucose uptake activity and increased expression of plasma membrane GLUT4 protein in skeletal muscle. Moreover, celastrol-treated HFD-fed rats showed attenuated inflammatory responses via decreased NF-κB activity and diminished mRNA expression responsible for classically activated macrophage (M1) polarization in adipose tissues. Significant improvement of muscle mitochondrial functions and enhanced antioxidant defense machinery via restoration of mitochondrial complexes I + III linked activity were effectively exhibited by celastrol treatment. Mechanistically, celastrol stimulated mitochondrial biogenesis attributed by upregulation of the adenosine monophosphate-activated protein kinase (AMPK) and sirtuin 1 (SIRT1) signaling pathways. Together, these results further demonstrate heretofore the conceivable therapeutic mechanisms of celastrol in vivo against HFD-induced obesity mediated through attenuation of inflammatory response in adipose tissue and enhanced mitochondrial functions in skeletal muscle.
    Matched MeSH terms: Anti-Inflammatory Agents/pharmacology*
  17. Mohd Jamil MDH, Taher M, Susanti D, Rahman MA, Zakaria ZA
    Nutrients, 2020 Aug 26;12(9).
    PMID: 32858812 DOI: 10.3390/nu12092584
    Picrasma quassioides is a member of the Simaroubaceae family commonly grown in the regions of Asia, the Himalayas, and India and has been used as a traditional herbal medicine to treat various illnesses such as fever, gastric discomfort, and pediculosis. This study aims to critically review the presence of phytochemicals in P. quassioides and correlate their pharmacological activities with the significance of its use as traditional medicine. Data were collected by reviewing numerous scientific articles from several journal databases on the pharmacological activities of P. quassioides using certain keywords. As a result, approximately 94 phytochemicals extracted from P. quassioides were found to be associated with quassinoids, β-carbolines and canthinones. These molecules exhibited various pharmacological benefits such as anti-inflammatory, antioxidant, anti-cancer, anti-microbial, and anti-parasitic activities which help to treat different diseases. However, P. quassioides were also found to have several toxicity effects in high doses, although the evidence regarding these effects is limited in proving its safe use and efficacy as herbal medicine. Accordingly, while it can be concluded that P. quassioides may have many potential pharmacological benefits with more phytochemistry discoveries, further research is required to determine its real value in terms of quality, safety, and efficacy of use.
    Matched MeSH terms: Anti-Inflammatory Agents/pharmacology
  18. Thiyagarasaiyar K, Goh BH, Jeon YJ, Yow YY
    Mar Drugs, 2020 Jun 19;18(6).
    PMID: 32575468 DOI: 10.3390/md18060323
    Cosmetics are widely used by people around the world to protect the skin from external stimuli. Consumer preference towards natural cosmetic products has increased as the synthetic cosmetic products caused adverse side effects and resulted in low absorption rate due to the chemicals' larger molecular size. The cosmetic industry uses the term "cosmeceutical", referring to a cosmetic product that is claimed to have medicinal or drug-like benefits. Marine algae have gained tremendous attention in cosmeceuticals. They are one of the richest marine resources considered safe and possessed negligible cytotoxicity effects on humans. Marine algae are rich in bioactive substances that have shown to exhibit strong benefits to the skin, particularly in overcoming rashes, pigmentation, aging, and cancer. The current review provides a detailed survey of the literature on cosmeceutical potentials and applications of algae as skin whitening, anti-aging, anticancer, antioxidant, anti-inflammation, and antimicrobial agents. The biological functions of algae and the underlying mechanisms of all these activities are included in this review. In addition, the challenges of using algae in cosmeceutical applications, such as the effectiveness of different extraction methods and processing, quality assurance, and regulations concerning extracts of algae in this sector were also discussed.
    Matched MeSH terms: Anti-Inflammatory Agents/pharmacology
  19. Wu YX, Kim YJ, Kwon TH, Tan CP, Son KH, Kim T
    Nat Prod Res, 2020 Jun;34(12):1786-1790.
    PMID: 30470128 DOI: 10.1080/14786419.2018.1527832
    Mulberry (Morus alba L.) root bark (MRB) was extracted using methanol and the extracts were subjected to tests of anti-inflammatory effects. The ethyl acetate fraction demonstrated the best anti-inflammatory effects. Purified compounds, sanggenon B, albanol B and sanggenon D, showed inhibitory effects on NO production in LPS-stimulated RAW264.7 cells and albanol B demonstrated the best anti-inflammatory effects. Regarding the underlying molecular mechanisms, further investigations showed that treatments with Albanol B reduced production of pro-inflammatory cytokines and decreased expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). These results would contribute to development of novel anti-inflammatory drugs from MRB.
    Matched MeSH terms: Anti-Inflammatory Agents/pharmacology
  20. Paudel YN, Angelopoulou E, Semple B, Piperi C, Othman I, Shaikh MF
    ACS Chem Neurosci, 2020 02 19;11(4):485-500.
    PMID: 31972087 DOI: 10.1021/acschemneuro.9b00640
    Glycyrrhizin (glycyrrhizic acid), a bioactive triterpenoid saponin constituent of Glycyrrhiza glabra, is a traditional medicine possessing a plethora of pharmacological anti-inflammatory, antioxidant, antimicrobial, and antiaging properties. It is a known pharmacological inhibitor of high mobility group box 1 (HMGB1), a ubiquitous protein with proinflammatory cytokine-like activity. HMGB1 has been implicated in an array of inflammatory diseases when released extracellularly, mainly by activating intracellular signaling upon binding to the receptor for advanced glycation end products (RAGE) and toll-like receptor 4 (TLR4). HMGB1 neutralization strategies have demonstrated disease-modifying outcomes in several preclinical models of neurological disorders. Herein, we reveal the potential neuroprotective effects of glycyrrhizin against several neurological disorders. Emerging findings demonstrate the therapeutic potential of glycyrrhizin against several HMGB1-mediated pathological conditions including traumatic brain injury, neuroinflammation and associated conditions, epileptic seizures, Alzheimer's disease, Parkinson's disease, and multiple sclerosis. Glycyrrhizin's effects in neurological disorders are mainly attributed to the attenuation of neuronal damage by inhibiting HMGB1 expression and translocation as well as by downregulating the expression of inflammatory cytokines. A large number of preclinical findings supports the notion that glycyrrhizin might be a promising therapeutic alternative to overcome the shortcomings of the mainstream therapeutic strategies against neurological disorders, mainly by halting disease progression. However, future research is warranted for a deeper exploration of the precise underlying molecular mechanism as well as for clinical translation.
    Matched MeSH terms: Anti-Inflammatory Agents/pharmacology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links