Displaying publications 41 - 60 of 324 in total

Abstract:
Sort:
  1. Tap RM, Ho Betty LS, Ramli NY, Suppiah J, Hashim R, Sabaratnam P, et al.
    Mycoses, 2016 Nov;59(11):734-741.
    PMID: 27427490 DOI: 10.1111/myc.12509
    Candida wangnamkhiaoensis is a species clustered under the Hyphopichia clade has not ever been isolated from any clinical specimens. To the best of our knowledge, this is the first report of C. wangnamkhiaoensis associated with fungaemia in immunocompromised paediatric patient. The isolate was assigned a strain name as UZ1679/14, in which the identification was confirmed by a polymerase chain reaction-sequencing of the internal transcribed spacer (ITS) and large subunit (LSU) regions of the rRNA gene. Antifungal susceptibility pattern showed that the isolate was sensitive to anidulafungin, caspofungin, fluconazole and voriconazole. The patient clinically improved after the antifungal treatment with caspofungin.
    Matched MeSH terms: Antifungal Agents/pharmacology
  2. Tani K, Kamada T, Phan CS, Vairappan CS
    Nat Prod Res, 2019 Dec;33(23):3343-3349.
    PMID: 29772929 DOI: 10.1080/14786419.2018.1475387
    Three new cembrane diterpenes, nephthecrassocolides A-B (1-2) and 6-acetoxy nephthenol acetate (3) along with three known compounds, 6-acetoxy-7,8-epoxy nephthenol acetate (4), epoxy nephthenol acetate (5) and nephthenol (6) were isolated from one population of Nephthea sp. Their structures were elucidated based on spectroscopic data analysis and the antifungal activities of compounds 1-6 were evaluated.
    Matched MeSH terms: Antifungal Agents/pharmacology*; Antifungal Agents/chemistry*
  3. Tang MM, Tang JJ, Gill P, Chang CC, Baba R
    Int J Dermatol, 2012 Jun;51(6):702-8.
    PMID: 22607289 DOI: 10.1111/j.1365-4632.2011.05229.x
    Sporotrichosis is a subcutaneous fungal infection caused by a thermally dimorphic aerobic fungus, Sporothrix schenckii. It results from traumatic inoculation or contact with animals. Most cases were reported mainly in the tropics and subtropics.
    Matched MeSH terms: Antifungal Agents/therapeutic use
  4. Tan, Sin Nee, Lim, Thiam Seong Christopher
    MyJurnal
    Cryptococcal meningitis is a central nervous system infection cause by Cryptococcus neoformans. Although Cryptococcus is found in bird droppings, it has never been reported for those ranchers involved in the niche swiftlet ranching industry despite having close proximity with the bird droppings. We present here a case of a 41-year-old healthy swiftlet rancher who presents with a history of prolonged fever, headache and altered behaviour of a month duration. Cerebral spinal fluid analysis revealed the presence of Cryptococcus. He was treated with intravenous amphotericin B and flucytosine and discharged well with fluconazole consolidation therapy for 8 weeks, followed by maintenance therapy for 1 year. We believe this is the first reported case of Cryptococcal meningitis (CM) occurring in an immunocompetent swiftlet rancher. This case should highlight the needs to wear a proper personal protective equipment inside a swiftlet ranch due to the constant exposure to the potential cryptococcal-rich environment. A high index of suspicion, careful history taking and physical examination focusing on neurologic assessment is key to early diagnosis and timely management of CM.
    Matched MeSH terms: Antifungal Agents
  5. Tan SW, Billa N
    AAPS PharmSciTech, 2014 Apr;15(2):287-95.
    PMID: 24318197 DOI: 10.1208/s12249-013-0056-9
    We aimed to investigate the effects that natural lipids, theobroma oil (TO) and beeswax (BW), might have on the physical properties of formulated nanoparticles and also the degree of expulsion of encapsulated amphotericin B (AmB) from the nanoparticles during storage. Lecithin and sodium cholate were used as emulsifiers whilst oleic acid (OA) was used to study the influence of the state of orderliness/disorderliness within the matrices of the nanoparticles on the degree of AmB expulsion during storage. BW was found to effect larger z-average diameter compared with TO. Lecithin was found to augment the stability of the nanoparticles imparted by BW and TO during storage. An encapsulation efficiency (%EE) of 59% was recorded when TO was the sole lipid as against 42% from BW. In combination however, the %EE dropped to 39%. When used as sole lipid, TO or BW formed nanoparticles with comparatively higher enthalpies, 21.1 and 23.3 J/g respectively, which subsequently caused significantly higher degree of AmB expulsion, 81 and 83% respectively, whilst only 11.8% was expelled from a binary TO/BW mixture. A tertiary TO/BW/OA mixture registered the lowest enthalpy at 8.07 J/g and expelled 12.6% of AmB but encapsulated only 22% of AmB. In conclusion, nanoparticles made from equal concentrations of TO and BW produced the most desirable properties and worthy of further investigations.
    Matched MeSH terms: Antifungal Agents/chemistry*
  6. Tan HW, Tay ST
    Trop Biomed, 2011 Apr;28(1):175-80.
    PMID: 21602784
    This study describes the killer phenotypes of tropical environmental yeasts and the inhibition effects of the culture filtrates on the biofilm of Candida albicans. A total of 26 (10.5%) of 258 yeast isolates obtained from an environmental sampling study demonstrated killer activity to Candida species. The killer yeasts were identified as species belonging to the genus Aureobasidium, Pseudozyma, Ustilago and Candida based on sequence analysis of the ITS1-5.8S-ITS2 region of the yeasts. Pseudozyma showed the broadest killing effects against sensitive strains of Candida. New species of Ustilago and Pseudozyma demonstrating killer phenotypes were identified in this study. Interestingly, more than 50% reduction in the metabolic activity of Candida albicans biofilm was noted after exposure to the culture filtrates of the nine killer yeasts. Purification and characterization of toxin and metabolites are essential for understanding the yeast killing effects.
    Matched MeSH terms: Antifungal Agents/metabolism*
  7. Tan HW, Tay ST
    Mycoses, 2013 Mar;56(2):150-6.
    PMID: 22882276 DOI: 10.1111/j.1439-0507.2012.02225.x
    Aureobasidin A (AbA) is a cyclic depsipeptide antifungal compound that inhibits a wide range of pathogenic fungi. In this study, the in vitro susceptibility of 92 clinical isolates of various Candida species against AbA was assessed by determining the planktonic and biofilm MICs of the isolates. The MIC(50) and MIC(90) of the planktonic Candida yeast were 1 and 1 μg ml(-1), respectively, whereas the biofilm MIC(50) and MIC(90) of the isolates were 8 and ≥64 μg ml(-1) respectively. This study demonstrates AbA inhibition on filamentation and biofilm development of C. albicans. The production of short hyphae and a lack of filamentation might have impaired biofilm development of AbA-treated cells. The AbA resistance of mature Candidia biofilms (24 h adherent population) was demonstrated in this study.
    Matched MeSH terms: Antifungal Agents/pharmacology
  8. Tahlan S, Narasimhan B, Lim SM, Ramasamy K, Mani V, Shah SAA
    Mini Rev Med Chem, 2019;19(13):1080-1092.
    PMID: 30306865 DOI: 10.2174/1389557518666181009151008
    BACKGROUND: Increased rate of mortality due to the development of resistance to currently available antimicrobial and anticancer agents initiated the need to develop new chemical entities for the treatment of microbial infections and cancer.

    OBJECTIVE: The present study was aimed to synthesize and evaluate antimicrobial and anticancer activities of Schiff bases of 2-mercaptobenzimidazole.

    METHODS: The Schiff bases of 2-mercaptobenzimidazole were synthesized from 4-(2-(1H-benzo[d]- imidazol-2-ylthio)acetamido)benzohydrazide. The synthesized compounds were evaluated for antimicrobial and anticancer activities by tube dilution method and Sulforhodamine-B (SRB) assay, respectively.

    RESULTS: Compounds 8 (MICpa, an = 2.41, 1.20 µM/ml), 10 (MICse, sa = 2.50 µM/ml), 20 (MICec = 2.34 µM/ml) and 25 (MICca = 1.46 µM/ml) showed significant antimicrobial activity against tested bacterial and fungal strains and compounds 20 (IC50 = 8 µg/ml) and 23 (IC50 = 7 µg/ml) exhibited significant anticancer activity.

    CONCLUSION: In general, the synthesized derivatives exhibited moderate antimicrobial and anticancer activities. Compounds 8 and 25 having high antifungal potential among the synthesized compounds may be taken as lead molecules for the development of novel antifungal agents.

    Matched MeSH terms: Antifungal Agents/chemical synthesis; Antifungal Agents/pharmacology; Antifungal Agents/chemistry
  9. Tabassam, Q., Mehmood, T., Anwar, F., Saari, N., Qadir, R.
    MyJurnal
    The present work studies the profiling of phenolic bioactive and in vitro biological (anticancer, antioxidant, and antimicrobial) activities of different solvent extracts from Withania
    somnifera fruit. Anticancer activity was performed using potato-disc assay and Agrobacterium tumefaciens. While antibacterial and antifungal evaluation was done by using disc diffusion method against bacterial (Staphylococcus aureus, S. epidermidis, Escherichia coli, and
    Klebsiella pneumonia) and fungal (Aspergillus flavus and Fusarium oxysporum) strains.
    Among different extraction solvents used, n-hexane extract exhibited the highest inhibition of
    tumour initiation (64%), whereas ethyl acetate (15%) was the lowest by using potato-disc
    assay. Highest total phenolic and total flavonoid contents were noted for methanolic (69.10
    GAE mg/g DW%) and n-hexane (29.45 CE mg/g DW%) extracts, respectively. For antioxidant potential, 2,2,1-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging (IC50) and reducing power EC50 were noted to be superior (0.6 and 2.0 mg/mL, respectively) for n-hexane
    extract. All the tested extracts showed considerable antibacterial and antifungal activity with
    the highest growth inhibition zones for K. pneumoniae (31.70 mm) and A. flavus (27.09 mm)
    were shown by n-hexane extract. High Performance Liquid Chromatographic (HPLC) analysis of individual phenolics (gallic acid, 2,288.48 mg/kg) indicated the highest contents of these
    compounds in n-hexane extract, which might explain the potent biological activities of this
    extract. Our findings revealed that the bioactive present in the tested fruit had significant
    potential as anticancer, antibacterial, and antifungal agents. Further studies are needed to
    elucidate the mechanism of actions of isolated bioactive against specific diseases such as
    cancer, especially in the case of n-hexane fraction.
    Matched MeSH terms: Antifungal Agents
  10. Syed Shahzad Hasan, Syed Imran Ahmed, Kow, Chia Siang
    MyJurnal
    Matched MeSH terms: Antifungal Agents*
  11. Sushma R, Sathe TT, Farias A, Sanyal PK, Kiran S
    Ann Afr Med, 2017;16(1):6-12.
    PMID: 28300045 DOI: 10.4103/aam.aam_43_16
    BACKGROUND: Candida albicans is one of the microorganisms which harbor the oral cavity, especially in elderly. However, the incidence of existence of this increases in patients using removable dental prosthesis. There is therefore a need to test the anticandidal efficacy of these cost-effective, easily available products to be used as routine denture cleansers.

    AIM AND OBJECTIVES: (1) To evaluate antifungal properties of triphala churna on the heat cure denture base material. (2) To evaluate the antifungal effect of chlorhexidine gluconate on the heat cure denture base material. (3) To compare the antifungal effect of triphala churna and chlorhexidine gluconate with a control. (4) To evaluate which among triphala churna and chlorhexidine gluconate has a better antifungal property on the heat cure denture base material.

    MATERIALS AND METHODS: Study population consisted of sixty dentures wearers from those attending the Outpatient Department of Prosthodontics of the School of Dentistry, Krishna Institute of Medical Sciences Deemed University, Karad. Swabs were collected from the dentures before and after the use of triphala and chlorhexidine. The swabs were cultured on Sabouraud dextrose agar and the total Candida counts were determined.

    CONCLUSION: Triphala as an antifungal is shown to have more efficacy than the conventional chlorhexidine mouthwash. Résumé Arrière-plan: Candida albicans est l'un des micro-organismes qui abritent la cavité buccale surtout chez les personnes âgées. Cependant, l'incidence de l'existence de cette augmentation chez les patients utilisant des prothèses dentaires amovibles. Il est donc nécessaire de tester l'efficacité anticancédique de ces produits rentables et faciles à utiliser pour être utilisés comme nettoyants de routine pour prothèses dentaires. Buts et Objectifs: (1) Évaluer les propriétés antifongiques de Triphala churna sur le matériau de base de la prothèse thermo-durcissable. (2) Évaluer l'effet antifongique du gluconate de chlorhexidine sur le matériau de base de la prothèse thermo-durcissable. (3) Comparer l'effet antifongique de Triphala churna et du gluconate de chlorhexidine avec un témoin. (4) Évaluer lequel parmi Triphala churna et le gluconate de chlorhexidine a une meilleure propriété antifongique sur le matériel de base de la prothèse de durcissement à chaud. Matériaux et Méthode: La population de l'étude était constituée de soixante porteurs de prothèses dentaires de ceux qui fréquentaient le Département de Prosthodontie de l'École des Sciences Dentaires de l'Institut Krishna des Sciences Médicales de l'Université de Karad. Des prélèvements ont été effectués sur les prothèses avant et après l'utilisation de Triphala et de chlorhexidine. On a cultivé les écouvillons sur de l'agar Sabouraud dextrose et on a déterminé le nombre total de candida.

    CONCLUSION: Triphala comme un anti fongique est démontré pour avoir plus d'efficacité que le lavage de la bouche classique chlorhexidine.

    Matched MeSH terms: Antifungal Agents/pharmacology; Antifungal Agents/therapeutic use*
  12. Surendra TV, Mohana Roopan S, Khan MR
    Biotechnol Prog, 2019 07;35(4):e2823.
    PMID: 31017346 DOI: 10.1002/btpr.2823
    The rare earth metal oxide nanoparticles such as gadolinium oxide nanoparticles (Gd2 O3 NPs) have been synthesized by green synthesis process using methanolic extract of Moringa oleifera (M oleifera) peel. In this process, the Gd2 O3 NPs formation was observed at 280-300 nm in UV-Vis spectroscopy. The XRD pattern of the synthesized Gd2 O3 NPs was exactly matched with JCPDS No 3-065-3181which confirms the crystalline nature of Gd2 O3 NPs. In addition, Energy-dispersive X-ray spectroscopy (EDX) analysis was stated that Gd and O elements were present as 70.31 and 29.69%, respectively in Gd2 O3 NPs. The SEM and TEM analysis were said Gd2 O3 NPs are in rod shape and 26 ± 2 nm in size. Further the synthesized Gd2 O3 NPs were confirmed by X-ray photoemission spectroscopy (XPS). The synthesized Gd2 O3 NPs were further examined for anti-fungal activity against Alternaria saloni (A saloni) and Sclerrotium rolfsii (S rolfsii) and it showed moderate activity. Also, Gd2 O3 NPs evaluated as good antibacterial agent against different Gram +ve and Gram -ve bacteria. Moreover, the toxicity of the Gd2 O3 NPs on red blood cells (RBCs) of the human blood was determined using hemolytic assay, the obtained results were stated the synthesized Gd2 O3 NPs are nontoxic to the human erythrocytes. The photocatalytic activity against malachite green (MG) dye was tested and confirmed as 92% of dye was degraded within 2 hr by Gd2 O3 NPs. The results were stated the green synthesized Gd2 O3 NPs are good anti-fungal agents, nontoxic and we can use as a photocatalyst. Copyright © 2019 John Wiley & Sons, Ltd.
    Matched MeSH terms: Antifungal Agents/chemical synthesis; Antifungal Agents/pharmacology; Antifungal Agents/chemistry*
  13. Sumathy V, Zakaria Z, Jothy SL, Gothai S, Vijayarathna S, Yoga Latha L, et al.
    Microb Pathog, 2014 Dec;77:7-12.
    PMID: 25457794 DOI: 10.1016/j.micpath.2014.10.004
    Invasive aspergillosis (IA) in immunocompromised host is a major infectious disease leading to reduce the survival rate of world population. Aspergillus niger is a causative agent causing IA. Cassia surattensis plant is commonly used in rural areas to treat various types of disease. C. surattensis flower extract was evaluated against the systemic aspergillosis model in this study. Qualitative measurement of fungal burden suggested a reduction pattern in the colony forming unit (CFU) of lung, liver, spleen and kidney for the extract treated group. Galactomannan assay assessment showed a decrease of fungal load in the treatment and positive control group with galactomannan index (GMI) value of 1.27 and 0.25 on day 28 but the negative control group showed high level of galactomannan in the serum with GMI value of 3.58. Histopathology examinations of the tissues featured major architecture modifications in the tissues of negative control group. Tissue reparation and recovery from infection were detected in extract treated and positive control group. Time killing fungicidal study of A. niger revealed dependence of the concentration of C. surattensis flower extract.
    Matched MeSH terms: Antifungal Agents/isolation & purification; Antifungal Agents/pharmacology*; Antifungal Agents/therapeutic use*
  14. Sumathy V, Zakaria Z, Chen Y, Latha LY, Jothy SL, Vijayarathna S, et al.
    Eur Rev Med Pharmacol Sci, 2013 Jun;17(12):1648-54.
    PMID: 23832733
    Cassia (C.) surattensis Burm. f. (Leguminosae), a medicinal herb native to tropical equatorial Asia, was commonly used in folk medicine to treat various diseases. The aim of the present study is to investigate the effects of methanolic flower extract of C. surattensis against Aspergillus (A.) niger.
    Matched MeSH terms: Antifungal Agents/pharmacology*; Antifungal Agents/chemistry
  15. Sule A, Ahmed QU, Latip J, Samah OA, Omar MN, Umar A, et al.
    Pharm Biol, 2012 Jul;50(7):850-6.
    PMID: 22587518 DOI: 10.3109/13880209.2011.641021
    Andrographis paniculata Nees. (Acanthaceae) is an annual herbaceous plant widely cultivated in southern Asia, China, and Europe. It is used in the treatment of skin infections in India, China, and Malaysia by folk medicine practitioners.
    Matched MeSH terms: Antifungal Agents/isolation & purification; Antifungal Agents/pharmacology*; Antifungal Agents/chemistry
  16. Sukmawati D, Shabrina A, Indrayanti R, Kurniati TH, Nurjayadi M, Hidayat I, et al.
    Recent Pat Food Nutr Agric, 2020;11(3):219-228.
    PMID: 32324527 DOI: 10.2174/2212798411666200423101159
    BACKGROUND: Apples often experience postharvest damage due to being attacked by mold organisms. Several groups of molds such as Aspergillus sp., Penicilium expansum, Botrytis cinerea, and Venturia sp. can cause a serious postharvest disease exhibited as watery regions where areas of blue-green tufts of spores develop. Current methods using fungicides to control pathogenic fungi can cause resistance if applied in the long term. An alternative procedure using yeast as a biological agent has been found.

    OBJECTIVE: The aim of this study is to screen potential yeast, which has the ability to inhibit the growth of Aspergillus brasielensis (isolate A1) and Aspergillus flavus section flavi (isolate A17) isolated from apple fruits.

    METHODS: Antagonism test using YMA dual culture medium using in vitro assays and ITS rDNA identification were performed.

    RESULTS: The result showed that 3 out of 19 yeast isolated from Cerbera manghas L, T1, T3 and T4, demonstrated the potential ability as a biocontrol agent. ITS rDNA identification demonstrated that T1 has a similarity to Rhodotorula mucilaginosa while T3 and T4 were identified as Aureobasidium sp. nov. The 3 isolates exhibited the ability to reduce the growth of A. brasiliensis sensu lato better than dithane 0.3% with a Disease Incidence (DI) of 100% and a Disease Severity (DS) value of 45%. Only isolate T1 and T3 were able to reduce decay symptoms in apples inoculated with A. flavus sensu lato (with DO and DS were 100% and 25%, respectively) compared to dithane pesticides 0.3%.

    CONCLUSION: This study indicated that competition between nutrients occurs between pathogenic molds and under-yeast in vitro and in vivo conditions. However, further studies in the future might be able to elucidate the 'killer' activity and interaction with the pathogen cells and the bio-product production using Rhodotorula mucilaginosa and Aureoubasidium namibiae strains to control postharvest diseases.

    Matched MeSH terms: Antifungal Agents/pharmacology*
  17. Sri Raja Rajeswari Mahalingam, Priya Madhavan, Chong, Pei Pei
    MyJurnal
    Introduction: One of the most common aetiology of opportunistic fungal infections in humans is Candida species. The virulence of Candida species is due to repertoire of factors, specifically, the ability to form biofilms. Medical devices such as intravenous catheters, prosthetic heart valves and surgical interventions provide pathogenic microorganisms with a surface to adhere to form biofilm. Fungi present as biofilms are often resistant to antifungal treatment because these biofilms offer a protective barrier that prohibits the drugs to get to the active site of the fungi. The objective of this study is to investigate the biofilm architecture of Candida rugosa (C.rugosa) at different developmental phases and to identify Sessile Minimum Inhibition Concentrations (SMICs) of amphotericin B, caspofungin, fluconazole, and voriconazole for the biofilm of C. rugosa. Methods: Confocal scanning laser microscopy (CSLM) and scanning electron microscopy (SEM) were used to visualize C. rugosa biofilms at different developmental phases. The antifungal susceptibility test was performed using serial doubling dilution. The growth kinetics of Candida biofilms was quantified using XTT reduction assay and crystal violet assay. Results: From the antifungal susceptibility test, the biofilms had SMIC of >16μg/mL for amphotericin B, 6µg/mL for caspofungin, >64μg/mL for fluconazole and >16μg/ mL for voriconazole. From the SEM micrographs, C. rugosa biofilm have a structure composed of an adherent yeast cells and blastopores with hyphal elements. There were significant alterations in the morphology after exposure to antifungal agents. The quantitative measurement of the matrix thickness of embedded yeast cells were obtained from CLSM micrographs. Conclusion: In conclusion, the ability of C. rugosa to form biofilms may attribute to one of the virulence factors that causes reduced susceptibility to antifungal agents.
    Matched MeSH terms: Antifungal Agents
  18. Spruijtenburg B, Ahmad S, Asadzadeh M, Alfouzan W, Al-Obaid I, Mokaddas E, et al.
    Mycoses, 2023 Dec;66(12):1079-1086.
    PMID: 37712885 DOI: 10.1111/myc.13655
    Candida auris is an emerging, multidrug-resistant yeast, causing outbreaks in healthcare facilities. Echinocandins are the antifungal drugs of choice to treat candidiasis, as they cause few side effects and resistance is rarely found. Previously, immunocompromised patients from Kuwait with C. auris colonisation or infection were treated with echinocandins, and within days to months, resistance was reported in urine isolates. To determine whether the development of echinocandin resistance was due to independent introductions of resistant strains or resulted from intra-patient resistance development, whole genome sequencing (WGS) single-nucleotide polymorphism (SNP) analysis was performed on susceptible (n = 26) and echinocandin-resistant (n = 6) isolates from seven patients. WGS SNP analysis identified three distinct clusters differing 17-127 SNPs from two patients, and the remaining isolates from five patients, respectively. Sequential isolates within patients had a maximum of 11 SNP differences over a time period of 1-10 months. The majority of isolates with reduced susceptibility displayed unique FKS1 substitutions including a novel FKS1M690V substitution, and nearly all were genetically related, ranging from only three to six SNP differences compared to susceptible isolates from the same patient. Resistant isolates from three patients shared the common FKS1S639F substitution; however, WGS analysis did not suggest a common source. These findings strongly indicate that echinocandin resistance is induced during antifungal treatment. Future studies should determine whether such echinocandin-resistant strains are capable of long-term colonisation, cause subsequent breakthrough candidiasis, have a propensity to cross-infect other patients, or remain viable for longer time periods in the hospital environment.
    Matched MeSH terms: Antifungal Agents/pharmacology; Antifungal Agents/therapeutic use
  19. Soo GW, Law JH, Kan E, Tan SY, Lim WY, Chay G, et al.
    Anticancer Drugs, 2010 Aug;21(7):695-703.
    PMID: 20629201
    Imatinib, a selective inhibitor of c-KIT and Bcr-Abl tyrosine kinases, approved for the treatment of chronic myelogenous leukemia and gastrointestinal stromal tumors, shows further therapeutic potential for gliomas, glioblastoma, renal cell carcinoma, autoimmune nephritis and other neoplasms. It is metabolized by CYP3A4, is highly bound to alpha-1-acid glycoprotein and is a P-glycoprotein substrate limiting its brain distribution. We assess imatinib's protein binding interaction with primaquine, which also binds to alpha-1-acid glycoprotein, and its metabolic interaction with ketoconazole, which is a CYP3A4 inhibitor, on its pharmacokinetics and biodistribution. Male ICR mice, 9-12 weeks old were given imatinib PO (50 mg/kg) alone or co-administered with primaquine (12.5 mg/kg), ketoconazole (50 mg/kg) or both, and imatinib concentration in the plasma, kidney, liver and brain was measured at prescheduled time points by HPLC. Noncompartmental pharmacokinetic parameters were estimated. Primaquine increased 1.6-fold plasma AUC(0)--> infinity, C(Max) decreased 24%, T(Max) halved and t(1/2) and mean residence time were longer. Ketoconazole increased plasma AUC(0)-->infinity 64% and doubled the C(Max), but this dose did not affect t(1/2) or mean residence time. When ketoconazole and primaquine were co-administered, imatinib AUC(0)-->infinity and C(Max) increased 32 and 35%, respectively. Ketoconazole did not change imatinib's distribution efficiency in the liver and kidney, primaquine increased it two-fold and it was larger when both the drugs were co-administered with imatinib. Ketoconazole did not change brain penetration but primaquine increased it approximately three-fold. Ketoconazole and primaquine affect imatinib clearance, bioavailability and distribution pattern, which could improve the treatment of renal and brain tumors, but also increase toxicity. This would warrant hepatic and renal functions monitoring.
    Matched MeSH terms: Antifungal Agents/administration & dosage; Antifungal Agents/pharmacology*
  20. Somchit N, Chung JH, Yaacob A, Ahmad Z, Zakaria ZA, Kadir AA
    Drug Chem Toxicol, 2012 Jul;35(3):304-9.
    PMID: 22288423 DOI: 10.3109/01480545.2011.614619
    Voriconazole is a new, potent broad-spectrum triazole systemic antifungal drug, a second-generation azole antifungal that is increasing in popularity, especially for the treatment of invasive aspergillosis and fluconazole-resistant invasive Candida infections. However, it is also known to induce hepatotoxicity clinically. The aim of this study was to investigate the hepatotoxicity and nephrotoxicity potential of voriconazole in vivo in rats. Forty rats were treated intraperitoneally with voriconazole as single (0, 10, l00, and 200 mg/kg) or repeated (0, 10, 50, and l00 mg/kg per day for 14 days) doses. Venous blood was collected for the repeated-dose group on days 1 and 14. Rats were sacrificed 24 hours after the last dose. Body weight, liver weight, and kidney weight of rats were recorded. Livers and kidneys samples were taken for histological and transmission electron microscopy (TEM) analysis. Results revealed that voriconazole had no effects on serum alanine aminotransferase, aspartate aminotransferase, alkaline phosphotase, gamma glutamyl transpeptidase, blood urea nitrogen, and creatinine for both the single- and repeated-dose groups. However, histologically, in the repeated 50- and 100-mg/kg voriconazole-treated rats, mild focal inflammation was observed. Under TEM, only small changes in the 100 mg/kg/day group were revealed. These results collectively demonstrated that voriconazole did not induce significant hepatotoxicity and nephrotoxicity, even at very high doses.
    Matched MeSH terms: Antifungal Agents/administration & dosage; Antifungal Agents/adverse effects*; Antifungal Agents/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links