Displaying publications 41 - 60 of 157 in total

Abstract:
Sort:
  1. Zukerman-Schpector J, Caracelli I, Stefani HA, Shamim A, Tiekink ER
    Acta Crystallogr E Crystallogr Commun, 2015 Jan 1;71(Pt 1):o53-4.
    PMID: 25705505 DOI: 10.1107/S205698901402564X
    In the title compound, C12H15IO7, the 3,4-di-hydro-2H-pyran ring is in a distorted half-boat conformation with the atom bearing the acet-yloxy group adjacent to the C atom bearing the methyl-acetate group lying 0.633 (6) Å above the plane of the remaining ring atoms (r.m.s. deviation = 0.0907 Å). In the crystal, mol-ecules are linked into a supra-molecular chain along the a axis through two C-H⋯O inter-actions to the same acceptor carbonyl O atom; these chains pack with no specific inter-molecular inter-actions between them.
    Matched MeSH terms: Bandages
  2. Aziz NA, Yusof EN, Ravoof TB, Tiekink ER
    Acta Crystallogr E Crystallogr Commun, 2015 Apr 1;71(Pt 4):o233-4.
    PMID: 26029430 DOI: 10.1107/S2056989015004764
    In the title compound, C15H16N2S2, the central CN2S2 residue is almost planar (r.m.s. deviation = 0.0354 Å) and forms dihedral angles of 56.02 (4) and 75.52 (4)° with the phenyl and tolyl rings, respectively; the dihedral angle between the aromatic rings is 81.72 (5)°. The conformation about the N-N bond is gauche [C-N-N-C = -117.48 (15)°]. Overall, the mol-ecule has the shape of the letter L. In the crystal packing, supra-molecular chains along the a axis are formed by N-H⋯S(thione) hydrogen bonds whereby the thione S atom accepts two such bonds. The hydrogen bonding leads to alternating edge-shared eight-membered {⋯HNCS}2 and 10-membered {⋯HNNH⋯S}2 synthons. The chains are connected into layers by phen-yl-tolyl C-H⋯π inter-actions; the layers stack along the c axis with no specific inter-actions between them.
    Matched MeSH terms: Bandages
  3. Balaji G, Sriharsha Y, Sharma D
    Malays Orthop J, 2019 Jul;13(2):49-51.
    PMID: 31467653 DOI: 10.5704/MOJ.1907.010
    A 58-year old female patient presented to us with a three months' old fracture of the neck of femur. She underwent bipolar hemiarthroplasty. In the immediate postoperative period, she developed deep vein thrombosis for which she was started on anticoagulant therapy. Patient had persistent discharge from the wound since then and underwent regular dressings. On the eighth post-op day, she developed sciatic nerve palsy secondary to wound haematoma. The haematoma was decompressed immediately and she had a dramatic improvement in pain but her neurological deficit persisted. The wound healed completely without any complications. At three months follow up, she had recovered completely with grade 5/5 power in ankle and foot and full sensory recovery in the sciatic nerve distribution. She was ambulating comfortably with a walker. At final follow up around 20 months post-operation, she was pain-free and walking without any support. The wound had healed completely.
    Matched MeSH terms: Bandages
  4. Jeckson TA, Neo YP, Sisinthy SP, Gorain B
    J Pharm Sci, 2021 02;110(2):635-653.
    PMID: 33039441 DOI: 10.1016/j.xphs.2020.10.003
    Increasing incidences of chronic wounds urge the development of effective therapeutic wound treatment. As the conventional wound dressings are found not to comply with all the requirements of an ideal wound dressing, the development of alternative and effective dressings is demanded. Over the past few years, electrospun nanofiber has been recognized as a better system for wound dressing and hence has been studied extensively. Most of the electrospun nanofiber dressings were fabricated as single-layer structure mats. However, this design is less favorable for the effective healing of wounds mainly due to its burst release effect. To address this problem and to simulate the organized skin layer's structure and function, a multilayer structure of wound dressing had been proposed. This design enables a sustained release of the therapeutic agent(s), and more resembles the natural skin extracellular matrix. Multilayer structure is also referred to layer-by-layer (LbL), which has been established as an innovative method of drug incorporation and delivery, combines a high surface area of electrospun nanofibers with the multilayer structure mat. This review focuses on LbL multilayer electrospun nanofiber as a superior strategy in designing an optimal wound dressing.
    Matched MeSH terms: Bandages
  5. Chin CY, Jalil J, Ng PY, Ng SF
    J Ethnopharmacol, 2018 Feb 15;212:188-199.
    PMID: 29080829 DOI: 10.1016/j.jep.2017.10.016
    ETHNOPHARMACOLOGICAL RELEVANCE: M.oleifera is a medicinal plant traditionally used for skin sores, sore throat and eye infections. Recently, the wound healing property of the leaves of M. oleifera was has been well demonstrated experimentally in both in vivo and in vitro models. However, there is a lack of research which focuses on formulating M.oleifera into a functional wound dressing. In this study, the M.oleifera leaf standardized aqueous extract with highest potency in vitro migration was formulated into a film for wound healing application.

    MATERIALS AND METHODS: Firstly, M. oleifera leaf were extracted in various solvents (aqueous, 50%, 70% and 100% ethanolic extracts) and standardized by reference standards using UHPLC technique. The extracts were then tested for cell migration and proliferation using HDF and HEK cell lines. M. oleifera leaf aqueous extract was then incorporated into alginate-pectin (SA-PC) based film dressing. The film dressings were characterized for the physicochemical properties and the bioactives release from the M. oleifera leaf extract loaded film dressing was also investigated using Franz diffusion cells.

    RESULTS: All extracts were found to contain vicenin-2, chlorogenic acid, gallic acid, quercetin, kaempferol, rosmarinic acid and rutin. Among all M. oleifera extracts, aqueous standardized leaf extracts showed the highest human dermal fibroblast and human keratinocytes cells proliferation and migration properties. Among the film formulations, SA-PC (3% w/v) composite film dressing containing M. oleifera aqueous leaf extract was found to possess optimal physicochemical properties as wound dressing.

    CONCLUSION: A potentially applicable wound dressing formulated as an alginate-pectin film containing aqueous extracts of M. oleifera has been developed. The dressing would be suitable for wounds with moderate exudates.

    Matched MeSH terms: Bandages
  6. Selvarajah J, Mh Busra MF, Bin Saim A, Bt Hj Idrus R, Lokanathan Y
    J Biomater Sci Polym Ed, 2020 09;31(13):1722-1740.
    PMID: 32458725 DOI: 10.1080/09205063.2020.1774841
    Nasal injury following nasal surgery is an adverse consequence, and prompt treatment should be initiated. Nasal packing, either non-absorbable or absorbable, are commonly used after nasal surgery to prevent bleeding and promote wound healing. In the current study, a novel gelatine sponge crosslinked with genipin was evaluated for suitability to be used as nasal packing and compared to one of the frequently used commercial nasal packing made up of polyurethane. Gelatine at 7% and 10% (w/v) concentration were crosslinked with varying concentrations of genipin, 0.5%, 0.25%, and 0.2% (v/v). The gelatine sponges were further characterised by its water uptake ability, biodegradation, water vapour transmission rate, porosity, contact angle, chemical composition, crosslinking degree, and mechanical properties. The gelatine sponges absorbed five times more water than their dry weight and were degraded within five days. The water vapour transmission rate of the gelatine sponges was 1187.7 ± 430.2 g/(m-2 day) for 7% gelatine and 779.4 ± 375.5 g/(m-2 day) for 10% gelatine. Crosslinking of gelatine with genipin resulted in lower porosity and did not affect the wettability of gelatine sponge (contact angle: 95.3 ± 12.1° for 7% gelatine and 88.4 ± 7.2° for 10% gelatine). In terms of biodegradability, the gelatine sponges took 24-48 h to degrade completely. Genipin crosslinking improved the degradation resistance and mechanical strength of gelatine sponge. The physical and chemical properties of the gelatine sponge, i.e. biodegradability and mechanical durability, support its potential as nasal packing.
    Matched MeSH terms: Bandages
  7. Rezvanian M, Amin MCIM, Ng SF
    Carbohydr Polym, 2016 Feb 10;137:295-304.
    PMID: 26686133 DOI: 10.1016/j.carbpol.2015.10.091
    Previously, studies have demonstrated that topical application of simvastatin can promote wound healing in diabetic mice via augmentation of angiogenesis and lymphangiogenesis. This study aimed to formulate and characterize simvastatin in alginate-based composite film wound dressings. Biopolymers used for composite films were sodium alginate blended with pectin or gelatin. The films were prepared and characterized based on their physical properties, surface morphology, mechanical strength and rheology. Then, in vitro drug releases from the films were investigated and, finally, the cell viability assay was performed to assess the cytotoxicity profile. From the pre-formulation studies, alginate/pectin composite film showed to possess desirable wound dressing properties and superior mechanical properties. The in vitro drug release profile revealed that alginate/pectin film produced a controlled release drug profile, and cell viability assay showed that the film was non-toxic. In summary, alginate/pectin composite film is suitable to be formulated with simvastatin as a potential wound dressing.
    Matched MeSH terms: Bandages*
  8. Nor Afifi Razaob, Masne Kadar, Kah, Jolene Ee Koay, Siti Noraini Asmuri
    MyJurnal
    Older adults residing in community, as well as those who are residing in institutional or care home may experience various cognitive, health and physical impairments that may affect their independence. Continuous supports are needed to manage most of their personal care activities which are usually managed by their family members, often without proper training or guidance. To date, there is no personal care module that can be used as a guideline by family members and paid caretakers. Therefore, this study aims to develop and validate a personal care module as a guideline in assisting older adults with more significant disabilities. This study was a three-phase study, involving (1) development of the personal care module, (2) focus group discussion with healthcare experts and (3) face and content validity by the expert reviewers. A total of 10 older adults participated in semi structured interview in phase one and 13 occupational therapists were involved as experts in evaluating the module in phase two and three, having between 5 to 25 years of working experiences. The finding reported a high content validity in the developed module ranging from 0.88 to 1.00 on six domains of personal hygiene, bathing, dressing, feeding, bed mobility and stairs climbing. This study provides a preliminary support for the developed personal care module as a valid instrument to be used as a guideline in managing personal care activities of older adults with more significant disabilities.
    Matched MeSH terms: Bandages
  9. Khan MUA, Iqbal I, Ansari MNM, Razak SIA, Raza MA, Sajjad A, et al.
    Molecules, 2021 Sep 30;26(19).
    PMID: 34641480 DOI: 10.3390/molecules26195937
    The present research is based on the fabrication preparation of CS/PVA/GG blended hydrogel with nontoxic tetra orthosilicate (TEOS) for sustained paracetamol release. Different TEOS percentages were used because of their nontoxic behavior to study newly designed hydrogels' crosslinking and physicochemical properties. These hydrogels were characterized using Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and wetting to determine the functional, surface morphology, hydrophilic, or hydrophobic properties. The swelling analysis in different media, degradation in PBS, and drug release kinetics were conducted to observe their response against corresponding media. The FTIR analysis confirmed the components added and crosslinking between them, and surface morphology confirmed different surface and wetting behavior due to different crosslinking. In various solvents, including water, buffer, and electrolyte solutions, the swelling behaviour of hydrogel was investigated and observed that TEOS amount caused less hydrogel swelling. In acidic pH, hydrogels swell the most, while they swell the least at pH 7 or higher. These hydrogels are pH-sensitive and appropriate for controlled drug release. These hydrogels demonstrated that, as the ionic concentration was increased, swelling decreased due to decreased osmotic pressure in various electrolyte solutions. The antimicrobial analysis revealed that these hydrogels are highly antibacterial against Gram-positive (Staphylococcus aureus and Bacillus cereus) and Gram negative (Pseudomonas aeruginosa and Escherichia coli) bacterial strains. The drug release mechanism was 98% in phosphate buffer saline (PBS) media at pH 7.4 in 140 min. To analyze drug release behaviour, the drug release kinetics was assessed against different mathematical models (such as zero and first order, Higuchi, Baker-Lonsdale, Hixson, and Peppas). It was found that hydrogel (CPG2) follows the Peppas model with the highest value of regression (R2 = 0.98509). Hence, from the results, these hydrogels could be a potential biomaterial for wound dressing in biomedical applications.
    Matched MeSH terms: Bandages
  10. Ng SF, Leow HL
    Drug Dev Ind Pharm, 2015;41(11):1902-9.
    PMID: 25758412 DOI: 10.3109/03639045.2015.1019888
    It has been established that microbial biofilms are largely responsible for the recalcitrance of many wound infections to conventional antibiotics. It was proposed that the efficacy of antibiotics could be optimized via the inhibition of bacterial biofilm growth in wounds. The combination of antibiofilm agent and antibiotics into a wound dressing may be a plausible strategy in wound infection management. Xylitol is an antibiofilm agent that has been shown to inhibit the biofilm formation. The purpose of this study was to develop an alginate film containing xylitol and gentamicin for the treatment of wound infection. Three films, i.e. blank alginate film (SA), alginate film with xylitol (F5) and alginate film with xylitol and gentamicin (AG), were prepared. The films were studied for their physical properties, swelling ratio, moisture absorption, moisture vapor transmission rate (MVTR), mechanical and rheology properties, drug content uniformity as well as in vitro drug release properties. Antimicrobial and antibiofilm in vitro studies on Staphylococcus aureus and Pseudomonas aeruginosa were also performed. The results showed that AG demonstrates superior mechanical properties, rheological properties and a higher MVTR compared with SA and F5. The drug flux of AG was higher than that of commercial gentamicin cream. Furthermore, antimicrobial studies showed that AG is effective against both S. aureus and P. aeruginosa, and the antibiofilm assays demonstrated that the combination was effective against biofilm bacteria. In summary, alginate films containing xylitol and gentamicin may potentially be used as new dressings for the treatment of wound infection.
    Matched MeSH terms: Bandages
  11. Nur Ashikin Ahmad, Tarita Taib, Meera Kuppusamy
    Oral retinoids are among the drugs of choice for pustular psoriasis. Therapy with retinoids, including acitretin, is potent teratogens with other common side effects such as mucocutaneous involvement. Mucocutaneous side effects including dry lips (cheilitis), skin peeling, hair loss (alopecia), dry skin, or rhinitis are dose-related, with cheilitis occurring in more than 75% of patients receiving the highest doses of acitretin (75 mg/day). We report on a 37-year-old woman who developed folliculitis with acitretin which is a rare cutaneous side effect. She presented with eruptions pruritic papules with follicular pattern on anterior thigh and forearms after almost 1 year of treatment with acitretin (50mg OD) for pustular psoriasis. The skin lesion was treated successfully with skin dressing and antibiotic treatment and skin biopsy is suggestive of folliculitis. Several treatments for pustular psoriasis including topical steroids, methotrexate and oral prednisolone were ineffective or not tolerated. Treatment with acitretin which are 50mg OD provided partial resolution of skin lesions. The case is hereby reported because of its rarity and folliculitis must be considered in the differential diagnosis of a popular eruption, especially in patients with high dose acitretin.
    Matched MeSH terms: Bandages
  12. Nur Ashikin Ahmad, Tarita Taib, Meera Kuppusamy
    MyJurnal
    Oral retinoids are among the drugs of choice for pustular psoriasis. Therapy with retinoids, including acitretin, is potent teratogens with other common side effects such as mucocutaneous involvement. Mucocutaneous side effects including dry lips (cheilitis), skin peeling, hair loss (alopecia), dry skin, or rhinitis are dose-related, with cheilitis occurring in more than 75% of patients receiving the highest doses of acitretin (75 mg/day). We report on a 37-year-old woman who developed folliculitis with acitretin which is a rare cutaneous side effect. She presented with eruptions pruritic papules with follicular pattern on anterior thigh and forearms after almost 1 year of treatment with acitretin (50mg OD) for pustular psoriasis. The skin lesion was treated successfully with skin dressing and antibiotic treatment and skin biopsy is suggestive of folliculitis. Several treatments for pustular psoriasis including topical steroids, methotrexate and oral prednisolone were ineffective or not tolerated. Treatment with acitretin which are 50mg OD provided partial resolution of skin lesions. The case is hereby reported because of its rarity and folliculitis must be considered in the differential diagnosis of a popular eruption, especially in patients with high dose acitretin.
    Matched MeSH terms: Bandages
  13. Bakhsheshi-Rad HR, Ismail AF, Aziz M, Akbari M, Hadisi Z, Omidi M, et al.
    Int J Biol Macromol, 2020 Apr 15;149:513-521.
    PMID: 31954780 DOI: 10.1016/j.ijbiomac.2020.01.139
    Skin and soft tissue infections are major concerns with respect to wound repair. Recently, anti-bacterial wound dressings have been emerging as promising candidates to reduce infection, thus accelerating the wound healing process. This paper presents our work to develop and characterize poly(vinyl alcohol) (PVA)/chitosan (CS)/silk sericin (SS)/tetracycline (TCN) porous nanofibers, with diameters varying from 305 to 425 nm, both in vitro and in vivo for potential applications as wound dressings. The fabricated nanofibers possess a considerable capacity to take up water through swelling (~325-650%). Sericin addition leads to increased hydrophilicity and elongation at break while decreasing fiber diameter and mechanical strength. Moreover, fibroblasts (L929) cultured on the nanofibers with low sericin content (PVA/CS/1-2SS) displayed greater proliferation compared to those on nanofibers without sericin (PVA/CS). Nanofibers loaded with high sericin and tetracycline content significantly inhibited the growth of Escherichia coli and Staphylococcus aureus. In vivo examination revealed that PVA/CS/2SS-TCN nanofibers enhance wound healing, re-epithelialization, and collagen deposition compared to traditional gauze and nanofibers without sericin. The results of this study demonstrate that the PVA/CS/2SS-TCN nanofiber creates a promising alternative to traditional wound dressing materials.
    Matched MeSH terms: Bandages
  14. Mohamad R, Awang N, Kamaludin NF, Jotani MM, Tiekink ER
    Acta Crystallogr E Crystallogr Commun, 2017 Feb 01;73(Pt 2):260-265.
    PMID: 28217355 DOI: 10.1107/S2056989017001098
    The complete mol-ecule of the title compound, [Sn(C4H9)2(C5H10NOS2)2], is generated by a crystallographic mirror plane, with the SnIV atom and the two inner methyl-ene C atoms of the butyl ligands lying on the mirror plane; statistical disorder is noted in the two terminal ethyl groups, which deviate from mirror symmetry. The di-thio-carbamate ligand coordinates to the metal atom in an asymmetric mode with the resulting C2S4 donor set defining a skew trapezoidal bipyramidal geometry; the n-butyl groups are disposed to lie over the longer Sn-S bonds. Supra-molecular chains aligned along the a-axis direction and sustained by methyl-ene-C-H⋯S(weakly coordinating) inter-actions feature in the mol-ecular packing. A Hirshfeld surface analysis reveals the dominance of H⋯H contacts in the crystal.
    Matched MeSH terms: Bandages
  15. Chan CK, Saw A, Kwan MK, Karina R
    J Orthop Surg (Hong Kong), 2009 Apr;17(1):19-22.
    PMID: 19398787
    To compare infection rates associated with 2 dressing solutions for metal-skin interfaces.
    Matched MeSH terms: Bandages*
  16. Mohamad R, Awang N, Jotani MM, Tiekink ER
    Acta Crystallogr E Crystallogr Commun, 2016 Aug 1;72(Pt 8):1130-7.
    PMID: 27536397 DOI: 10.1107/S2056989016011385
    The crystal and mol-ecular structures of two di-phenyl-tin bis-(di-thio-carbamate)s, [Sn(C6H5)2(C5H10NOS2)2], (I), and [Sn(C6H5)2(C7H14NO2S2)2], (II), are described. In (I), in which the metal atom lies on a twofold rotation axis, the di-thio-carbamate ligand coordinates with approximately equal Sn-S bond lengths and the ipso-C atoms of the Sn-bound phenyl groups occupy cis-positions in the resulting octa-hedral C2S4 donor set. A quite distinct coordination geometry is noted in (II), arising as a result of quite disparate Sn-S bond lengths. Here, the four S-donors define a trapezoidal plane with the ipso-C atoms lying over the weaker of the Sn-S bonds so that the C2S4 donor set defines a skewed trapezoidal bipyramid. The packing of (I) features supra-molecular layers in the ab plane sustained by methyl-ene-C-H⋯π(Sn-ar-yl) inter-actions; these stack along the c-axis direction with no specific inter-actions between them. In (II), supra-molecular chains along the b-axis direction are formed by methyl-ene-C-O(ether) inter-actions; these pack with no directional inter-actions between them. A Hirshfeld surface analysis was conducted on both (I) and (II) and revealed the dominance of H⋯H inter-actions contributing to the respective surfaces, i.e. >60% in each case, and other features consistent with the description of the mol-ecular packing above.
    Matched MeSH terms: Bandages
  17. Renuka RR, Julius A, Yoganandham ST, Umapathy D, Ramadoss R, Samrot AV, et al.
    Front Endocrinol (Lausanne), 2022;13:1074568.
    PMID: 36714604 DOI: 10.3389/fendo.2022.1074568
    Wound healing is a programmed process of continuous events which is impaired in the case of diabetic patients. This impaired process of healing in diabetics leads to amputation, longer hospitalisation, immobilisation, low self-esteem, and mortality in some patients. This problem has paved the way for several innovative strategies like the use of nanotechnology for the treatment of wounds in diabetic patients. The use of biomaterials, nanomaterials have advanced approaches in tissue engineering by designing multi-functional nanocomposite scaffolds. Stimuli-responsive scaffolds that interact with the wound microenvironment and controlled release of bioactive molecules have helped in overcoming barriers in healing. The use of different types of nanocomposite scaffolds for faster healing of diabetic wounds is constantly being studied. Nanocomposites have helped in addressing specific issues with respect to healing and improving angiogenesis. Method: A literature search was followed to retrieve the articles on strategies for wound healing in diabetes across several databases like PubMed, EMBASE, Scopus and Cochrane database. The search was performed in May 2022 by two researchers independently. They keywords used were "diabetic wounds, nanotechnology, nanocomposites, nanoparticles, chronic diabetic wounds, diabetic foot ulcer, hydrogel". Exclusion criteria included insulin resistance, burn wound, dressing material.
    Matched MeSH terms: Bandages
  18. Nor Azlan AYH, Katas H, Habideen NH, Mh Busra MF
    Saudi Pharm J, 2020 Nov;28(11):1420-1430.
    PMID: 33250649 DOI: 10.1016/j.jsps.2020.09.007
    Diabetic wounds are difficult to treat due to multiple causes, including reduced blood flow and bacterial infections. Reduced blood flow is associated with overexpression of prostaglandin transporter (PGT) gene, induced by hyperglycaemia which causing poor vascularization and healing of the wound. Recently, gold nanoparticles (AuNPs) have been biosynthesized using cold and hot sclerotium of Lignosus rhinocerotis extracts (CLRE and HLRE, respectively) and capped with chitosan (CS) to produce biocompatible antibacterial nanocomposites. The AuNPs have shown to produce biostatic effects against selected gram positive and negative bacteria. Therefore, in this study, a dual therapy for diabetic wound consisting Dicer subtract small interfering RNA (DsiRNA) and AuNPs was developed to improve vascularization by inhibiting PGT gene expression and preventing bacterial infection, respectively. The nanocomposites were incorporated into thermoresponsive gel, made of pluronic and polyethylene glycol. The particle size of AuNPs synthesized using CLRE (AuNPs-CLRE) and HLRE (AuNPs-HLRE) was 202 ± 49 and 190 ± 31 nm, respectively with positive surface charge (+30 to + 45 mV). The thermoresponsive gels containing DsiRNA-AuNPs gelled at 32 ± 1 °C and released the active agents in sufficient amount with good texture and rheological profiles for topical application. DsiRNA-AuNPs and those incorporated into thermoresponsive pluronic gels demonstrated high cell viability, proliferation and cell migration rate via in vitro cultured cells of human dermal fibroblasts, indicating their non-cytotoxicity and wound healing properties. Taken together, the thermoresponsive gels are expected to be useful as a potential dressing that promotes healing of diabetic wounds.
    Matched MeSH terms: Bandages
  19. Liu J, Tan CSY, Scherman OA
    Angew Chem Int Ed Engl, 2018 07 16;57(29):8854-8858.
    PMID: 29663607 DOI: 10.1002/anie.201800775
    Supramolecular building blocks, such as cucurbit[n]uril (CB[n])-based host-guest complexes, have been extensively studied at the nano- and microscale as adhesion promoters. Herein, we exploit a new class of CB[n]-threaded highly branched polyrotaxanes (HBP-CB[n]) as aqueous adhesives to macroscopically bond two wet surfaces, including biological tissue, through the formation of CB[8] heteroternary complexes. The dynamic nature of these complexes gives rise to adhesion with remarkable toughness, displaying recovery and reversible adhesion upon mechanical failure at the interface. Incorporation of functional guests, such as azobenzene moieties, allows for stimuli-activated on-demand adhesion/de-adhesion. Macroscopic interfacial adhesion through dynamic host-guest molecular recognition represents an innovative strategy for designing the next generation of functional interfaces, biomedical devices, tissue adhesives, and wound dressings.
    Matched MeSH terms: Bandages
  20. Lam AWC, Zaim MR, Helmy HH, Ramdhan IMA
    Malays Orthop J, 2014;8(1):46-49.
    MyJurnal
    Diabetic foot disease is the leading cause of non-traumatic amputations of the lower limb, hence a major health care and socioeconomic burden. It has been found that most of the costs occur in the inpatient setting; therefore this study is to quantify the costs of managing inpatient diabetic foot infections (DFI). We treated 182 inpatients from May 2012 till April 2013 and analysed the cost of antibiotic usage, wound dressing, surgical procedure, admission and basic investigation costs. The total cost was ~ USD 11,000 (2013). This number, however, only reflects the cost for managing an acute infection. The price for follow-up care as an outpatient, rehabilitation and indirect costs (emotional suffering, reduced productivity) is estimated to be much more.
    Study site: Diabetic Inpatient Registry, Hospital Sultanah Nur Zahirah, Kuala Terengganu, Terengganu, Malaysia
    Matched MeSH terms: Bandages
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links