Displaying publications 41 - 60 of 240 in total

Abstract:
Sort:
  1. Choo WS, Birch EJ, Stewart I
    Lipids, 2009 Sep;44(9):807-15.
    PMID: 19727883 DOI: 10.1007/s11745-009-3334-2
    Lipase-catalyzed transesterification of flaxseed oil with cinnamic acid (CA) or ferulic acid (FA) using an immobilized lipase from Candida antarctica (E.C. 3.1.1.3) was conducted to evaluate whether the lipophilized products provided enhanced antioxidant activity in the oil. Lipase-catalyzed transesterification of flaxseed oil with CA or FA produced a variety of lipophilized products (identified using ESI-MS-MS) such as monocinnamoyl/feruloyl-diacylglycerol, dicinnamoyl-monoacylglycerol and monocinnamoyl-monoacylglycerol. The free radical scavenging activity of the lipophilized products of lipase-catalyzed transesterification of flaxseed oil with CA or FA toward 2,2-diphenyl-1-picrylhydrazyl radical (DPPH.) were both examined in ethanol and ethyl acetate. The polarity of the solvents proved important in determining the radical scavenging activity of the substrates. Unesterified FA showed the highest free radical scavenging activity among all substrates tested while CA had negligible activity. The esterification of CA or FA with flaxseed oil resulted in significant increase and decrease in the radical scavenging activity compared with the native phenolic acid, respectively. Based on the ratio of a substrate to DPPH. concentration, lipophilized FA was a much more efficient free radical scavenger compared to lipophilized CA and was able to provide enhanced antioxidant activity in the flaxseed oil. Lipophilized cinnamic acid did not provide enhanced radical scavenging activity in the flaxseed oil as the presence of natural hydrophilic antioxidants in the oil had much greater radical scavenging activity.
    Matched MeSH terms: Biphenyl Compounds/metabolism
  2. Sivasothy Y, Krishnan T, Chan KG, Abdul Wahab SM, Othman MA, Litaudon M, et al.
    Molecules, 2016 Mar 21;21(3):391.
    PMID: 27102164 DOI: 10.3390/molecules21030391
    Malabaricones A-C (1-3) and giganteone A (4) were isolated from the bark of Myristica cinnamomea King. Their structures were elucidated and characterized by means of NMR and MS spectral analyses. These isolates were evaluated for their anti-quorum sensing activity using quorum sensing biosensors, namely Escherichia coli [pSB401] and Escherichia coli [pSB1075], whereby the potential of giganteone A (4) as a suitable anti-quorum sensing agent was demonstrated.
    Matched MeSH terms: Biphenyl Compounds/pharmacology*; Biphenyl Compounds/chemistry
  3. Marina, Z., Noriham, A.
    MyJurnal
    This study was undertaken to evaluate the potential of fruit waste materials as source of natural antioxidant. The fruit peels including mango, guava and papaya peel were used in this study. The total phenolic content (TPC) was determined by Folin-Ciocalteu assay while antioxidant activities were determined by using ferric reducing antioxidant power (FRAP), 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging, ferric thiocynate (FTC) and thiobarbituric acid (TBA) assays. These antioxidant activities were compared to synthetic antioxidants, BHA/BHT combination and ascorbic acid. The results demonstrated that TPC ranged from 3.23 to 15.84 g GAE/100 g extract. Mango peels extract exhibited highest TPC compared to guava peel and papaya peel extract. In the FRAP assay, mango peel extract at 200 ppm, guava peel extract at 400 ppm and papaya peel extract at 1200 ppm, exhibited reducing power comparable to the permissible amount of BHA/BHT at 200 ppm. At concentration of 250 μg/ml, the DPPH radical scavenging activity of extracts and standards decreased significantly in the order of mango peel extract > guava peel extract > BHA/BHT > ascorbic acid > papaya peel extract. For the FTC assay, the antioxidant activity of mango peel extract was significantly higher than ascorbic acid, guava peel and papaya peel extract but lower than BHA/BHT while in the TBA assay, percentage inhibition of BHA/BHT and ascorbic acid were found to be higher than fruit peel extracts. The quantitative analysis for flavonoids showed the presence of catechin, epicatechin and kaempferol in the peel extracts.
    Matched MeSH terms: Biphenyl Compounds
  4. Lim, A.S.L., Rabeta, M.S.
    MyJurnal
    The aim of this study is to determine the antioxidant capacity of underutilized fruits in Malaysia namely Milk apple (Syzygium malaccense), Malay apple (Syzygium malaccense (L.) Merr. and Perry), and Water apple (Syzygium aqueum). Synthetic antioxidants (BHA and BHT) commonly used in the food industries may not be as safe as it was presumed earlier. As BHA and BHT may be carcinogenic, it is important to look for new sources of natural antioxidants from fruits and vegetables. Freeze dried samples extracted with acetone and water were measured by ferric 1, 1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging and Ferric Reducing Antioxidant Power (FRAP) assays. Acetone extract (50%) showed higher values for both DPPH and FRAP assays compared with water extract. Milk apple has the highest DPPH value of 95.26% inhibition of DPPH. Milk apple also showed the highest FRAP value with 8722.22 µM of Fe (II) per gram of freeze dried sample. There was a significant difference (P < 0.05) in the types of extraction used. Antioxidant capacities of the samples are in the following order: Milk apple > Malay apple > Water apple. Proximate compositions and mineral contents of the samples were determined too. The samples can be used as a source of natural antioxidants.
    Matched MeSH terms: Biphenyl Compounds
  5. Arumugam B, Palanisamy UD, Chua KH, Kuppusamy UR
    Mol Vis, 2019;25:47-59.
    PMID: 30820141
    Purpose: Oxidative stress is implicated in the etiology of diabetes and its debilitating complications, such as diabetic retinopathy (DR). Various flavonoids have been reported to be useful in reducing DR progression. Myricetin derivatives (F2) isolated from leaf extract of Syzygium malaccense have the potential to serve as functional food as reported previously. The present study was performed with the aim of determining the antioxidant potential and protective effect of myricetin derivatives (F2) isolated from leaf extract of S. malaccense against glucose oxidase (GO)-induced hydrogen peroxide (H2O2) production that causes oxidative stress in ARPE-19 (RPE) cells.

    Methods: Antioxidant properties were assessed through various radical (DPPH, ABTS, and nitric oxide) scavenging assays and determination of total phenolic content and ferric reducing antioxidant power level. ARPE-19 cells were preincubated with samples before the addition of GO (to generate H2O2). Cell viability, change in intracellular reactive oxygen species (ROS), H2O2 levels in cell culture supernatant, and gene expression were assessed.

    Results: F2 showed higher antioxidant levels than the extract when assessed for radical scavenging activities and ferric reducing antioxidant power. F2 protected the ARPE-19 cells against GO-H2O2-induced oxidative stress by reducing the production of H2O2 and intracellular reactive oxygen species. This was achieved by the activation of nuclear factor erythroid 2-related factor 2 (Nrf2/NFE2L2) and superoxide dismutase (SOD2), as well as downregulation of nitric oxide producer (NOS2) at the transcriptional level.

    Conclusions: The results showed that myricetin derivatives from S. malaccense have the capacity to exert considerable exogenous antioxidant activities and stimulate endogenous antioxidant activities. Therefore, these derivatives have excellent potential to be developed as therapeutic agents for managing DR.

    Matched MeSH terms: Biphenyl Compounds/antagonists & inhibitors
  6. Chu WL, Lim YW, Radhakrishnan AK, Lim PE
    BMC Complement Altern Med, 2010 Sep 21;10:53.
    PMID: 20858231 DOI: 10.1186/1472-6882-10-53
    BACKGROUND: Spirulina is a commercial alga well known to contain various antioxidants, especially phycocyanin. Apart from being sold as a nutraceutical, Spirulina is incorporated as a functional ingredient in food products and beverages. Most of the previous reports on antioxidant activity of Spirulina were based on chemical rather than cell-based assays. The primary objective of this study was to assess the antioxidant activity of aqueous extract from Spirulina based on its protective effect against cell death induced by free radicals.

    METHODS: The antioxidant activity of the cold water extract from food-grade Spirulina platensis was assessed using both chemical and cell-based assays. In the cell-based assay, mouse fibroblast cells (3T3) cells were incubated for 1 h in medium containing aqueous extract of Spirulina or vitamin C (positive control) at 25, 125 and 250 μg/mL before the addition of 50 μM 1,1-diphenyl-2-picrylhydrazyl (DPPH) or 3-ethylbenzothiazoline-6-sulfonic acid (ABTS). The cells were incubated for another 24 h before being assessed for cell death due to apoptosis using the Cell Death Detection ELISA Kit. Spectrophotometric assays based on DPPH and ABTS were also used to assess the antioxidant activity of the extract compared to vitamin C and vitamin E (positive controls).

    RESULTS: Spirulina extract did not cause cytotoxic effect on 3T3 cells within the range of concentrations tested (0 - 250 μg/mL). The extract reduced significantly (p < 0.05) apoptotic cell death due to DPPH and ABTS by 4 to 5-fold although the activity was less than vitamin C. Based on the DPPH assay, the radical scavenging activity of the extract was higher than phycocyanin and was at least 50% of vitamin C and vitamin E. Based on the ABTS assay, the antioxidant activity of the extract at 50 μmug/mL was as good as vitamin C and vitamin E.

    CONCLUSIONS: The results showed that aqueous extract of Spirulina has a protective effect against apoptotic cell death due to free radicals. The potential application of incorporating Spirulina into food products and beverages to enhance their antioxidant capacity is worth exploring.

    Matched MeSH terms: Biphenyl Compounds
  7. Abidin MH, Abdullah N, Abidin NZ
    Int J Med Mushrooms, 2016;18(2):109-21.
    PMID: 27279533 DOI: 10.1615/IntJMedMushrooms.v18.i2.20
    This study evaluated the in vitro antioxidant capacities of extracts from Pleurotus pulmonarius via Folin-Ciocalteu, 1,1-diphenyl-2-picrylhydrazyl free radical scavenging, metal chelating, cupric ion reducing antioxidant capacity, and lipid peroxidation inhibition assays. Extract compositions were determined by phenol-sulfuric acid; Coomassie Plus (Bradford) protein; Spectroquant zinc, copper, and manganese test assays; and liquid chromatography-tandem mass spectrometry (LC/MS/MS) and gas chromatography-mass spectrometry (GC/MS). Methanol-dichloromethane extract, water fraction, hot water, aqueous extract and hexane fraction exhibited the most potent extracts in the antioxidant activities. LC/MS/MS and GC/MS showed that the extracts contained ergothioneine, ergosterol, flavonoid, and phenolic compounds. The selected potent extracts were evaluated for their inhibitory effect against oxidation of human low-density lipoproteins and protective effects against hydrogen peroxide-induced cytotoxic injury in human aortic endothelial cells. The crude aqueous extract was deemed most potent for the prevention of human low-density lipoprotein oxidation and endothelial membrane damage. Ergothioneine might be the compound responsible for the activities, as supported by previous reports. Thus, P. pulmonarius may be a valuable antioxidant ingredient in functional foods or nutraceuticals.
    Matched MeSH terms: Biphenyl Compounds/metabolism
  8. Ghasemzadeh A, Jaafar HZ
    PMID: 24289290 DOI: 10.1186/1472-6882-13-341
    Phytochemicals and antioxidants from plant sources are of increasing interest to consumers because of their roles in the maintenance of human health. Most of the secondary metabolites of herbs are used in a number of pharmaceutical products.
    Matched MeSH terms: Biphenyl Compounds
  9. Zarei M, Ebrahimpour A, Abdul-Hamid A, Anwar F, Saari N
    Int J Mol Sci, 2012;13(7):8097-111.
    PMID: 22942692 DOI: 10.3390/ijms13078097
    The aim of this study was to produce a valuable protein hydrolysate from palm kernel cake (PKC) for the development of natural antioxidants. Extracted PKC protein was hydrolyzed using different proteases (alcalase, chymotrypsin, papain, pepsin, trypsin, flavourzyme, and bromelain). Subsequently, antioxidant activity and degree of hydrolysis (DH) of each hydrolysate were evaluated using DPPH• radical scavenging activity and O-phthaldialdehyde spectrophotometric assay, respectively. The results revealed a strong correlation between DH and radical scavenging activity of the hydrolysates, where among these, protein hydrolysates produced by papain after 38 h hydrolysis exhibited the highest DH (91 ± 0.1%) and DPPH• radical scavenging activity (73.5 ± 0.25%) compared to the other hydrolysates. In addition, fractionation of the most effective (potent) hydrolysate by reverse phase high performance liquid chromatography indicated a direct association between hydrophobicity and radical scavenging activity of the hydrolysates. Isoelectric focusing tests also revealed that protein hydrolysates with basic and neutral isoelectric point (pI) have the highest radical scavenging activity, although few fractions in the acidic range also exhibited good antioxidant potential.
    Matched MeSH terms: Biphenyl Compounds/chemistry
  10. Lulu T, Park SY, Ibrahim R, Paek KY
    J Biosci Bioeng, 2015 Jun;119(6):712-7.
    PMID: 25511788 DOI: 10.1016/j.jbiosc.2014.11.010
    The present study aimed to optimize the conditions for the production of adventitious roots from Eurycoma longifolia Jack, an important medicinal woody plant, in bioreactor culture. The effects of the type and concentration of auxin on root growth were studied, as well as the effects of the NH4(+):NO3(-) ratio on adventitious root growth and the production of phenolics and flavonoids. Approximately 5 g L(-1) fresh weight of adventitious roots was inoculated into a 3 L balloon-type bubble bioreactor, which contained 2 L 3/4 MS medium supplemented with 30 g L(-1) sucrose and cultures were maintained in the dark for 7 weeks at 24 ± 1°C. Higher concentrations of IBA (7.0 and 9.0 mg L(-1)) and NAA (5.0 mg L(-1)) enhanced the biomass and accumulation of total phenolics and flavonoids. The adventitious roots were thin, numerous, and elongated in 3/4 MS medium supplemented with 5.0 and 7.0 mg L(-1) IBA, whereas the lateral roots were shorter and thicker with 5.0 mg L(-1) NAA compared with IBA treatment. The optimum biomasses of 50.22 g L(-1) fresh weight and 4.60 g L(-1) dry weight were obtained with an NH4(+):NO3(-) ratio of 15:30. High phenolic and flavonoid productions (38.59 and 11.27 mg L(-1) medium, respectively) were also obtained with a ratio of 15:30. Analysis of the 2,2-diphenyl-1-picrylhydrazyl (DPPH)-scavenging activity indicated higher antioxidant activity with an NH4(+):NO3(-) ratio of 30:15. These results suggest that balloon-type bubble bioreactor cultures are suitable for the large-scale commercial production of E. longifolia adventitious roots which contain high yield of bioactive compounds.
    Matched MeSH terms: Biphenyl Compounds/metabolism
  11. Hassani A, Azarian MMS, Ibrahim WN, Hussain SA
    Sci Rep, 2020 10 20;10(1):17808.
    PMID: 33082415 DOI: 10.1038/s41598-020-71175-8
    Gallic acid (GA) is a natural phenolic compound with therapeutic effects that are often challenged by its rapid metabolism and clearance. Therefore,  GA was encapsulated using gum arabic into nanoparticles to increase its bioavailability. The formulated nanoparticles (GANPs) were characterized for physicochemical properties and size and were then evaluated for antioxidant and antihypertensive effects using various established in vitro assays, including 1,1-diphenyl-2-picrylhydrazyl (DPPH), nitric oxide scavenging (NO), β-carotene bleaching and angiotensin-converting enzyme (ACE) inhibitory assays. The GANPs were further evaluated for the in vitro cytotoxicity, cell uptake and cell migration in four types of human cancer cell lines including (MCF-7, MDA-MB231) breast adenocarcinoma, HepG2 hepatocellular cancer, HT-29 colorectal adenocarcinoma, and MCF-10A breast epithelial cell lines. The GANPs demonstrated potent antioxidant effects and have shown promising anti-cancer properties in a dose-dependent manner with a predilection toward HepG2 and MCF7 cancer cells. The uptake of GANPs was successful in the majority of cancer cells with a propensity to accumulate in the nuclear region of the cells. The HepG2 and MCF7 cancer cells also had a significantly higher percentage of apoptosis and were more sensitive to gallic acid nanoparticle treatment in the cell migration assay. This study is the first to confirm the synergistic effects of gum arabic in the encapsulation of gallic acid by increasing the selectivity towards cancer cells and enhancing  the antioxidant properties. The formulated nanoparticles also had remarkably low toxicity in normal cells. Based on these findings, GANPs may have promising therapeutic applications towards the development of more effective treatments with a probable targeting precision in cancer cells.
    Matched MeSH terms: Biphenyl Compounds
  12. Abdelkader Hassani, Siti Aslina Hussain?, Abdullah, N., Suryani Kamarudin, Rozita Rosli
    MyJurnal
    The present work investigated the antioxidant properties and antihypertensive activity of
    magnesium orotate (MgOr) using various established in vitro assays, such as β-carotene
    bleaching activity, 1,1-diphenyl-2-picrylhydrazyl (DPPH), and nitric oxide scavenging activity as well as angiotensin converting enzyme (ACE) inhibitory activity. Magnesium orotate
    nanoparticles (MgOrGANPs) were prepared using the gum arabic (GA) as stabiliser coatings
    for nanoparticles through freeze-drying method. The in vitro cytoxicity of MgOrGANPs
    against human breast cancer MCF7, liver cancer HepG2, and colon cancer HT29 was investigated. The nitric oxide (NO) and DPPH scavenging assays of MgOrGANPs showed a
    dose-dependent trend, while 500 and 200 µL/mL were significantly more effective than the
    other concentrations with an IC50 of 89.56 µg/mL and 63.22% DPPH scavenging capacity
    respectively. The exposure of human cancer cells to MgOrGANPs at 1.56 – 1,000 µg/mL
    using 3-)4,5-dimethylthiazol-2-yl(2,5-diphenyl tetrazolium bromide (MTT) inhibited the
    growth of cell lines examined in a dose-dependent manner. Hence, MgOrGANPs may have
    great potential to be applied for cancer treatments.
    Matched MeSH terms: Biphenyl Compounds
  13. Lim SY, Tham PY, Lim HYL, Heng WS, Chang YP
    J Food Sci, 2018 Jun;83(6):1522-1532.
    PMID: 29745989 DOI: 10.1111/1750-3841.14155
    The valorization of guava waste requires compositional and functional studies. We tested three byproducts of guava purée processing, namely refiner, siever, and decanter. We analyzed the chemical composition and quantified the prebiotic activity score and selected carbohydrates; we also determined the water holding (WHC), oil holding (OHC), cation exchange capacities, bile acid binding, and glucose dialysis retardation (GDR) of the solid fraction and the antioxidative and α-amylase inhibitory capacities (AIC) of the ethanolic extract. Refiner contained 7.7% lipid, 7.08% protein and a relatively high phytate content; it had a high prebiotic activity score and possessed the highest binding capacity with deoxycholic acid. Siever contained high levels of low molecular weight carbohydrates and total tannin but relatively low crude fiber and cellulose contents. It had the highest binding with chenodeoxycholic acid (74.8%), and exhibited the highest 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging capacity. Decanter was rich in cellulose and had a high prebiotic activity score. The WHC and OHC values of decanter were within a narrow range and also exhibited the highest binding with cholic acid (86.6%), and the highest values of GDR and AIC. The refiner waste could be included in animal feed but requires further processing to reduce the high phytate levels. All three guava byproducts had the potential to be a source of antioxidant dietary fiber (DF), a finding that warrants further in vivo study.

    PRACTICAL APPLICATION: To differing extents, the guava byproducts exhibited useful physicochemical binding properties and so possessed the potential for health-promoting activity. These byproducts could also be upgraded to other marketable products so the manufacturers of processed guava might be able to develop their businesses sustainably by making better use of them.

    Matched MeSH terms: Biphenyl Compounds/metabolism
  14. Al-Zuaidy MH, Hamid AA, Ismail A, Mohamed S, Abdul Razis AF, Mumtaz MW, et al.
    J Food Sci, 2016 May;81(5):C1080-90.
    PMID: 27074520 DOI: 10.1111/1750-3841.13293
    Diabetes mellitus is normally characterized by chronic hyperglycemia associated with disturbances in the fat, carbohydrate, and protein metabolism. There is an increasing trend of using natural products instead of synthetic agents as alternative therapy for disorders due to their fewer side effects. In this study, antidiabetic and antioxidant activities of different Melicope lunu-ankenda (ML) ethanolic extracts were evaluated using inhibition of α-glucosidase and 2,2-diphenyl-l-picrylhydrazyl (DPPH) radicals scavenging activity, respectively; whereas, proton nuclear magnetic resonance ((1) H NMR) and ultra-high performance liquid chromatography-tandem mass spectrometric (UHPLC-MS/MS) techniques were used for metabolite profiling of ML leaf extracts at different concentrations of ethanol and water. Sixty percent of ethanolic ML extract showed highest inhibitory effect against α-glucosidase enzyme (IC50 of 37 μg/mL) and DPPH scavenging activity (IC50 of 48 μg/mL). Antidiabetic effect of ML extracts was also evaluated in vivo and it was found that the high doses (400 mg/Kg BW) of ML extract exhibited high suppression in fasting blood glucose level by 62.75%. The metabolites responsible for variation among ML samples with variable ethanolic levels have been evaluated successfully using (1) H-NMR-based metabolomics. The principal component analysis (PCA) and partial least squares(PLS) analysis scores depicted clear and distinct separations into 4 clusters representing the 4 ethanolic concentrations by PC1 and PC2, with an eigenvalue of 69.9%. Various (1) H-NMR chemical shifts related to the metabolites responsible for sample difference were also ascribed. The main bioactive compounds identified attributing toward the separation included: isorhamnetin, skimmianine, scopoletin, and melicarpinone. Hence, ML may be used as promising medicinal plant for the development of new functional foods, new generation antidiabetic drugs, as a single entity phytomedicine or in combinational therapy.
    Matched MeSH terms: Biphenyl Compounds/metabolism
  15. Ponnusamy Y, Chear NJ, Ramanathan S, Lai CS
    J Ethnopharmacol, 2015 Jun 20;168:305-14.
    PMID: 25858509 DOI: 10.1016/j.jep.2015.03.062
    Dicranopteris linearis is a fern used traditionally for the treatment of skin afflictions such as external wounds, boils and ulcers. However, there are no scientific studies to date to demonstrate its ability to induce wound recovery. The objective of the present study was to explore the wound healing properties of an active fraction of D. linearis through several in vitro assays and to determine its chemical profile.
    Matched MeSH terms: Biphenyl Compounds/chemistry
  16. Rubnawaz S, Kayani WK, Akhtar N, Mahmood R, Khan A, Okla MK, et al.
    Molecules, 2021 Aug 11;26(16).
    PMID: 34443462 DOI: 10.3390/molecules26164874
    Ajuga bracteosa Wall. ex Benth. is an endangered medicinal herb traditionally used against different ailments. The present study aimed to create new insight into the fundamental mechanisms of genetic transformation and the biological activities of this plant. We transformed the A. bracteosa plant with rol genes of Agrobacterium rhizogenes and raised the regenerants from the hairy roots. These transgenic regenerants were screened for in vitro antioxidant activities, a range of in vivo assays, elemental analysis, polyphenol content, and different phytochemicals found through HPLC. Among 18 polyphenolic standards, kaempferol was most abundant in all transgenic lines. Furthermore, transgenic line 3 (ABRL3) showed maximum phenolics and flavonoids content among all tested plant extracts. ABRL3 also demonstrated the highest total antioxidant capacity (8.16 ± 1 μg AAE/mg), total reducing power, (6.60 ± 1.17 μg AAE/mg), DPPH activity (IC50 = 59.5 ± 0.8 μg/mL), hydroxyl ion scavenging (IC50 = 122.5 ± 0.90 μg/mL), and iron-chelating power (IC50 = 154.8 ± 2 μg/mL). Moreover, transformed plant extracts produced significant analgesic, anti-inflammatory, anticoagulant, and antidepressant activities in BALB/c mice models. In conclusion, transgenic regenerants of A. bracteosa pose better antioxidant and pharmacological properties under the effect of rol genes as compared to wild-type plants.
    Matched MeSH terms: Biphenyl Compounds/chemistry
  17. Ahmad S, Sukari MA, Ismail N, Ismail IS, Abdul AB, Abu Bakar MF, et al.
    PMID: 25887035 DOI: 10.1186/s12906-015-0594-7
    Mangifera pajang Kosterm is a plant species from the mango family (Anacardiaceae). The fruits are edible and have been reported to have high antioxidant content. However, the detailed phytochemical studies of the plant have not been reported previously. This study investigates the phytochemicals and biological activities of different parts of Mangifera pajang.
    Matched MeSH terms: Biphenyl Compounds/metabolism
  18. Muhammad A, Tel-Çayan G, Öztürk M, Duru ME, Nadeem S, Anis I, et al.
    Pharm Biol, 2016 Sep;54(9):1649-55.
    PMID: 26866457 DOI: 10.3109/13880209.2015.1113992
    Context Dodonaea viscosa (L.) Jacq (Sapindaceae) has been used in traditional medicine as antimalarial, antidiabetic and antibacterial agent, but further investigations are needed. Objective This study determines the antioxidant and anticholinesterase activities of six compounds (1-6) and two crystals (1A and 3A) isolated from D. viscosa, and discusses their structure-activity relationships. Materials and methods Antioxidant activity was evaluated using six complementary tests, i.e., β-carotene-linoleic acid; DPPH(•), ABTS(•+), superoxide scavenging, CUPRAC and metal chelating assays. Anticholinesterase activity was performed using the Elman method. Results Clerodane diterpenoids (1 and 2) and phenolics (3-6) - together with three crystals (1A, 3A and 7A) - were isolated from the aerial parts of D. viscosa. Compound 3A exhibited good antioxidant activity in DPPH (IC50: 27.44 ± 1.06 μM), superoxide (28.18 ± 1.35% inhibition at 100 μM) and CUPRAC (A0.5: 35.89 ± 0.09 μM) assays. Compound 5 (IC50: 11.02 ± 0.02 μM) indicated best activity in ABTS assay, and 6 (IC50: 14.30 ± 0.18 μM) in β-carotene-linoleic acid assay. Compounds 1 and 3 were also obtained in the crystal (1A and 3A) form. Both crystals showed antioxidant activity. Furthermore, crystal 3A was more active than 3 in all activity tests. Phenol 6 possessed moderate anticholinesterase activity against acetylcholinesterase and butyrylcholinesterase enzymes (IC50 values: 158.14 ± 1.65 and 111.60 ± 1.28 μM, respectively). Discussion and conclusion This is the first report on antioxidant and anticholinesterase activities of compounds 1, 2, 5, 6, 1A and 3A, and characterisation of 7A using XRD. Furthermore, the structure-activity relationships are also discussed in detail for the first time.
    Matched MeSH terms: Biphenyl Compounds/chemistry
  19. Ali Hassan SH, Fry JR, Abu Bakar MF
    Biomed Res Int, 2013;2013:138950.
    PMID: 24288662 DOI: 10.1155/2013/138950
    Garcinia parvifolia belongs to the same family as mangosteen (Garcinia mangostana), which is known locally in Sabah as "asam kandis" or cherry mangosteen. The present study was conducted to determine the phytochemicals content (total phenolic, flavonoid, anthocyanin, and carotenoid content) and antioxidant and acetylcholinesterase inhibition activity of the flesh and peel of G. parvifolia. All samples were freeze-dried and extracted using 80% methanol and distilled water. For the 80% methanol extract, the flesh of G. parvifolia displayed higher phenolic and flavonoid contents than the peel, with values of 7.2 ± 0.3 mg gallic acid equivalent (GAE)/g and 5.9 ± 0.1 mg rutin equivalent (RU)/g, respectively. Anthocyanins were detected in the peel part of G. parvifolia but absent in the flesh. The peel of G. parvifolia displayed higher total carotenoid content as compared to the flesh part with the values of 17.0 ± 0.3 and 3.0 ± 0.0 mg β-carotene equivalents (BC)/100 g, respectively. The free-radical scavenging, ferric reducing, and acetylcholinesterase inhibition effect of the flesh were higher as compared to the peel in both extracts. These findings suggested that the edible part of G. parvifolia fruit has a potential as a natural source of antioxidant and anti-Alzheimer's agents.
    Matched MeSH terms: Biphenyl Compounds/chemistry
  20. Ul Haq MN, Wazir SM, Ullah F, Khan RA, Shah MS, Khatak A
    Sains Malaysiana, 2016;45:1435-1442.
    In this study, the antimicrobial, antioxidant, phytotoxic and phytochemical properties of defatted seeds of Jatropha curcas were evaluated. A crude methanolic extract of defatted seeds was tested against three fungal strains - Aspergillus niger, Aspergillus flavus and Aspergillus fumigatus - and five bacteria: Escherichia coli and Klebsiella pneumoniae (Gram negative) and Micrococcus luteus, Bacillus subtilis and Staphylococcus aureus (Gram positive). The methanolic extract was diluted in dimethylsulfoxide to final concentrations of 1, 2, 3, 4 and 5 mg/10 mL. The largest zones of inhibition against K. pneumoniae, M. luteus and B. subtilis were achieved using the concentration of 5 mg/10 mL. The concentration of 1 mg/10 mL was most effective against S. aureus and E. coli. In a 1, 1-diphenyl-2-picrylahydrazyl (DPPH) radical scavenging assay, the 5 mg/10 mL concentration of the Jatropha seed extract showed the strongest activity. Higher concentrations of the Jatropha seed extract (10 mg/50 mL and 5 mg/50 mL) significantly inhibited the germination of radish seeds and had negative effects on radish seedling relative water content, shoot length, root length, seedling fresh weight and seedling dry weight (p<0.05). Phytochemical analyses of the defatted seeds detected alkaloids (7.3%), flavonoids (0.39%) and soluble phenolics (mg gallic acid equivalents/g extract). Based on these results, it was inferred that J. curcas seeds contain active ingredients that are effective against pathogenic microbes and therefore could be used to formulate drugs to treat various diseases.
    Matched MeSH terms: Biphenyl Compounds
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links