Displaying publications 41 - 60 of 135 in total

Abstract:
Sort:
  1. Chin KY, Gengatharan D, Mohd Nasru FS, Khairussam RA, Ern SL, Aminuddin SA, et al.
    Nutrients, 2016 Dec 14;8(12).
    PMID: 27983628
    Osteoporosis reduces the skeletal strength and increases the risk for fracture. It is an underdiagnosed disease in men. Annatto tocotrienol has been shown to improve bone structural indices and increase expression of bone formation genes in orchidectomized rats. This study aimed to evaluate the effects of annatto tocotrienol on biomechanical strength and calcium content of the bone in orchidectomized rats. Thirty three-month-old male Sprague-Dawley rats were randomly assigned to five groups. The baseline control (BC) group was sacrificed at the onset of the study. The sham-operated group (SHAM) received olive oil (the vehicle of tocotrienol) orally daily and peanut oil (the vehicle of testosterone) intramuscularly weekly. The remaining rats were orchidectomized and treated with three different regimens, i.e., (1) daily oral olive oil plus weekly intramuscular peanut oil injection; (2) daily oral annatto tocotrienol at 60 mg/kg plus weekly intramuscular peanut oil injection; (3) daily oral olive oil plus weekly intramuscular testosterone enanthate injection at 7 mg/kg. Blood, femur and tibia of the rats were harvested at the end of the two-month treatment period for the evaluation of serum total calcium and inorganic phosphate levels, bone biomechanical strength test and bone calcium content. Annatto-tocotrienol treatment improved serum calcium level and tibial calcium content (p < 0.05) but it did not affect femoral biomechanical strength (p > 0.05). In conclusion, annatto-tocotrienol at 60 mg/kg augments bone calcium level by preventing calcium mobilization into the circulation. A longer treatment period is needed for annatto tocotrienol to exert its effects on bone strength.
    Matched MeSH terms: Carotenoids/pharmacology*
  2. Wong SK, Chin KY, Suhaimi FH, Ahmad F, Ima-Nirwana S
    Bone, 2018 11;116:8-21.
    PMID: 29990585 DOI: 10.1016/j.bone.2018.07.003
    Metabolic syndrome (MetS) is associated with osteoporosis due to the underlying inflammatory and hormonal changes. Annatto tocotrienol has been shown to improve medical complications associated with MetS or bone loss in animal studies. This study aimed to investigate the effects of annatto tocotrienol as a single treatment for MetS and osteoporosis in high-carbohydrate high-fat (HCHF) diet-induced MetS animals. Three-month-old male Wistar rats were randomly divided into five groups. The baseline group was euthanized at the onset of the study. The normal group received standard rat chow and tap water. The remaining groups received HCHF diet and treated with three different regimens orally daily: (a) tocopherol-stripped corn oil (the vehicle of tocotrienol), (b) 60 mg/kg annatto tocotrienol, and (c) 100 mg/kg annatto tocotrienol. At the end of the study, measurements of MetS parameters, body compositions, and bone mineral density were performed in animals before sacrifice. Upon euthanasia, blood and femur of the rats were harvested for the evaluations of bone microstructure, biomechanical strength, remodelling activities, hormonal changes, and inflammatory response. Treatment with annatto tocotrienol improved all MetS parameters (except abdominal obesity), trabecular bone microstructure, bone strength, increased osteoclast number, normalized hormonal changes and inflammatory response in the HCHF animals. In conclusion, annatto tocotrienol is a potential agent for managing MetS and osteoporosis concurrently. The beneficial effects of annatto tocotrienol may be attributed to its ability to prevent the hormonal changes and pro-inflammatory state in animals with MetS.
    Matched MeSH terms: Carotenoids/administration & dosage; Carotenoids/therapeutic use
  3. Wong SK, Chin KY, Ima-Nirwana S
    PMID: 31505801 DOI: 10.3390/ijerph16183313
    A positive association between metabolic syndrome (MetS) and osteoporosis has been demonstrated in previous animal studies. The mechanisms of MetS in orchestrating the bone remodelling process have traditionally focused on the interactions between mature osteoblasts and osteoclasts, while the role of osteocytes is unexplored. Our earlier studies demonstrated the bone-promoting effects of tocotrienol using a rat model of osteoporosis induced by MetS. This study aimed to investigate the expression of osteocyte-derived peptides in the bone of rats with MetS-induced osteoporosis treated with tocotrienol. Age-matched male Wistar rats (12-week-old; n = 42) were divided into seven experimental groups. Two groups served as the baseline and normal group, respectively. The other five groups were fed with a high-carbohydrate high-fat (HCHF) diet to induce MetS. The five groups of HCHF animals were treated with tocopherol-stripped corn oil (vehicle), annatto tocotrienol (60 and 100 mg/kg), and palm tocotrienol (60 and 100 mg/kg) starting from week 8. At the end of the study, the rats were sacrificed and their right tibias were harvested. Protein was extracted from the metaphyseal region of the proximal right tibia and levels of bone peptides, including osteoprotegerin (OPG), soluble receptor activator of nuclear factor-kappa B ligand (sRANKL), sclerostin (SOST), Dickkopf-related protein 1 (DKK-1), fibroblast growth factor-23 (FGF-23), and parathyroid hormone (PTH), were measured. The vehicle-treated animals displayed higher levels of sRANKL, SOST, DKK-1, FGF-23, and PTH as compared to the normal animals. Oral supplementation of annatto and palm tocotrienol (60 and 100 mg/kg) reduced the levels of sRANKL and FGF-23 in the HCHF animals. Only 100 mg/kg annatto and palm tocotrienol lowered SOST and DKK-1 levels in the HCHF animals. In conclusion, tocotrienol exerts potential skeletal-promoting benefit by modulating the levels of osteocytes-derived bone-related peptides.
    Matched MeSH terms: Carotenoids
  4. Khoo HE, Prasad KN, Kong KW, Jiang Y, Ismail A
    Molecules, 2011 Feb 18;16(2):1710-38.
    PMID: 21336241 DOI: 10.3390/molecules16021710
    Fruits and vegetables are colorful pigment-containing food sources. Owing to their nutritional benefits and phytochemicals, they are considered as 'functional food ingredients'. Carotenoids are some of the most vital colored phytochemicals, occurring as all-trans and cis-isomers, and accounting for the brilliant colors of a variety of fruits and vegetables. Carotenoids extensively studied in this regard include β-carotene, lycopene, lutein and zeaxanthin. Coloration of fruits and vegetables depends on their growth maturity, concentration of carotenoid isomers, and food processing methods. This article focuses more on several carotenoids and their isomers present in different fruits and vegetables along with their concentrations. Carotenoids and their geometric isomers also play an important role in protecting cells from oxidation and cellular damages.
    Matched MeSH terms: Carotenoids/chemistry*
  5. Khoo HE, Azlan A, Kong KW, Ismail A
    PMID: 27340420 DOI: 10.1155/2016/7591951
    Hundreds of fruit-bearing trees are native to Southeast Asia, but many of them are considered as indigenous or underutilized. These species can be categorized as indigenous tropical fruits with potential for commercial development and those possible for commercial development. Many of these fruits are considered as underutilized unless the commercialization is being realized despite the fact that they have the developmental potential. This review discusses seven indigenous tropical fruits from 15 species that have been identified, in which their fruits are having potential for commercial development. As they are not as popular as the commercially available fruits, limited information is found. This paper is the first initiative to provide information on the phytochemicals and potential medicinal uses of these fruits. Phytochemicals detected in these fruits are mainly the phenolic compounds, carotenoids, and other terpenoids. Most of these phytochemicals are potent antioxidants and have corresponded to the free radical scavenging activities and other biological activities of the fruits. The scientific research that covered a broad range of in vitro to in vivo studies on the medicinal potentials of these fruits is also discussed in detail. The current review is an update for researchers to have a better understanding of the species, which simultaneously can provide awareness to enhance their commercial value and promote their utilization for better biodiversity conservation.
    Matched MeSH terms: Carotenoids
  6. Bustamam MSA, Pantami HA, Azizan A, Shaari K, Min CC, Abas F, et al.
    Mar Drugs, 2021 Mar 02;19(3).
    PMID: 33801258 DOI: 10.3390/md19030139
    This study was designed to profile the metabolites of Isochrysis galbana, an indigenous and less explored microalgae species. 1H Nuclear Magnetic Resonance (NMR) spectroscopy and Liquid Chromatography-Mass Spectrometry (LCMS) were used to establish the metabolite profiles of five different extracts of this microalga, which are hexane (Hex), ethyl acetate (EtOAc), absolute ethanol (EtOH), EtOH:water 1:1 (AqE), and 100% water (Aq). Partial least square discriminant analysis (PLS-DA) of the generated profiles revealed that EtOAc and Aq extracts contain a diverse range of metabolites as compared to the other extracts with a total of twenty-one metabolites, comprising carotenoids, polyunsaturated fatty acids, and amino acids, that were putatively identified from the NMR spectra. Meanwhile, thirty-two metabolites were successfully annotated from the LCMS/MS data, ten of which (palmitic acid, oleic acid, α-linolenic acid, arachidic acid, cholesterol, DHA, DPA, fucoxanthin, astaxanthin, and pheophytin) were similar to those present in the NMR profile. Another eleven glycerophospholipids were discovered using MS/MS-based molecular network (MN) platform. The results of this study, besides providing a better understanding of I.galbana's chemical make-up, will be of importance in exploring this species potential as a feed ingredient in the aquaculture industry.
    Matched MeSH terms: Carotenoids/isolation & purification
  7. Irna C, Jaswir I, Othman R, Jimat DN
    J Diet Suppl, 2018 Nov 02;15(6):805-813.
    PMID: 29185824 DOI: 10.1080/19390211.2017.1387885
    Astaxanthin is one of the main carotenoid pigments. It has beneficial effects on the immune system of the human body due to its powerful antioxidant properties. The application of this bioactive compound can be found to be significant in the food, pharmaceutical, and cosmetics industries. The aim of this research was to investigate astaxanthin yield from six species of Malaysian shrimp carapace. Six types of shrimp species-Parapenaeopsis sculptili, Metapenaeus lysianassa, Macrobrachium rosenbergii, Metapenaeopsis hardwickii, Penaeus merguiensis, and Penaeus monodon-were used to investigate total carotenoid content and astaxanthin yield. The investigation was carried out using chemical extraction and high-pressure processing (HPP) methods at 210 MPa, for a period of 10 min with a solvent mixture of acetone and methanol (7:3, v/v). HPP was proven to have a significant impact in increasing the total carotenoid content and astaxanthin yield. The highest total carotenoid content and astaxanthin yield is shown to be contained in the Penaeus monodon species. Total carotenoid was increased from 46.95 µg/ml using chemical extraction to 68.26 µg/ml using HPP; yield of astaxanthin was increased from 29.44 µg/gdw using chemical extraction to 59.9744 µg/gdw using HPP. Therefore, comparison between the HPP and chemical extraction methods showed that HPP is more advantageous with higher astaxanthin yield, higher quality, and shorter extraction time.
    Matched MeSH terms: Carotenoids/analysis
  8. Dauqan E, Sani HA, Abdullah A, Kasim ZM
    Pak J Biol Sci, 2011 Mar 15;14(6):399-403.
    PMID: 21902064
    The objective of the study was to evaluate the effect of four different vegetable oils [red palm olein (RPO), palm olein (PO), corn oil (CO), coconut oil (COC)] on antioxidant enzymes activity of rat liver. Sixty six Sprague Dawley male rats which were randomly divided into eleven groups of 6 rats per group and were treated with 15% of RPO, PO, CO and COC for 4 and 8 weeks. Rats in the control group were given normal rat pellet only while in treated groups, 15% of additional different vegetable oils were given. After 4 weeks of treatment the catalase (CAT) activity results showed that there was no significance difference (p > or = 0.05) between the control group and treated groups while after 8 weeks of treatment showed that there was no significant different (p > or = 0.05) between control group and RPO group but the treated rat liver with PO, CO and COC groups were the lowest and it were significantly lower (> or = 0.05) than control group. For superoxide dismutase (SOD) there was no significance difference (p > or = 0.05) between the control group and treated groups of vegetable oils after 4 and 8 weeks of treatment. Thus the study indicated that there was no significant (p > or = 0.05) effect on antioxidant enzyme (superoxide dismutase) but there was significant effect (p > or = 0.05) on catalase in rat liver.
    Matched MeSH terms: Carotenoids/pharmacology
  9. Jain A, Sharma G, Ghoshal G, Kesharwani P, Singh B, Shivhare US, et al.
    Int J Pharm, 2018 Jul 30;546(1-2):97-105.
    PMID: 29715533 DOI: 10.1016/j.ijpharm.2018.04.061
    The work entails a novel strategy of formulating the lycopene loaded whey protein isolate nanoparticles (LYC-WPI-NPs) solely using the rational blend of biomacromolecule without using equipment-intensive techniques. The LYC-WPI-NPs were fabricated as a substantial drug delivery platform, with maximum entrapment, spatial and controlled release manners, exceptional plasma concentration, and perspective for discrepancy delivery of therapeutics. Prepared nano-formulations were measured in ultra-fine size (100-350 nm) with sphere-shaped. The percent lycopene entrapment of prepared LYC-WPI-NPs was estimated in the range to 50 and 65%. In vitro percent cumulative release study demonstrated deaden and extended release i.e. approximately 75% following 16th h. The in vitro percent cell survival (cytotoxicity study) of prepared nanoparticles was evaluated against MCF-7 breast cancer cells by MTT based colorimetric assay. Sub-cellular localization of lycopene when delivered by LYC-WPI-NPs was assessed by HPLC (high performance liquid chromatography). The WPI-NPs enhance the oral bioavailability of lycopene by controlling its release from nano-formulation and facilitating its absorption through lymphatic pathways. Prophylactic anticancer efficacy of LYC-WPI-NPs was evaluated thereafter on experimentally induced breast cancer animal model. Conclusively, it may quite reasonable that lycopene loaded protein nanoparticles are competent to improve the biopharmaceutical attributes of lycopene and demonstrated prophylactic anticancer activity, decrease tumor proliferation and increase the survival rate of treated animals, thus signifying their feasible usefulness in cancer therapeutic and intervention.
    Matched MeSH terms: Carotenoids/administration & dosage*; Carotenoids/pharmacokinetics; Carotenoids/chemistry
  10. Mutalip SSM, Rajikin MH, Rahim SA, Khan NMN
    Int J Vitam Nutr Res, 2018 Feb;88(1-2):16-26.
    PMID: 30907699 DOI: 10.1024/0300-9831/a000492
    Protective action by annatto-derived delta-tocotrienol (δ-TCT) and soy-derived alpha-tocopherol (α-TOC) through the regulation of PI3K/Akt-Cyclin D1 pathway against the nicotine-induced DNA damages is the focus of the present study. Nicotine, which has been widely reported to have numerous adverse effects on the reproductive system, was used as reproductive toxicant. 48 female balb/c mice (6-8 weeks) (23-25 g) were randomly divided into 8 groups (G1-G8; n = 6) and treated with either nicotine or/and annatto δ-TCT/soy α-TOC for 7 consecutive days. On Day 8, the females were superovulated and mated before euthanized for embryo collection (46 hours post-coitum). Fifty 2-cell embryos from each group were used in gene expression analysis using Affymetrix QuantiGene Plex2.0 assay. Findings indicated that nicotine (G2) significantly decreased (p < 0.05) the number of produced 2-cell embryos compared to control (G1). Intervention with mixed annatto δ-TCT (G3) and pure annatto δ-TCT (G4) significantly increased the number of produced 2-cell embryos by 127 % and 79 % respectively compared to G2, but these were lower than G1. Concurrent treatment with soy α-TOC (G5) decreased embryo production by 7 %. Supplementations with δ-TCT and α-TOC alone (G6-G8) significantly increased (p < 0.05) the number of produced 2-cell embryos by 50 %, 36 % and 41 % respectively, compared to control (G1). These results were found to be associated with the alterations in the PI3K/Akt-Cyclin D1 gene expressions, indicating the inhibitory effects of annatto δ-TCT and soy α-TOC against the nicotinic embryonic damages. To our knowledge, this is the first attempt on studying the benefits of annatto δ-TCT on murine preimplantation 2-cell embryos.
    Matched MeSH terms: Carotenoids
  11. Siddiqui MJ, Saleh MSM, Basharuddin SNBB, Zamri SHB, Mohd Najib MHB, Che Ibrahim MZB, et al.
    J Pharm Bioallied Sci, 2018 12 21;10(4):173-180.
    PMID: 30568374 DOI: 10.4103/JPBS.JPBS_83_18
    Saffron, Crocus sativus (Iridaceae), is a perennial herb, which earned its popularity as both medicine and spice. It is an inhabitant of different mountainous regions of Asia Minor to Greece, Western Asia, Egypt, and India. The benefits of saffron as an antidepressant are well-documented. Almost 150 volatile and nonvolatile compounds are obtained from the chemical analysis of this plant. Fewer than 50 constituents elucidated and identified so far showed phytochemical characteristics. The major bioactive compounds identified are safranal, crocin, and picrocrocin, which are responsible for its aroma as well as its bitter taste. This review is an attempt to encompass the methods of analysis and pharmacodynamic and pharmacokinetic properties of saffron followed by its efficacious and safe potential.
    Matched MeSH terms: Carotenoids
  12. Suparmaniam U, Lam MK, Lim JW, Tan IS, Chin BLF, Shuit SH, et al.
    Biotechnol Adv, 2024;70:108280.
    PMID: 37944570 DOI: 10.1016/j.biotechadv.2023.108280
    Microalgae showcase an extraordinary capacity for synthesizing high-value phytochemicals (HVPCs), offering substantial potential for diverse applications across various industries. Emerging research suggests that subjecting microalgae to abiotic stress during cultivation and the harvesting stages can further enhance the accumulation of valuable metabolites within their cells, including carotenoids, antioxidants, and vitamins. This study delves into the pivotal impacts of manipulating abiotic stress on microalgae yields, with a particular focus on biomass and selected HVPCs that have received limited attention in the existing literature. Moreover, approaches to utilising abiotic stress to increase HVPCs production while minimising adverse effects on biomass productivity were discussed. The present study also encompasses a techno-economic assessment (TEA) aimed at pinpointing significant bottlenecks in the conversion of microalgae biomass into high-value products and evaluating the desirability of various conversion pathways. The TEA methodology serves as a valuable tool for both researchers and practitioners in the quest to identify sustainable strategies for transforming microalgae biomass into high-value products and goods. Overall, this comprehensive review sheds light on the pivotal role of abiotic stress in microalgae cultivation, promising insights that could lead to more efficient and sustainable approaches for HVPCs production.
    Matched MeSH terms: Carotenoids/metabolism
  13. Mohd Hazli UHA, Abdul-Aziz A, Mat-Junit S, Chee CF, Kong KW
    Food Res Int, 2019 01;115:241-250.
    PMID: 30599938 DOI: 10.1016/j.foodres.2018.08.094
    Alternanthera sessilis (red) (ASR) is an edible herbal plant with many beneficial health effects. This study aimed to investigate the antioxidant components and antioxidant activities of the edible leaves and stems of ASR extracted using solvent of varying polarities namely water, ethanol, ethyl acetate and hexane. ASR leaf extracts showed higher in both antioxidant components and activities than the stem extracts. Among the antioxidant components, the ethanol leaf extract showed higher phenolic (77.29 ± 1.02 mg GAE/g extract) content while the ethyl acetate leaf extract was rich in flavonoids (157.44 ± 10.19 mg RE/g extract), carotenoids (782.97 ± 10.78 mg BE/g extract) and betalains (betanin: 67.08 ± 0.49 mg/g extract; amaranthin: 93.94 ± 0.68 mg/g extract and betaxanthin: 53.92 ± 0.88 mg/g extract). Nevertheless, the ethanol leaf extract showed the highest DPPH radical scavenging activity and ABTS radical cation scavenging activity. It also exhibited highest ferric reducing activity among all the extracts. Four polyphenolic compounds from ASR leaf, namely ferulic acid, rutin, quercetin and apigenin, were identified and quantified using ultra high performance liquid chromatography. The existence of these compounds was further verified using tandem mass spectrometry. These current results indicate that ASR leaf particularly the ethanol extract has the potential to be exploited as a source of natural antioxidants.
    Matched MeSH terms: Carotenoids/analysis
  14. Thavamoney N, Sivanadian L, Tee LH, Khoo HE, Prasad KN, Kong KW
    J Food Sci Technol, 2018 Jul;55(7):2523-2532.
    PMID: 30042568 DOI: 10.1007/s13197-018-3170-6
    This study investigated the recovery of phytochemical antioxidants in Dacryodes rostrata fruit using different extraction solvents. The effects of solvent of varying polarities with sequential extraction method on the recovery of phenolics, flavonoids, carotenoids and anthocyanins from different parts of the fruit (seed, pulp and peel) were determined. Their antioxidant activities were further determined using DPPH radical, ferric reducing antioxidant power (FRAP), hydroxyl radical scavenging, superoxide anion radical scavenging and phosphomolybdenum method. Dacryodes Rostrata seed had the highest total phenolic content with 50% ethanol as the most efficient extraction solvent. The highest total flavonoid content was obtained in ethyl acetate extract of fruit pulp, whereas peel extracted with hexane and 50% ethanol was the highest in total carotenoid content and total anthocyanin content, respectively. The seed extracted with 50% ethanol exhibited the strongest DPPH radical scavenging activity. Iron chelating activity measured by FRAP assay was the best in seed extracts, particularly in those polar extracts derived from water and 50% ethanol. Antioxidant activities of 50% ethanol extract of D. rostrata seed was the highest when determined by FRAP and phosphomolydenum assays. However, the influence of extraction solvents is not distinctly shown by hydroxyl radical and superoxide anion radical scavenging activities. This is the first report on the effect of various extraction solvents on the recovery of phytochemicals in D. rostrata fruit parts and the seed of D. rostrata is a potential source of polar antioxidants.
    Matched MeSH terms: Carotenoids
  15. Nesaretnam K, Jin Lim E, Reimann K, Lai LC
    Toxicology, 2000 Oct 26;151(1-3):117-26.
    PMID: 11074306
    Breast cancer is the most common cancer in women worldwide. The growth of breast cancer cells is either hormone-dependent or hormone-independent. Both types are represented in vitro by the estrogen-receptor positive (ER+) MCF-7 and the estrogen-receptor negative (ER-) MDA-MB-231 cell lines, respectively. The pS2 gene is an estrogen-regulated gene and serves as a marker for the ER+ tumours. Carotenoids are pigments with anti-cancer properties besides having pro-vitamin A, antioxidant and free-radical quenching effects. This study was designed firstly, to compare the effect of palm oil carotene concentrate with retinoic acid on the growth of the ER+ MCF-7 and the ER- MDA-MB-231 cells; and secondly to evaluate the effect of the palm oil carotene concentrate on the regulation of pS2 mRNA. The growth experiments were performed with monolayer cells seeded in phenol red free RPMI 1640 culture media and subsequently treated with varying concentrations of either retinoic acid or palm oil carotenoids. The cell numbers were determined at the start of each experiment and then at successive time intervals. The results showed that the palm oil carotene concentrate caused dose-dependent inhibition of estradiol-stimulated growth of MCF-7 cells but did not affect the proliferation of MDA-MB-231 cells. Retinoic acid caused similar, albeit more potent effects, as significant inhibition was observed at lower concentrations than the palm oil carotenoids. In the pS2 gene expression experiment, cell monolayers were treated with the carotene concentrate (10(-6) M), either with or without supplemented estradiol (10(-8) M), and subsequently the RNA was extracted. Northern blotting was performed and the regulation of pS2 mRNA determined using a 32P-labelled pS2 cDNA probe. The results showed that the palm oil carotene concentrate did not affect the expression of pS2 mRNA and are therefore independent of the estrogen-regulated pathway.
    Matched MeSH terms: Carotenoids/isolation & purification; Carotenoids/pharmacology*
  16. Ng JH, Nesaretnam K, Reimann K, Lai LC
    Int J Cancer, 2000 Oct 1;88(1):135-8.
    PMID: 10962451
    Oestrogen is important in the development of breast cancer. Oestrogen receptor positive breast cancers are associated with a better prognosis than oestrogen-receptor negative breast cancers since they are more responsive to hormonal treatment. Oestrone sulphate acts as a huge reservoir for oestrogens in the breast. It is converted to the potent oestrogen, oestradiol (E(2)) by the enzymes oestrone sulphatase and oestradiol-17beta hydroxysteroid dehydrogenase (E(2)DH). Retinoic acid and carotenoids have been shown to have chemopreventive activity against some cancers. The aim of our study was to determine and compare the effects of retinoic acid and palm oil carotenoids on growth of and oestrone sulphatase and E(2)DH activities in the oestrogen receptor positive, MCF-7 and oestrogen receptor negative, MDA-MB-231 breast cancer cell lines. Retinoic acid and carotenoids inhibited MCF-7 cell growth but had no effect on MDA-MB-231 cell growth. Both retinoic acid and carotenoids stimulated oestrone sulphatase activity in the MCF-7 cell line. E(1) to E(2) conversion was inhibited by 10(-7) M carotenoids but was stimulated at 10(-6) M in the MCF-7 cell line. Retinoic acid had no effect on E(1) to E(2) conversion at 10(-7) M but stimulated E(1) to E(2) conversion at 10(-6) M. Retinoic acid and carotenoids had no effect on E(2) to E(1) conversion in the MCF-7 cell line. Retinoic acid stimulated E(1) to E(2) conversion in the MDA-MB-231 cell line but had no effect on oestrone sulphatase activity or E(2) to E(1) conversion in this cell line. Both oestrone sulphatase and E(2)DH activity were not affected by carotenoids in the MDA-MB-231 cell line. In conclusion, retinoic acid and carotenoids may prevent the development of hormone-dependent breast cancers since they inhibit the growth of the MCF-7 cell line.
    Matched MeSH terms: Carotenoids/pharmacology*
  17. Chong WT, Tan CP, Cheah YK, B Lajis AF, Habi Mat Dian NL, Kanagaratnam S, et al.
    PLoS One, 2018;13(8):e0202771.
    PMID: 30142164 DOI: 10.1371/journal.pone.0202771
    Red palm oil (RPO) is a natural source of Vitamin E (70-80% tocotrienol). It is a potent natural antioxidant that can be used in skin-care products. Its antioxidant property protects skin from inflammation and aging. In our work, a tocotrienol-rich RPO-based nanoemulsion formulation was optimized using response surface methodology (RSM) and formulated using high pressure homogenizer. Effect of the concentration of three independent variables [surfactant (5-15 wt%), co-solvent (10-30 wt%) and homogenization pressure (500-700 bar)] toward two response variables (droplet size, polydispersity index) was studied using central composite design (CCD) coupled to RSM. RSM analysis showed that the experimental data could be fitted into a second-order polynomial model and the coefficients of multiple determination (R2) is 0.9115. The optimized formulation of RPO-based nanoemulsion consisted of 6.09 wt% mixed surfactant [Tween 80/Span 80 (63:37, wt)], 20 wt% glycerol as a co-solvent via homogenization pressure (500 bar). The optimized tocotrienol-rich RPO-based nanoemulsion response values for droplet size and polydispersity index were 119.49nm and 0.286, respectively. The actual values of the formulated nanoemulsion were in good agreement with the predicted values obtained from RSM, thus the optimized compositions have the potential to be used as a nanoemulsion for cosmetic formulations.
    Matched MeSH terms: Carotenoids/analysis
  18. Foong LC, Loh CWL, Ng HS, Lan JC
    World J Microbiol Biotechnol, 2021 Jan 04;37(1):12.
    PMID: 33392834 DOI: 10.1007/s11274-020-02967-3
    Carotenoids are a diverse group of lipid-soluble pigments that exhibit potent biological activities such as antioxidant, anti-inflammatory, and provitamin A activities. The potent health benefits of carotenoids result in the surge in the market demands for carotenoids, especially natural carotenoids from sustainable sources. Microbial carotenoids have attracted considerable interests for many industrial applications because of the low costs and ease of scaling-up with shorter production time. There is a growing interest in the search of new and sustainable microbial sources and cost-efficient production strategies following the high economical values and vast commercial applications of carotenoids. This article presents a review on the industrial production strategies of microbial carotenoids from microalgae, fungi, and bacteria sources. The industrial significance of the mass production of microbial carotenoids is also discussed. The structure, classification, and biosynthesis pathway of the carotenoids are also presented in this review.
    Matched MeSH terms: Carotenoids
  19. Loh WLC, Huang KC, Ng HS, Lan JC
    J Biosci Bioeng, 2020 Aug;130(2):187-194.
    PMID: 32334990 DOI: 10.1016/j.jbiosc.2020.03.007
    Carotenoids serve as one of the most important group of naturally-occurring lipid-soluble pigments which exhibit great biological activities such as antioxidant, anti-inflammatory and provitamin A activities. Owing to their advantageous health effects, carotenoids are widely applied in various industries. Microbial carotenoids synthesis therefore has attracted increasing attention in recent years. In the present study, a marine microorganism originally isolated from seawater in northern Taiwan was determined to be a strain of Gordonia terrae based on its 16S rRNA gene sequence. The strain G. terrae TWRH01 has the ability to synthesize and accumulate the intracellular pigments was identified by gas chromatography-mass spectrometry (GC-MS). The biochemical production characteristics of this strain were studied by employing different fermentation strategies. Findings suggested that G. terrae TWRH01 can actively grow and efficiently synthesize carotenoids in medium adjusted to pH 7 containing 16 g L-1 sucrose as the carbon source, 16 g L-1 yeast extract as the nitrogen source, 0.6 M NaCl concentration, and supplemented with 0.45% (v/v) 1 M CaCl2. Results revealed that the optimization of fermentation yielded 15.29 g L-1 dry biomass and 10.58 μmol L-1 relative β-carotene concentration. According to GC-MS analysis, the orange-red colored pigments produced were identified as carotenoid derivatives, mainly echinenone and adonixanthin 3'-β-d-glucoside. Therefore, the new bacterial strain showed a highly potential bioresource for the commercial production of natural carotenoids.
    Matched MeSH terms: Carotenoids/metabolism*
  20. Teh SS, Lau HLN
    Food Chem, 2021 Mar 15;340:127912.
    PMID: 32916404 DOI: 10.1016/j.foodchem.2020.127912
    Palm-pressed mesocarp oil has been found to contain plenty of naturally occurring valuable phytonutrients. The application and study of the oil are limited, therefore, quality assessment of refined red palm-pressed mesocarp olein (PPMO) is deemed necessary to provide data in widening the applications as a niche products or raw material for the nutraceutical industry. Results showed that refined PPMO has comparable physicochemical properties and oxidative stability with commercial cooking oil, palm olein (PO). The food safety parameters and contaminants (PAH, 3-MCPD ester, 2-MCPD ester, glycidyl ester and trace metals) analyses proven that refined PPMO is safe to be consumed. Besides, refined PPMO contains remarkably greater concentrations of phytonutrients including carotenoids, phytosterols, squalene and vitamin E than PO, postulating its protective health benefits. The overall quality assessment of refined PPMO showed that it is suitable for human consumption and it is a good source for food applications and dietary nutritional supplements.
    Matched MeSH terms: Carotenoids/analysis
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links