Displaying publications 41 - 60 of 82 in total

Abstract:
Sort:
  1. Han W, Chai X, Zaaboul F, Sun Y, Tan CP, Liu Y
    Food Chem, 2023 Nov 30;427:136656.
    PMID: 37393637 DOI: 10.1016/j.foodchem.2023.136656
    The effect of different types of monoglycerides, including monopalmitin, capryl monoglyceride (GMB), and succinylated monoglyceride (GMSA) in combination with palm kernel stearin (PKS) and beeswax (BW), on the formation, crystal network structure, and partial coalescence properties of aerated emulsions (20 % w/w fat) was investigated. The stability of BW and PKS crystals with a 1 % concentration of GMSA and GMB, respectively, in the oil phase was lower than the other crystals. BW-GMSA and PKS-GMB crystals exhibited a lower crystallization rate, higher contact angles and no significant peak shift in the small-angle X-ray scattering results. The BW-GMSA and PKS-GMB emulsions had a lower nucleation rate in the bulk and a higher nucleation rate at the interface, resulting in a higher fraction of crystals adsorbed at the oil/water interface. This reduced the number of interfacial proteins and led to a high degree of partial coalescence and the formation of stable aerated networks.
    Matched MeSH terms: Emulsions/chemistry
  2. Zainuddin NJ, Ashari SE, Salim N, Asib N, Omar D, Lian GEC
    J Oleo Sci, 2019 Aug 01;68(8):747-757.
    PMID: 31292338 DOI: 10.5650/jos.ess18209
    The present study revealed the optimization of nanoemulsion containing palm oil derivatives and Parthenium hysterophorus L. crude extract (PHCE) as pre-emergence herbicide formulation against Diodia ocimifolia. The nanoemulsion formulation was prepared by high energy emulsification method, and it was optimized by mixture experimental design (MED). From the optimization process, analysis of variance (ANOVA) showed a fit quadratic polynomial model with an optimal formulation composition containing 30.91% of palm kernel oil ester (PKOE), 28.48% of mixed surfactants (Tensiofix and Tween 80, 8:2), 28.32% of water and 12.29% of PHCE. The reading of both experimental and predicted particle size in the verification experiment were acceptable with a residual standard error (RSE) was less than 2%. Under the optimal condition, the smallest particle size obtained was 140.10 nm, and the particle was shown by morphology analysis to be spherical and demonstrated good stability (no phase separation) under centrifugation and different storage conditions (25 ± 5°C and 45°C). Nanoemulsion stored for 60 days exhibits monodisperse emulsion with a slight increase of particle size. The increase in particle size over time might have contributed by Ostwald ripening phenomenon which is shown by a linear graph from Ostwald ripening rate analysis. In the in vitro germination test, P. hysterophorus nanoemulsion (PHNE) was shown to cause total inhibition of D. ocimifolia seed at lower concentration (5 g L-1) as compared to PHCE (10 g L-1). The finding of the research could potentially serve as a platform for the development of palm oil based formulation containing plant crude extract for green weed management.
    Matched MeSH terms: Emulsions/chemistry*
  3. Teo SH, Chee CY, Fahmi MZ, Wibawa Sakti SC, Lee HV
    Molecules, 2022 Oct 23;27(21).
    PMID: 36363998 DOI: 10.3390/molecules27217170
    In the past few years, the research on particle-stabilized emulsion (Pickering emulsion) has mainly focused on the usage of inorganic particles with well-defined shapes, narrow size distributions, and chemical tunability of the surfaces such as silica, alumina, and clay. However, the presence of incompatibility of some inorganic particles that are non-safe to humans and the ecosystem and their poor sustainability has led to a shift towards the development of materials of biological origin. For this reason, nano-dimensional cellulose (nanocellulose) derived from natural plants is suitable for use as a Pickering material for liquid interface stabilization for various non-toxic product formulations (e.g., the food and beverage, cosmetic, personal care, hygiene, pharmaceutical, and biomedical fields). However, the current understanding of nanocellulose-stabilized Pickering emulsion still lacks consistency in terms of the structural, self-assembly, and physio-chemical properties of nanocellulose towards the stabilization between liquid and oil interfaces. Thus, this review aims to provide a comprehensive study of the behavior of nanocellulose-based particles and their ability as a Pickering functionality to stabilize emulsion droplets. Extensive discussion on the characteristics of nanocelluloses, morphology, and preparation methods that can potentially be applied as Pickering emulsifiers in a different range of emulsions is provided. Nanocellulose's surface modification for the purpose of altering its characteristics and provoking multifunctional roles for high-grade non-toxic applications is discussed. Subsequently, the water-oil stabilization mechanism and the criteria for effective emulsion stabilization are summarized in this review. Lastly, we discuss the toxicity profile and risk assessment guidelines for the whole life cycle of nanocellulose from the fresh feedstock to the end-life of the product.
    Matched MeSH terms: Emulsions/chemistry
  4. Ahmad A, Fazial FF, Khalil HPSA, Fazry S, Lazim A
    Int J Biol Macromol, 2023 Jul 01;242(Pt 2):124816.
    PMID: 37182623 DOI: 10.1016/j.ijbiomac.2023.124816
    Starch nanocrystals (SNCs) are tiny particles that possess unique qualities due to their small size, such as increased crystallinity, thin sheet structure, low permeability, and strong resistance to digestion. Although sago starch nanocrystals (SNCs) are naturally hydrophilic, their properties can be modified through chemical modifications to make them more versatile for various applications. In this study, the esterification process was used to modify SNCs using lauroyl chloride (LC) to enhance their surface properties. Three different ratios of LC to SNC were tested to determine the impact on the modified SNC (mSNC). The chemical changes in the mSNC were analyzed using FTIR and 1H NMR spectroscopy. ##The results showed that as the amount of LC increased, the degree of substitution (DS) also increased, which reduced the crystallinity of the mSNC and its thermal stability. However, the esterification process also improved the hydrophobicity of the SNC, making it more amphiphilic. The emulsification capabilities of the mSNC were investigated using a Pickering emulsion, and the results showed that the emulsion made from mSNC-1.0 had better stability than the one made from pristine SNC. This study highlights the potential of SNC as a particle emulsifier and demonstrates how esterification can improve its emulsification capabilities.
    Matched MeSH terms: Emulsions/chemistry
  5. Mah SH, Sundrasegaran S, Lau HLN
    J Oleo Sci, 2024;73(4):489-502.
    PMID: 38556283 DOI: 10.5650/jos.ess23197
    Skincare industries are growing rapidly around the globe but most products are formulated using synthetic chemicals and organic solvent extracted plant extracts, thus may be hazardous to the users and incur higher cost for purification that eventually leads to phytonutrient degradation. Therefore, this study aimed to formulate a stable natural formulation with antioxidant and antimicrobial activities by using supercritical carbon dioxide (SC-CO 2 ) extracted palm-pressed fiber oil (PPFO) as an active ingredient with virgin coconut oil (VCO) as a formulation base. PPFO was extracted from fresh palm-pressed fiber (PPF) while VCO was from dried grated coconut copra using SC-CO 2 before being subjected to the analyses of physicochemical properties, phytonutrient content and biological activities including antioxidant and antimicrobial. The nanoemulgel formulations were then developed and examined for their stability through accelerated stability study for 3 months by measuring their pH, particle size, polydispersity index and zeta potential. The results showed that PPFO contained a high amount of phytonutrients, especially total carotenoid (1497 ppm) and total tocopherol and tocotrienol (2269 ppm) contents. The newly developed nanoemulgels maintained their particles in nano size and showed good stability with high negative zeta potentials. Sample nanoemulgel formulated with 3% PPFO diluted in VCO as effective concentration showed significantly stronger antioxidant activity than the control which was formulated from 3% tocopheryl acetate diluted in mineral oil, towards DPPH and ABTS radicals, with IC 50 values of 67.41 and 44.28 µL/mL, respectively. For the antibacterial activities, the sample nanoemulgel was found to inhibit Gram positive bacteria S. aureus and S. epidermidis growth but not the Gram negative strain E. coli. Overall, this study revealed the potential of SF-extracted PPFO as an active ingredient in the antioxidant topical formulations thus future study on in vitro skin cell models is highly recommended for validation.
    Matched MeSH terms: Emulsions/chemistry
  6. He S, Li M, Sun Y, Pan D, Zhou C, Lan H
    Food Chem, 2024 Jan 01;430:137053.
    PMID: 37549626 DOI: 10.1016/j.foodchem.2023.137053
    This study aimed to investigate the role of hydrolysis and guar gum (GG) participation on the emulsification of the duck myofibrillar protein (MP) and the related stability of oil-in-water emulsion in low-salt condition. Emulsions were prepared using one of each or both treatments, and that prepared with trypsin hydrolysis and GG (T-GG) exhibited the highest stability. FTIR analysis confirmed the hydrogen bond interactions between the system components. T-GG treatment improved emulsion properties and decreased oil droplet size. Moreover, CLSM indicated that aggregation of T-GG oil droplets was prevented. Physical stability was assessed such as Turbiscan stability index, creaming index, and rheological properties. The adsorbed percentage for T-GG was the lowest. However, interfacial tension, droplet size, stability, and peroxide value analyses indicated that a denser interfacial membrane structure is formed with T-GG. Thus, T-GG treatment could be applied in the food industry, such as in nutrient delivery systems and fat mimetics.
    Matched MeSH terms: Emulsions/chemistry
  7. Chong WT, Tan CP, Cheah YK, B Lajis AF, Habi Mat Dian NL, Kanagaratnam S, et al.
    PLoS One, 2018;13(8):e0202771.
    PMID: 30142164 DOI: 10.1371/journal.pone.0202771
    Red palm oil (RPO) is a natural source of Vitamin E (70-80% tocotrienol). It is a potent natural antioxidant that can be used in skin-care products. Its antioxidant property protects skin from inflammation and aging. In our work, a tocotrienol-rich RPO-based nanoemulsion formulation was optimized using response surface methodology (RSM) and formulated using high pressure homogenizer. Effect of the concentration of three independent variables [surfactant (5-15 wt%), co-solvent (10-30 wt%) and homogenization pressure (500-700 bar)] toward two response variables (droplet size, polydispersity index) was studied using central composite design (CCD) coupled to RSM. RSM analysis showed that the experimental data could be fitted into a second-order polynomial model and the coefficients of multiple determination (R2) is 0.9115. The optimized formulation of RPO-based nanoemulsion consisted of 6.09 wt% mixed surfactant [Tween 80/Span 80 (63:37, wt)], 20 wt% glycerol as a co-solvent via homogenization pressure (500 bar). The optimized tocotrienol-rich RPO-based nanoemulsion response values for droplet size and polydispersity index were 119.49nm and 0.286, respectively. The actual values of the formulated nanoemulsion were in good agreement with the predicted values obtained from RSM, thus the optimized compositions have the potential to be used as a nanoemulsion for cosmetic formulations.
    Matched MeSH terms: Emulsions/chemistry*
  8. Ramli RA, Hashim S, Laftah WA
    J Colloid Interface Sci, 2013 Feb 1;391:86-94.
    PMID: 23123033 DOI: 10.1016/j.jcis.2012.09.047
    A novel microgels were polymerized using styrene (St), methyl methacrylate (MMA), acrylamide (AAm), and acrylic acid (AAc) monomers in the presence of N,N'-methylenebisacrylamide (MBA) cross-linker. Pre-emulsified monomer was first prepared followed by polymerizing monomers using semi-batch emulsion polymerization. Fourier Transform Infrared Spectroscopy (FTIR) and (1)H Nuclear Magnetic Resonance (NMR) were used to determine the chemical structure and to indentify the related functional group. Grafting and cross-linking of poly(acrylamide-co-acrilic acid)-grafted-poly(styrene-co-methyl methacrylate) [poly(AAm-co-AAc)-g-poly(St-co-MMA)] microgels are approved by the disappearance of band at 1300 cm(-1), 1200 cm(-1) and 1163 cm(-1) of FTIR spectrum and the appearance of CH peaks at 5.5-5.7 ppm in (1)H NMR spectrum. Scanning Electron Microscope (SEM) images indicated that poly(St-co-MMA) particle was lobed morphology coated by cross-linked poly(AAm-co-AAc) shell. Furthermore, SEM results revealed that poly(AAm-co-AAc)-g-poly(St-co-MMA) is composite particle that consist of "raspberry"-shape like structure core. Internal structures of the microgels showed homogeneous network of pores, an extensive interconnection among pores, thicker pore walls, and open network structures. Water absorbency test indicated that the sample with particle size 0.43 μm had lower equilibrium water content, % than the sample with particle size 7.39 μm.
    Matched MeSH terms: Emulsions/chemistry*
  9. Tamilvanan S, Kumar BA
    Drug Dev Ind Pharm, 2011 Sep;37(9):1003-15.
    PMID: 21417616 DOI: 10.3109/03639045.2011.555407
    Acetazolamide (ACZM)-loaded anionic, cationic, and neutral-charged oil-in-water nanosized emulsions were prepared and compared with their mean droplet diameter, surface charge, entrapment efficiency, freeze-thaw cycling stability, in vitro drug release, and transcorneal permeation.
    Matched MeSH terms: Emulsions/chemistry*
  10. Romes NB, Abdul Wahab R, Abdul Hamid M, Oyewusi HA, Huda N, Kobun R
    Sci Rep, 2021 10 21;11(1):20851.
    PMID: 34675286 DOI: 10.1038/s41598-021-00409-0
    Nanoemulsion is a delivery system used to enhance bioavailability of plant-based compounds across the stratum corneum. Elaeis guineensis leaves are rich source of polyphenolic antioxidants, viz. gallic acid and catechin. The optimal E. guineensis leaves extract water-in-oil nanoemulsion was stable against coalescence, but it was under significant influence of Ostwald ripening over 90 days at 25 °C. The in-vitro permeability revealed a controlled and sustained release of the total phenolic compounds (TPC) of EgLE with a cumulative amount of 1935.0 ± 45.7 µgcm-2 after 8 h. The steady-state flux and permeation coefficient values were 241.9 ± 5.7 µgcm-2 h-1 and 1.15 ± 0.03 cm.h-1, respectively. The kinetic release mechanism for TPC of EgLE was best described by the Korsmeyer-Peppas model due to the highest linearity of R2 = 0.9961, indicating super case II transport mechanism. The in-silico molecular modelling predicted that the aquaporin-3 protein in the stratum corneum bonded preferably to catechin over gallic acid through hydrogen bonds due to the lowest binding energies of - 57.514 kcal/mol and - 8.553 kcal/mol, respectively. Thus, the in-silico study further verified that catechin could improve skin hydration. Therefore, the optimal nanoemulsion could be used topically as moisturizer to enhance skin hydration based on the in-silico prediction.
    Matched MeSH terms: Emulsions/chemistry*
  11. Low JY, Khe CS, Usman F, Hassan YM, Lai CW, You KY, et al.
    Environ Res, 2024 Feb 15;243:117840.
    PMID: 38081342 DOI: 10.1016/j.envres.2023.117840
    Since the establishment of the first global refinery in 1856, crude oil has remained one of the most lucrative natural resources worldwide. However, during the extraction process from reservoirs, crude oil gets contaminated with sediments, water, and other impurities. The presence of pressure, shear forces, and surface-active compounds in crude oil leads to the formation of unwanted oil/water emulsions. These emulsions can take the form of water-in-oil (W/O) emulsions, where water droplets disperse continuously in crude oil, or oil-in-water (O/W) emulsions, where crude oil droplets are suspended in water. To prevent the spread of water and inorganic salts, these emulsions need to be treated and eliminated. In existing literature, different demulsification procedures have shown varying outcomes in effectively treating oil/water emulsions. The observed discrepancies have been attributed to various factors such as temperature, salinity, pH, droplet size, and emulsifier concentrations. It is crucial to identify the most effective demulsification approach for oil/water separation while adhering to environmental regulations and minimizing costs for the petroleum sector. Therefore, this study aims to explore and review recent advancements in two popular demulsification techniques: chemical demulsification and magnetic nanoparticles-based (MNP) demulsification. The advantages and disadvantages of each technique are assessed, with the magnetic approach emerging as the most promising due to its desirable efficiency and compliance with environmental and economic concerns. The findings of this report are expected to have a significant impact on the overall process of separating oil and water, benefiting the oil and gas industry, as well as other relevant sectors in achieving the circular economy.
    Matched MeSH terms: Emulsions/chemistry
  12. Rehman FU, Shah KU, Shah SU, Khan IU, Khan GM, Khan A
    Expert Opin Drug Deliv, 2017 Nov;14(11):1325-1340.
    PMID: 27485144 DOI: 10.1080/17425247.2016.1218462
    INTRODUCTION: Lipid-based drug delivery systems (LBDDS) are the most promising technique to formulate the poorly water soluble drugs. Nanotechnology strongly influences the therapeutic performance of hydrophobic drugs and has become an essential approach in drug delivery research. Self-nanoemulsifying drug delivery systems (SNEDDS) are a vital strategy that combines benefits of LBDDS and nanotechnology. SNEDDS are now preferred to improve the formulation of drugs with poor aqueous solubility. Areas covered: The review in its first part shortly describes the LBDDS, nanoemulsions and clarifies the ambiguity between nanoemulsions and microemulsions. In the second part, the review discusses SNEDDS and elaborates on the current developments and modifications in this area without discussing their associated preparation techniques and excipient properties. Expert opinion: SNEDDS have exhibit the potential to increase the bioavailability of poorly water soluble drugs. The stability of SNEDDS is further increased by solidification. Controlled release and supersaturation can be achieved, and are associated with increased patient compliance and improved drug loads, respectively. Presence of biodegradable ingredients and ease of large-scale manufacturing combined with a lot of 'drug-targeting opportunities' give SNEDDS a clear distinction and prominence over other solubility enhancement techniques.
    Matched MeSH terms: Emulsions/chemistry
  13. Choudhury H, Gorain B, Pandey M, Chatterjee LA, Sengupta P, Das A, et al.
    J Pharm Sci, 2017 07;106(7):1736-1751.
    PMID: 28412398 DOI: 10.1016/j.xphs.2017.03.042
    Being an emerging transdermal delivery tool, nanoemulgel, has proved to show surprising upshots for the lipophilic drugs over other formulations. This lipophilic nature of majority of the newer drugs developed in this modern era resulting in poor oral bioavailability, erratic absorption, and pharmacokinetic variations. Therefore, this novel transdermal delivery system has been proved to be advantageous over other oral and topical drug delivery to avoid such disturbances. These nanoemulgels are basically oil-in-water nanoemulsions gelled with the use of some gelling agent in it. This gel phase in the formulation is nongreasy, which favors user compliance and stabilizes the formulation through reduction in surface as well as interfacial tension. Simultaneously, it can be targeted more specifically to the site of action and can avoid first-pass metabolism and relieve the user from gastric/systemic incompatibilities. This brief review is focused on nanoemulgel as a better topical drug delivery system including its components screening, formulation method, and recent pharmacokinetic and pharmacodynamic advancement in research studies carried out by the scientists all over the world. Therefore, at the end of this survey it could be inferred that nanoemulgel can be a better and effective drug delivery tool for the topical system.
    Matched MeSH terms: Emulsions/chemistry*
  14. Ng SH, Woi PM, Basri M, Ismail Z
    J Nanobiotechnology, 2013;11:27.
    PMID: 24059593 DOI: 10.1186/1477-3155-11-27
    Palm oil esters (POEs) are esters derived from palm oil and oleyl alcohol have great potential in the cosmetic and pharmaceutical industries due to the excellent wetting behavior of the esters without the oily feel. The role of oil-in-water nanoemulsions loaded with tocotrienol sedimentation behavior was studied. LUMiFuge® 116 particle separation analyzer was used to investigate the sedimentation behavior of POEs/tocotrienol/xanthan gum nanoemulsion system during centrifugation. Analyzing the sedimentation kinetics of dispersions in a centrifugal field also yields information about the rheological behavior and structural stability.
    Matched MeSH terms: Emulsions/chemistry
  15. Han NS, Basri M, Abd Rahman MB, Abd Rahman RN, Salleh AB, Ismail Z
    J Cosmet Sci, 2012 Sep-Oct;63(5):333-44.
    PMID: 23089355
    Oil-in-water (O/W) nanoemulsions play an important key role in transporting bioactive compounds into a range of cosmeceutical products to the skin. Small droplet sizes have an inherent stability against creaming, sedimentation, flocculation, and coalescence. O/W emulsions varying in manufacturing process were prepared. The preparation and characterization of O/W nanoemulsions with average diameters of as low as 62.99 nm from palm oil esters were carried out. This was achieved using rotor-stator homogenizer and ultrasonic cavitation. Ultrasonic cell was utilized for the emulsification of palm oil esters and water in the presence of mixed surfactants, Tween 80 and Span 80 emulsions with a mean droplet size of 62.99 nm and zeta potential value at -37.8 mV. Results were comparable with emulsions prepared with rotor-stator homogenizer operated at 6000 rpm for 5 min. The stability of the emulsions was evaluated through rheology measurement properties. This included non-Newtonian viscosity, elastic modulus G', and loss modulus G″. A highly stable emulsion was prepared using ultrasonic cavitation comprising a very small particle size with higher zeta potential value and G' > G″ demonstrating gel-like behavior.
    Matched MeSH terms: Emulsions/chemistry*
  16. Tubesha Z, Imam MU, Mahmud R, Ismail M
    Molecules, 2013 Jun 26;18(7):7460-72.
    PMID: 23803717 DOI: 10.3390/molecules18077460
    Toxicological studies constitute an essential part of the effort in developing an herbal medicine into a drug product. A newly developed thymoquinone-rich fraction nanoemulsion (TQRFNE) has been prepared using a high pressure homogenizer. The purpose of this study was to investigate the potential acute toxicity of this nanoemulsion in Sprague Dawley rats. The acute toxicity studies were conducted as per the OECD guidelines 425, allowing for the use of test dose limit of 20 mL TQRFNE (containing 44.5 mg TQ)/kg. TQRFNE and distilled water (DW) as a control were administered orally to both sexes of rats on Day 0 and observed for 14 days. All the animals appeared normal, and healthy throughout the study. There was no observed mortality or any signs of toxicity during the experimental period. The effects of the TQRFNE and DW groups on general behavior, body weight, food and water consumption, relative organ weight, hematology, histopathology, and clinical biochemistry were measured. All the parameters measured were unaffected as compared to the control (DW) group. The administration of 20 mL TQRFNE /kg was not toxic after an acute exposure.
    Matched MeSH terms: Emulsions/chemistry
  17. Ali TH, Hussen RS, Heidelberg T
    Colloids Surf B Biointerfaces, 2014 Nov 1;123:981-5.
    PMID: 25465761 DOI: 10.1016/j.colsurfb.2014.10.054
    A series of sugar-based surfactants, involving a single hydrophobic chain (C12) and two side-by-side arranged head groups, was prepared form simple glucose precursors. All surfactants were highly water soluble and exhibited exclusively micellar assemblies. This behavior makes them interesting candidates for oil in water emulsifiers.
    Matched MeSH terms: Emulsions/chemistry*
  18. Lian Z, Chan Y, Luo Y, Yang X, Koh KS, Wang J, et al.
    Electrophoresis, 2020 06;41(10-11):891-901.
    PMID: 31998972 DOI: 10.1002/elps.201900403
    Scale-up in droplet microfluidics achieved by increasing the number of devices running in parallel or increasing the droplet makers in the same device can compromise the narrow droplet-size distribution, or requires high fabrication cost, when glass- or polymer-based microdevices are used. This paper reports a novel way using parallelization of needle-based microfluidic systems to form highly monodispersed droplets with enhanced production rates yet in cost-effective way, even when forming higher order emulsions with complex inner structure. Parallelization of multiple needle-based devices could be realized by applying commercially available two-way connecters and 3D-printed four-way connectors. The production rates of droplets could be enhanced around fourfold (over 660 droplets/min) to eightfold (over 1300 droplets/min) by two-way connecters and four-way connectors, respectively, for the production of the same kind of droplets than a single droplet maker (160 droplets/min). Additionally, parallelization of four-needle sets with each needle specification ranging from 34G to 20G allows for simultaneous generation of four groups of PDMS microdroplets with each group having distinct size yet high monodispersity (CV < 3%). Up to six cores can be encapsulated in double emulsion using two parallelly connected devices via tuning the capillary number of middle phase in a range of 1.31 × 10-4 to 4.64 × 10-4 . This study leads to enhanced production yields of droplets and enables the formation of groups of droplets simultaneously to meet extensive needs of biomedical and environmental applications, such as microcapsules with variable dosages for drug delivery or drug screening, or microcapsules with wide range of absorbent loadings for water treatment.
    Matched MeSH terms: Emulsions/chemistry
  19. Dua K, Malyla V, Singhvi G, Wadhwa R, Krishna RV, Shukla SD, et al.
    Chem Biol Interact, 2019 Feb 01;299:168-178.
    PMID: 30553721 DOI: 10.1016/j.cbi.2018.12.009
    Oxidative stress is intensely involved in enhancing the severity of various chronic respiratory diseases (CRDs) including asthma, chronic obstructive pulmonary disease (COPD), infections and lung cancer. Even though there are various existing anti-inflammatory therapies, which are not enough to control the inflammation caused due to various contributing factors such as anti-inflammatory genes and antioxidant enzymes. This leads to an urgent need of novel drug delivery systems to combat the oxidative stress. This review gives a brief insight into the biological factors involved in causing oxidative stress, one of the emerging hallmark feature in CRDs and particularly, highlighting recent trends in various novel drug delivery carriers including microparticles, microemulsions, microspheres, nanoparticles, liposomes, dendrimers, solid lipid nanocarriers etc which can help in combating the oxidative stress in CRDs and ultimately reducing the disease burden and improving the quality of life with CRDs patients. These carriers improve the pharmacokinetics and bioavailability to the target site. However, there is an urgent need for translational studies to validate the drug delivery carriers for clinical administration in the pulmonary clinic.
    Matched MeSH terms: Emulsions/chemistry
  20. Rehan F, Ahemad N, Gupta M
    Colloids Surf B Biointerfaces, 2019 Jul 01;179:280-292.
    PMID: 30981063 DOI: 10.1016/j.colsurfb.2019.03.051
    Casein nanomicelles, a major fraction of milk protein, are emerging as a novel drug delivery system owing to their various structural and functional properties. Casein is further divided into α-, β- and κ-casein, and to date various models have been proposed to describe casein structure, but still no definite structure presenting a detailed assembly of the casein micelle has been found. Thus far, the submicellar model and Horne and Holt model are the most accepted models. This article presents a detailed review of casein micelles and their fractions, and the physicochemical properties that account for their numerous applications in nutraceutics, pharmaceutics and cosmetics. Due to their nanosize and self-assembling nature, casein nanomicelles are considered as excellent delivery carriers to provide better bioavailability and stability of various compounds such as vitamins, oils, polyphenols, fattyacids and minerals. Their amphiphilic nature also provides a great opportunity to deliver hydrophobic bioactives in various drug delivery systems such as nanoparticles, nanomicelles, nanogels and nanoemulsions to improve drug binding and targeting.
    Matched MeSH terms: Emulsions/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links