Displaying publications 41 - 60 of 80 in total

Abstract:
Sort:
  1. Hossain MZ, Bakri MM, Yahya F, Ando H, Unno S, Kitagawa J
    Int J Mol Sci, 2019 Jan 27;20(3).
    PMID: 30691193 DOI: 10.3390/ijms20030526
    Dental pain is a common health problem that negatively impacts the activities of daily living. Dentine hypersensitivity and pulpitis-associated pain are among the most common types of dental pain. Patients with these conditions feel pain upon exposure of the affected tooth to various external stimuli. However, the molecular mechanisms underlying dental pain, especially the transduction of external stimuli to electrical signals in the nerve, remain unclear. Numerous ion channels and receptors localized in the dental primary afferent neurons (DPAs) and odontoblasts have been implicated in the transduction of dental pain, and functional expression of various polymodal transient receptor potential (TRP) channels has been detected in DPAs and odontoblasts. External stimuli-induced dentinal tubular fluid movement can activate TRP channels on DPAs and odontoblasts. The odontoblasts can in turn activate the DPAs by paracrine signaling through ATP and glutamate release. In pulpitis, inflammatory mediators may sensitize the DPAs. They could also induce post-translational modifications of TRP channels, increase trafficking of these channels to nerve terminals, and increase the sensitivity of these channels to stimuli. Additionally, in caries-induced pulpitis, bacterial products can directly activate TRP channels on DPAs. In this review, we provide an overview of the TRP channels expressed in the various tooth structures, and we discuss their involvement in the development of dental pain.
    Matched MeSH terms: Glutamic Acid/metabolism
  2. Tan JW, Tham CL, Israf DA, Lee SH, Kim MK
    Neurochem Res, 2013 Mar;38(3):512-8.
    PMID: 23224778 DOI: 10.1007/s11064-012-0943-6
    L-Glutamate plays a crucial role in neuronal cell death, which is known to be associated with various neurodegenerative diseases, such as Alzheimer's, Parkinson's, and Huntington's diseases. In this study, we investigated the protective effects of biochanin A, a phytoestrogen compound found mainly in Trifolium pratense, against L-glutamate-induced cytotoxicity in a PC12 cell line. Exposure of the cells to 10 mM L-glutamate was found to significantly increase cell viability loss and apoptosis, whereas pretreatment with various concentrations of biochanin A attenuated the cytotoxic effects of L-glutamate. Specifically, the pretreatment led to not only decreases in the release of lactate dehydrogenase, the number of apoptotic cells, and the activity of caspase-3 but also an increase in the total glutathione level in the L-glutamate-treated PC12 cells. These results indicate that biochanin A may be able to exert neuroprotective effects against L-glutamate-induced cytotoxicity. Furthermore, our findings also imply that biochanin A may act as an antiapoptotic agent in order to perform its protective function.
    Matched MeSH terms: Glutamic Acid/toxicity*
  3. Sani HA, Shariff FM, Rahman RNZRA, Leow TC, Salleh AB
    Mol Biotechnol, 2018 Jan;60(1):1-11.
    PMID: 29058211 DOI: 10.1007/s12033-017-0038-3
    The substitutions of the amino acid at the predetermined critical point at the C-terminal of L2 lipase may increase its thermostability and enzymatic activity, or even otherwise speed up the unfolding of the protein structure. The C-terminal of most proteins is often flexible and disordered. However, some protein functions are directly related to flexibility and play significant role in enzyme reaction. The critical point for mutation of L2 lipase structure was predicted at the position 385 of the L2 sequence, and the best three mutants were determined based on I-Mutant2.0 software. The best three mutants were S385E, S385I and S385V. The effects of the substitution of the amino acids at the critical point were analysed with molecular dynamics simulation by using Yet Another Scientific Artificial Reality Application software. The predicted mutant L2 lipases were found to have lower root mean square deviation value as compared to L2 lipase. It was indicated that all the three mutants had higher compactness in the structure, consequently enhanced the stability. Root mean square fluctuation analysis showed that the flexibility of L2 lipase was reduced by mutations. Purified S385E lipase had an optimum temperature of 80 °C in Tris-HCl pH 8. The highest enzymatic activity of purified S385E lipase was obtained at 80 °C temperature in Tris-HCl pH 8, while for L2 lipase it was at 70 °C in Glycine-NaOH pH 9. The thermal stability of S385V lipase was enhanced as compared to other protein since that the melting point (T m) value was at 85.96 °C. S385I lipase was more thermostable compared to recombinant L2 lipase and other mutants at temperature 60 °C within 16 h preincubation.
    Matched MeSH terms: Glutamic Acid/genetics
  4. Ng S, Lasekan O, Muhammad KS, Hussain N, Sulaiman R
    J Food Sci Technol, 2015 Oct;52(10):6623-30.
    PMID: 26396409 DOI: 10.1007/s13197-015-1737-z
    The seeds of Terminalia catappa from Malaysia were analyzed for their physicochemical properties. The following values were obtained: moisture 6.23 ± 0.09 %, ash 3.78 ± 0.04 %, lipid 54.68 ± 0.14 %, protein 17.66 ± 0.13 %, total dietary fibre 9.97 ± 0.08 %, carbohydrate 7.68 ± 0.06 %, reducing sugar 1.36 ± 0.16 %, starch 1.22 ± 0.15 %, caloric value 593.48 ± 0.24 %. Studies were also conducted on amino acid profile and free fatty acid composition of the seed oil. Results revealed that glutamic acid was the major essential amino acid while methionine and lysine were the limiting amino acids. The major saturated fatty acid was palmitic acid, while the main unsaturated fatty acid was oleic acid followed by linoleic acid. In addition, the seed was rich in sucrose and had trace amount of glucose and fructose. Briefly, the seed was high in proteins and lipids which are beneficial to human.
    Matched MeSH terms: Glutamic Acid
  5. Wan Saidatul Syida, W.K., Normah, I., Noriham, A., Mohd Yusuf, M.
    MyJurnal
    Processing of soybeans to other products and consumption of soy products is increasing worldwide mainly due to acclaimed health benefits. Processing can alter soybean sensory appeal, nutritive value and potentially affect consumer health. Rhizopus oligosporus was used to ferment soybean for 3 days. The tempeh flour (TF) was produced form tempeh while defatted tempeh flour (DTF) was then produced from TF by immersing in hexane solvent while soy protein isolate (SPI) was prepared from DTF by using alkali and acid followed by neutralization treatment. In this study, nutritional properties and amino acid content of tempeh, TF, DTF and SPI were determined. Therefore, the objective of this study is was to evaluate the effect of each treatment on the chemical composition and amino acid content for all the samples. The results showed that the nutritional properties (total ash, moisture, crude fat, total carbohydrate and crude fibre) were reduced significantly (p < 0.05) except for protein content. Protein content was significantly (p < 0.05) increased by 50.5% in SPI. For amino acid content, the results obtained showed that SPI contain highest amount of essential and non-essential amino acid followed by DTF, Tempeh and TF. Glutamic acid was found to be the highest amino acid component in all samples. The evaluation from the results showed that SPI can be considered as potential functional food ingredients.
    Matched MeSH terms: Glutamic Acid
  6. Abu Bakar NA, Sulaiman MR, Lajis N, Akhtar MN, Mohamad AS
    J Pharm Bioallied Sci, 2020 Nov;12(Suppl 2):S711-S717.
    PMID: 33828366 DOI: 10.4103/jpbs.JPBS_344_19
    Introduction: Pain is a major global health issue, where its pharmacotherapy prompts unwanted side effects; hence, the development of effective alternative compounds from natural derivatives with lesser side effects is clinically needed. Chalcone; the precursors of flavonoid, and its derivatives have been widely investigated due to its pharmacological properties.

    Objective: This study addressed the therapeutic effect of 3-(2,5-dimethoxyphenyl)-1-(5-methyl furan-2-yl) prop-2-en-1-one (DMPF-1); synthetic chalcone derivative, on antinociceptive activity in vivo.

    Materials and Methods: The antinociceptive profile was evaluated using acetic-acid-induced abdominal writhing, hot plate, and formalin-induced paw licking test. Capsaicin, phorbol 12-myristate 12 acetate (PMA), and glutamate-induced paw licking test were carried out to evaluate their potential effects toward different targets.

    Results: It was shown that the doses of 0.1, 0.5, 1, and 5 mg/kg of DMPF-1 given via intraperitoneal injection showed significant reduction in writhing responses and increased the latency time in hot-plate test where reduced time spent on licking the injected paw in formalin and dose contingency inhibition was observed. The similar results were observed in capsaicin, PMA, and glutamate-induced paw licking test. In addition, the challenge with nonselective opioid receptor antagonist (naloxone) aimed to evaluate the involvement of the opioidergic system, which showed no reversion in analgesic profile in formalin and hot-plate test.

    Conclusion: Collectively, this study showed that DMPF-1 markedly inhibits both peripheral and central nociception through the mechanism involving an interaction with vanilloid and glutamatergic system regardless of the activation of the opioidergic system.

    Matched MeSH terms: Glutamic Acid
  7. Hussin FS, Chay SY, Zarei M, Meor Hussin AS, Ibadullah WZW, Zaharuddin ND, et al.
    Foods, 2020 Dec 09;9(12).
    PMID: 33316941 DOI: 10.3390/foods9121826
    The current study evaluated the γ-aminobutyric acid (GABA) producing ability from three novel strains of lactic acid bacteria (L. plantarum Taj-Apis362, assigned as UPMC90, UPMC91, and UPMC1065) co-cultured with starter culture in a yogurt. A combination of UPMC90 + UPMC91 with starter culture symbiotically revealed the most prominent GABA-producing effect. Response surface methodology revealed the optimized fermentation conditions at 39.0 °C, 7.25 h, and 11.5 mM glutamate substrate concentration to produce GABA-rich yogurt (29.96 mg/100 g) with desirable pH (3.93) and water-holding capacity (63.06%). At 2% glucose to replace pyridoxal-5-phosphate (PLP), a cofactor typically needed during GABA production, GABA content was further enhanced to 59.00 mg/100 g. In vivo study using this sample revealed a blood pressure-lowering efficacy at 0.1 mg/kg GABA dosage (equivalent to 30 mg/kg GABA-rich yogurt) in spontaneously hypertensive rats. An improved method to produce GABA-rich yogurt has been established, involving shorter fermentation time and lower glutamate concentration than previous work, along with glucose induction that omits the use of costly PLP, fostering the potential of developing a GABA-rich functional dairy product through natural fermentation with desirable product quality and antihypertensive property.
    Matched MeSH terms: Glutamic Acid
  8. Chung YS, Choo BKM, Ahmed PK, Othman I, Shaikh MF
    Biomedicines, 2020 Jul 02;8(7).
    PMID: 32630817 DOI: 10.3390/biomedicines8070191
    The anticonvulsive potential of proteins extracted from Orthosiphon stamineus leaves (OSLP) has never been elucidated in zebrafish (Danio rerio). This study thus aims to elucidate the anticonvulsive potential of OSLP in pentylenetetrazol (PTZ)-induced seizure model. Physical changes (seizure score and seizure onset time, behavior, locomotor) and neurotransmitter analysis were elucidated to assess the pharmacological activity. The protective mechanism of OSLP on brain was also studied using mass spectrometry-based label-free proteomic quantification (LFQ) and bioinformatics. OSLP was found to be safe up to 800 µg/kg and pre-treatment with OSLP (800 µg/kg, i.p., 30 min) decreased the frequency of convulsive activities (lower seizure score and prolonged seizure onset time), improved locomotor behaviors (reduced erratic swimming movements and bottom-dwelling habit), and lowered the excitatory neurotransmitter (glutamate). Pre-treatment with OSLP increased protein Complexin 2 (Cplx 2) expression in the zebrafish brain. Cplx2 is an important regulator in the trans-SNARE complex which is required during the vesicle priming phase in the calcium-dependent synaptic vesicle exocytosis. Findings in this study collectively suggests that OSLP could be regulating the release of neurotransmitters via calcium-dependent synaptic vesicle exocytosis mediated by the "Synaptic Vesicle Cycle" pathway. OSLP's anticonvulsive actions could be acting differently from diazepam (DZP) and with that, it might not produce the similar cognitive insults such as DZP.
    Matched MeSH terms: Glutamic Acid
  9. MyJurnal
    Rubber seed as a waste product from rubber plantations contains nutritive values that can be harnessed
    as food for human, feed for animals or biofuel for energy. Proximate analysis showed moisture content of
    3.99%, protein content of 17.41 g/100g, fat content of 68.53 ± 0.04 g/100g and ash content of 3.08 ± 0.01
    g/100g. Amino acid in rubber seed is high in Glutamic acid (16.13%) and low in Cysteine (0.78%). Despite its potential as a source of protein, fresh rubber seeds contain a toxic factor, cyanogenetic glucoside (186 mg/kg). FAME analysis indicated that rubber seed oil is high in oleic, linoleic and linolenic acid. The fuel potential of rubber seed (585.41 kJ/kg) is in reasonable agreement with ASTM.
    Matched MeSH terms: Glutamic Acid
  10. Amiza, M.A., Ow, Y.W., Faazaz, A.L.
    MyJurnal
    The physicochemical properties of silver catfish frame hydrolysate powder at three different degree of hydrolysis, DH43%, DH 55% and DH 68% were studied. The hydrolysates powder were obtained by hydrolysis using Alcalase®, centrifugation and spray drying of the supernatant. The study found that preparation of these hydrolysates affected the protein, ash and fat content as well as amino acid composition. As for essential amino acids, their values were generally considered as adequate as compared to the suggested essential amino acids profile of FAO/WHO. The results showed that SFHs were rich in lysine and glutamate. Hydrolysate at DH 68% exhibited better peptide solubility and water holding capacity. As degree of hydrolysis increased, emulsifying capacity and foaming capacity of the hydrolysate decreased. It was also found that the lightness in hydrolysate powder decreased with increase in degree of hydrolysis. This study shows that silver catfish frame hydrolysate has good solubility, good foaming properties and light colour profile, thus having high potential as food ingredient.
    Matched MeSH terms: Glutamic Acid
  11. Zulkifli I, Shakeri M, Soleimani AF
    Poult Sci, 2016 Sep 1.
    PMID: 27587729
    This study was conducted to investigate the effect of dietary glutamine (Gln) + glutamic acid (Glu) supplementation on growth performance and physiological stress response in broiler chickens subjected to 24 h delay in placement. Equal number of day-old broiler chicks were assigned to either immediate placement or with 24 h delay in placement with no access to feed and water. Chicks from each placement group were fed either standard starter diet (control) or standard starter diet +1% AminoGut (AG; mixture of 10% Gln and 10% Glu) from 1 to 21 d. Blood and duodenal samples were collected at 21 d for analysis of serum levels of ceruloplasmin (CER), ovotransferin (OVT) and α-1 acid glycoprotein (AGP), duodenal heat shock protein (HSP) 70 expression, and villi length and crypt depth. Results showed that delayed placement for 24 h was detrimental to weight gain during the starter phase (1 to 21 d) but not thereafter. AG supplementation was not able to eliminate that reduction in weight gain and feed intake during the starter stage. However, the observed enhancement in villi length and crypt depth at d 21 resulted in improvement of FCR and weight gain during the finisher stage (22 to 42 d) and consequently the overall period (1 to 42 d). Broiler chickens supplemented with AG also showed lower mortality rate, and higher AGP, OVT, CER, and HSP 70 expression compared to their control counterparts. Based on AGP, OVT, CER, and HSP 70 expression, there is no indication that delayed placement was physiologically stressful to the broiler chickens at 21 d of age.
    Matched MeSH terms: Glutamic Acid
  12. Fatin Azwa Haruddin
    Orient Neuron Nexus, 2010;1(1):13-16.
    MyJurnal
    Traumatic brain injury (TBI) is known to inflict significant morbidity and mortality worldwide. In severe TBI cases, the resulting physical and cognitive impairments incur high management and rehabilitation costs that crucially involve monitoring intracranial pressure (ICP) and improving brain oxygenation. Normobaric Hyperoxia Treatment (NBOT) is a therapeutic strategy to improve brain oxygen metabolism and to decrease ICP by reducing tissue swelling and deactivating toxin. NBOT is administered by increasing the inspired oxygen concentration to 100% in normal atmospheric pressure. Previous studies involving NBOT had explored its effectiveness to salvage the TBI-related cognitive and motor deficits. However, the focus of these studies has frequently been on the cortical lesions despite the known facts that TBI often inflicts tissue damage to the subcortical areas such as the basal ganglia. There are growing evidence to support recent functional theories that implicate a pivotal role of the basal ganglia in regulating normal movements and cognition through dopamine (DA) and glutamate interaction. Thus, tissue damages leading to TBI-related motor and cognitive deficits may involve the different affected brain regions. This minireview attempts to highlight the key processes involved in the pathophysiology of severe TBI and offers insights into the role of NBOT by exploring its potential effects on the cerebral energy metabolism and gene expression patterns of dopamine receptor in a mouse model.
    Matched MeSH terms: Glutamic Acid
  13. Normah, I., Nurdalila Diyana, M.R.
    MyJurnal
    This study was conducted to evaluate umami taste in protein hydrolysate produced from green mussel (Perna viridis) by hydrolysing with flavorzyme at pH 8, enzyme substrate ratio (E/S) 3% with or without the presence of 0.4% sodium tripolyphosphate (STPP) and 1.5% NaCI. Degree of hydrolysis (DH), yield, amino acid compositions, molecular weight distribution and sensory evaluation were determined. The highest DH (23.18%), darkest color and highest yield (8.34%) were recorded for hydrolysate produced in the presence of both STPP and NaCI. Electrophoresis analysis showed the presence of protein bands between 10 to 70 kDa where hydrolysate with addition of STPP and NaCI had bands with lower intensities. Amino acids which contribute to the umami taste such as glutamic acid, glycine and aspartic acid were higher in hydrolysate produced with STPP and NaCI addition. The hydrolysate has lesser fishy odor and flavor than those produced with only in the presence of flavorzyme and was also rated with highest score for all the five basic tastes including bitterness. However, the score for bitterness was still lower than the reference solutions. Therefore, green mussel hydrolysate produced in this study has a good potential as a food flavorant.
    Matched MeSH terms: Glutamic Acid
  14. Zulfarina MS, Syarifah-Noratiqah SB, Nazrun SA, Sharif R, Naina-Mohamed I
    Clin Psychopharmacol Neurosci, 2019 May 31;17(2):145-154.
    PMID: 30905115 DOI: 10.9758/cpn.2019.17.2.145
    Panic disorder (PD) being one of the most intensively investigated anxiety disorders is considered a heterogeneous psychiatric disease which has difficulties with early diagnosis. The disorder is recurrent and usually associated with low remission rates and high rates of relapse which may exacerbated social and quality of life, causes unnecessary cost and increased risk for complication and suicide. Current pharmacotherapy for PD are available but these drugs have slow therapeutic onset, several side effects and most patients do not fully respond to these standard pharmacological treatments. Ongoing investigations indicate the need for new and promising agents for the treatment of PD. This article will cover the importance of immediate and proper treatment, the gap in the current management of PD with special emphasis on pharmacotherapy, and evidence regarding the novel anti-panic drugs including the drugs in developments such as metabotropic glutamate (mGlu 2/3) agonist and levetiracetam. Preliminary results suggest the anti-panic properties and the efficacy of duloxetine, reboxetine, mirtazapine, nefazodone, risperidone and inositol as a monotherapy drug. Apart for their effectiveness, the aforementioned compounds were generally well tolerated compared to the standard available pharmacotherapy drugs, indicating their potential therapeutic usefulness for ambivalent and hypervigilance patient. Further strong clinical trials will provide an ample support to these novel compounds as an alternative monotherapy for PD treatment-resistant patient.
    Matched MeSH terms: Glutamic Acid
  15. Faridah HS, Goh YM, Noordin MM, Liang JB
    Asian-Australas J Anim Sci, 2020 Dec;33(12):1965-1974.
    PMID: 32164059 DOI: 10.5713/ajas.19.0964
    OBJECTIVE: This study consisted of two stages; the first was to determine the effect of extrusion and sieving treatments on the chemical properties of palm kernel cake (PKC), and accordingly, a follow-up experiment (second stage) was conducted to determine and compare the apparent metabolizable energy (AME), and protein and amino acid digestibility of extruded and sieved PKC.

    METHODS: Two physical treatments, namely extrusion (using temperature profiles of 90°C/100°C/100°C, 90°C/100°C/110°C, and 90°C/100°C/120°C) and sieving (to 8 particles sizes ranging from >8.00 to 0.15 mm) were carried out to determine their effects on chemical properties, primarily crude protein (CP) and fiber contents of PKC. Based on the results from the above study, PKC that extruded with temperature profile 90/100/110°C and of sieved size between 1.5 to 0.15 mm (which made up of near 60% of total samples) were used to determine treatments effect on AME and CP and amino acid digestibility. The second stage experiment was conducted using 64 male Cobb 500 chickens randomly assigned to 16 cages (4 cages [or replicates] per treatment) to the following four dietary groups: i) basal (control) diet, ii) basal diet containing 20% untreated PKC, iii) basal diet containing 20% extruded PKC (EPKC), and iv) basal diet containing 20% sieved PKC (SPKC).

    RESULTS: Extrusion and sieving had no effect on CP and ash contents of PKC, however, both treatments reduced (p<0.05) crude fiber by 21% and 19%, respectively. Overall, extrusion and sieving reduced content of most of the amino acids except for aspartate, glutamate, alanine and lysine which increased, while serine, cysteine and tryptophan remained unchanged. Extrusion resulted in 6% increase (p<0.05) in AME and enhanced CP digestibility (p<0.05) by 32%, as compared to the untreated PKC while sieving had no effect on AME but improved CP digestibility by 39% which was not significantly different from that by extrusion.

    CONCLUSION: Extrusion is more effective than sieving and serves as a practical method to enhance AME and digestibility of CP and several amino acids in broiler chickens.

    Matched MeSH terms: Glutamic Acid
  16. Ng SW, Selvarajah GT, Cheah YK, Mustaffa Kamal F, Omar AR
    Pathogens, 2020 May 25;9(5).
    PMID: 32466289 DOI: 10.3390/pathogens9050412
    Feline infectious peritonitis (FIP) is a fatal feline immune-mediated disease caused by feline infectious peritonitis virus (FIPV). Little is known about the biological pathways associated in FIP pathogenesis. This is the first study aiming to determine the phenotypic characteristics on the cellular level in relation to specific metabolic pathways of importance to FIP pathogenesis.

    METHODS: The internalization of type II FIPV WSU 79-1146 in Crandell-Rees Feline Kidney (CrFK) cells was visualized using a fluorescence microscope, and optimization prior to phenotype microarray (PM) study was performed. Then, four types of Biolog Phenotype MicroArray™ plates (PM-M1 to PM-M4) precoated with different carbon and nitrogen sources were used to determine the metabolic profiles in FIPV-infected cells.

    RESULTS: The utilization of palatinose was significantly low in FIPV-infected cells; however, there were significant increases in utilizing melibionic acid, L-glutamine, L-glutamic acid and alanyl-glutamine (Ala-Gln) compared to non-infected cells.

    CONCLUSION: This study has provided the first insights into the metabolic profiling of a feline coronavirus infection in vitro using PMs and deduced that glutamine metabolism is one of the essential metabolic pathways for FIPV infection and replication. Further studies are necessary to develop strategies to target the glutamine metabolic pathway in FIPV infection.

    Matched MeSH terms: Glutamic Acid
  17. Kundap UP, Kumari Y, Othman I, Shaikh MF
    Front Pharmacol, 2017;8:515.
    PMID: 28824436 DOI: 10.3389/fphar.2017.00515
    Epilepsy is a neuronal disorder allied with distinct neurological and behavioral alterations characterized by recurrent spontaneous epileptic seizures. Impairment of the cognitive performances such as learning and memory is frequently observed in epileptic patients. Anti-epileptic drugs (AEDs) are efficient to the majority of patients. However, 30% of this population seems to be refractory to the drug treatment. These patients are not seizure-free and frequently they show impaired cognitive functions. Unfortunately, as a side effect, some AEDs could contribute to such impairment. The major problem associated with conducting studies on epilepsy-related cognitive function is the lack of easy, rapid, specific and sensitive in vivo testing models. However, by using a number of different techniques and parameters in the zebrafish, we can incorporate the unique feature of specific disorder to study the molecular and behavior basis of this disease. In the view of current literature, the goal of the study was to develop a zebrafish model of epilepsy induced cognitive dysfunction. In this study, the effect of AEDs on locomotor activity and seizure-like behavior was tested against the pentylenetetrazole (PTZ) induced seizures in zebrafish and epilepsy associated cognitive dysfunction was determined using T-maze test followed by neurotransmitter estimation and gene expression analysis. It was observed that all the AEDs significantly reversed PTZ induced seizure in zebrafish, but had a negative impact on cognitive functions of zebrafish. AEDs were found to modulate neurotransmitter levels, especially GABA, glutamate, and acetylcholine and gene expression in the drug treated zebrafish brains. Therefore, combination of behavioral, neurochemical and genenetic information, makes this model a useful tool for future research and discovery of newer and safer AEDs.
    Matched MeSH terms: Glutamic Acid
  18. Tewari D, Mocan A, Parvanov ED, Sah AN, Nabavi SM, Huminiecki L, et al.
    Front Pharmacol, 2017;8:518.
    PMID: 28860989 DOI: 10.3389/fphar.2017.00518
    Jaundice is a very common symptom especially in the developing countries. It is associated with several hepatic diseases which are still major causes of death. There are many different approaches to jaundice treatment and the growing number of ethnomedicinal studies shows the plant pharmacology as very promising direction. Many medicinal plants are used for the treatment of jaundice, however a comprehensive review on this subject has not been published. The use of medicinal plants in drug discovery is highly emphasized (based on their traditional and safe uses in different folk medicine systems from ancient times). Many sophisticated analytical techniques are emerging in the pharmaceutical field to validate and discover new biologically active chemical entities derived from plants. Here, we aim to classify and categorize medicinal plants relevant for the treatment of jaundice according to their origin, geographical location, and usage. Our search included various databases like Pubmed, ScienceDirect, Google Scholar. Keywords and phrases used for these searches included: "jaundice," "hyperbilirubinemia," "serum glutamate," "bilirubin," "Ayurveda." The first part of the review focuses on the variety of medicinal plant used for the treatment of jaundice (a total of 207 medicinal plants). In the second part, possible mechanisms of action of biologically active secondary metabolites of plants from five families for jaundice treatment are discussed.
    Matched MeSH terms: Glutamic Acid
  19. You W, Zhang J, Ru X, Xu F, Wu Z, Jin P, et al.
    Plant Physiol Biochem, 2024 Jan;206:108217.
    PMID: 38039581 DOI: 10.1016/j.plaphy.2023.108217
    The effect of calcium chloride (CaCl2) treatment on γ-aminobutyric acid (GABA) accumulation in fresh-cut cantaloupe and the involved mechanisms were investigated. The result showed that 1% (w/v) CaCl2 treatment increased GABA content and activities of glutamate decarboxylase (GAD) and succinate semialdehyde dehydrogenase (SSADH), while decreased glutamate (Glu) content and GABA transaminase (GABA-T) activities in fresh-cut cantaloupe. CmCML11 and CmCAMTA5 expressions of CaCl2-treated fruit increased by 187.4% and 165.6% than control fruit in the initial 6 h. Besides, expressions of GABA shunt genes, including CmGAD1, CmGAD2, CmGABA-T and CmSSADH were also up-regulated by CaCl2 treatment during early storage. Moreover, acting as a transcriptional activator, CmCAMTA5 could bind to the CG-box in promoters of CmGAD1, CmGABA-T and CmSSADH and activate their transcription. Furthermore, the interaction between CmCML11 and CmCAMTA5 could enhance the transcriptional activation on GABA shunt genes which were regulated by CmCAMTA5. Collectively, our findings revealed that CaCl2 treatment promoted GABA accumulation in fresh-cut cantaloupe via the combined effect of CmCML11 and CmCAMTA5 in the regulation of expressions of CmGAD1, CmGABA-T, and CmSSADH in GABA shunt.
    Matched MeSH terms: Glutamic Acid
  20. Guilhon CC, Abdul Wahab IR, Boylan F, Fernandes PD
    PMID: 26273315 DOI: 10.1155/2015/915927
    Pereskia bleo (Kunth) DC. (Cactaceae) is a plant commonly used in popular medicine in Malaysia. In this work, we evaluate the antinociceptive effect of P. bleo leaf extracts and isolated compounds in central antinociceptive model. Ethanol extract (E), hexane (H), ethyl acetate (EA), or butanol (B) fractions (30, 50, or 100 mg/kg, p.o.), sitosterol (from hexane) and vitexin (from ethyl acetate), were administered to mice. Antinociceptive effect was evaluated in the hot plate and capsaicin- or glutamate-induced licking models. Morphine (1 mg/kg, p.o.) was used as reference drug. Naloxone (1 mg/kg, i.p.), atropine (1 mg/kg, i.p.), and L-nitro arginine methyl ester (L-NAME, 3 mg/kg, i.p.) were administered 30 min earlier (100 mg/kg, p.o.) in order to evaluate the mechanism of the antinociceptive action. Higher dose of B developed an effect significantly superior to morphine-treated group. Naloxone prevented the antinociceptive effect of all fractions. L-NAME demonstrated effect against E, EA, and B. In all fractions, sitosterol and vitexin reduced the licking time after capsaicin injection. Glutamate-induced licking response was blocked by H, EA, and B. Our results indicate that Pereskia bleo fractions, sitosterol and vitexin, possessed a central antinociceptive effect. Part of this effect is mediated by opioid receptors and nitrergic pathway.
    Matched MeSH terms: Glutamic Acid
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links