Displaying publications 41 - 60 of 68 in total

Abstract:
Sort:
  1. Javid MT, Rahim F, Taha M, Rehman HU, Nawaz M, Wadood A, et al.
    Bioorg Chem, 2018 08;78:201-209.
    PMID: 29597114 DOI: 10.1016/j.bioorg.2018.03.022
    α-Glucosidase is a catabolic enzyme that regulates the body's plasma glucose levels by providing energy sources to maintain healthy functioning. 2-Amino-thiadiazole (1-13) and 2-amino-thiadiazole based Schiff bases (14-22) were synthesized, characterized by 1H NMR and HREI-MS and screened for α-glucosidase inhibitory activity. All twenty-two (22) analogs exhibit varied degree of α-glucosidase inhibitory potential with IC50 values ranging between 2.30 ± 0.1 to 38.30 ± 0.7 μM, when compare with standard drug acarbose having IC50 value of 39.60 ± 0.70 μM. Among the series eight derivatives 1, 2, 6, 7, 14, 17, 19 and 20 showed outstanding α-glucosidase inhibitory potential with IC50 values of 3.30 ± 0.1, 5.80 ± 0.2, 2.30 ± 0.1, 2.70 ± 0.1, 2.30 ± 0.1, 5.50 ± 0.1, 4.70 ± 0.2, and 5.50 ± 0.2 μM respectively, which is many fold better than the standard drug acarbose. The remaining analogs showed good to excellent α-glucosidase inhibition. Structure activity relationship has been established for all compounds. The binding interactions of these compounds were confirmed through molecular docking.
    Matched MeSH terms: Glycoside Hydrolase Inhibitors/pharmacology*
  2. Taha M, Rahim F, Imran S, Ismail NH, Ullah H, Selvaraj M, et al.
    Bioorg Chem, 2017 10;74:30-40.
    PMID: 28750203 DOI: 10.1016/j.bioorg.2017.07.009
    Discovery of α-glucosidase inhibitors has been actively pursued with the aim to develop therapeutics for the treatment of type-II diabetes mellitus and the other carbohydrate mediated disease. In continuation of our drug discovery research on potential antidiabetic agents, we synthesized novel tris-indole-oxadiazole hybrid analogs (1-21), structurally characterized by various spectroscopic techniques such as 1H NMR, EI-MS, and 13C NMR. Elemental analysis was found in agreement with the calculated values. All compounds were evaluated for α-glucosidase inhibiting potential and showed potent inhibitory activity in the range of IC50=2.00±0.01-292.40±3.16μM as compared to standard acarbose (IC50=895.09±2.04µM). The pharmacokinetic predictions of tris-indole series using descriptor properties showed that almost all compounds in this series indicate the drug aptness. Detailed binding mode analyses with docking simulation was also carried out which showed that the inhibitors can be stabilized by the formation of hydrogen bonds with catalytic residues and the establishment of hydrophobic contacts at the opposite side of the active site.
    Matched MeSH terms: Glycoside Hydrolase Inhibitors/pharmacology*
  3. Taha M, Alrashedy AS, Almandil NB, Iqbal N, Anouar EH, Nawaz M, et al.
    Int J Biol Macromol, 2021 Nov 01;190:301-318.
    PMID: 34481854 DOI: 10.1016/j.ijbiomac.2021.08.207
    In this study, we have investigated a series of indole-based compounds for their inhibitory study against pancreatic α-amylase and intestinal α-glucosidase activity. Inhibitors of carbohydrate degrading enzymes appear to have an essential role as antidiabetic drugs. All analogous exhibited good to moderate α-amylase (IC50 = 3.80 to 47.50 μM), and α-glucosidase inhibitory interactions (IC50 = 3.10-52.20 μM) in comparison with standard acarbose (IC50 = 12.28 μM and 11.29 μM). The analogues 4, 11, 12, 15, 14 and 17 had good activity potential both for enzymes inhibitory interactions. Structure activity relationships were deliberated to propose the influence of substituents on the inhibitory potential of analogues. Docking studies revealed the interaction of more potential analogues and enzyme active site. Further, we studied their kinetic study of most active compounds showed that compounds 15, 14, 12, 17 and 11 are competitive for α-amylase and non- competitive for α-glucosidase.
    Matched MeSH terms: Glycoside Hydrolase Inhibitors/pharmacology*
  4. Taha M, Shah SAA, Afifi M, Imran S, Sultan S, Rahim F, et al.
    Bioorg Chem, 2018 04;77:586-592.
    PMID: 29477126 DOI: 10.1016/j.bioorg.2018.01.033
    We have synthesized seventeen Coumarin based derivatives (1-17), characterized by 1HNMR, 13CNMR and EI-MS and evaluated for α-glucosidase inhibitory potential. Among the series, all derivatives exhibited outstanding α-glucosidase inhibition with IC50 values ranging between 1.10 ± 0.01 and 36.46 ± 0.70 μM when compared with the standard inhibitor acarbose having IC50 value 39.45 ± 0.10 μM. The most potent derivative among the series is derivative 3 having IC50 value 1.10 ± 0.01 μM, which are many folds better than the standard acarbose. The structure activity relationship (SAR) was mainly based upon by bring about difference of substituent's on phenyl part. Molecular docking studies were carried out to understand the binding interaction of the most active compounds.
    Matched MeSH terms: Glycoside Hydrolase Inhibitors/pharmacology*
  5. Nafeesa K, Aziz-Ur-Rehman -, Abbasi MA, Siddiqui SZ, Rasool S, Ali Shah SA, et al.
    Pak J Pharm Sci, 2019 Nov;32(6):2651-2658.
    PMID: 31969298
    A series of 1, 2, 4-triazole derivatives bearing piperidine moiety has been introduced as new anti-diabetic drug candidates with least cytotoxicity. p-Chlorophenylsulfonyl chloride (1) and ethyl nipecotate (2) were the starting reagents that resulted into corresponding 3,4,5-trisubstituted-1,2,4-triazole (6) through a series of steps. A series of electrophiles, 9a-e, were synthesized by reacting 4-bromobutyryl chloride (7) with differently substituted aromatic amines (8a-e) under basic aqueous medium. Target derivatives, 10a-e, were synthesized by the reaction of compound 6 with N-aryl-4-bromobutanamides (9a-e) in an aprotic solvent. Structures of all the derivatives were verified by spectroscopic analysis using IR, 1H-NMR, 13C-NMR and EIMS. Most of the derivatives revealed moderate to good α-glucosidase inhibitory activity with reference to acarbose. The moderate hemolytic potential demonstrated least toxicity.
    Matched MeSH terms: Glycoside Hydrolase Inhibitors/pharmacology
  6. Pramai P, Abdul Hamid NA, Mediani A, Maulidiani M, Abas F, Jiamyangyuen S
    J Food Drug Anal, 2018 01;26(1):47-57.
    PMID: 29389588 DOI: 10.1016/j.jfda.2016.11.023
    In an attempt to profile the metabolites of three different varieties of germinated rice, specifically black (GBR), red, and white rice, a 1H-nuclear-magnetic-resonance-based metabolomics approach was conducted. Multivariate data analysis was applied to discriminate between the three different varieties using a partial least squares discriminant analysis (PLS-DA) model. The PLS model was used to evaluate the relationship between chemicals and biological activities of germinated rice. The PLS-DA score plot exhibited a noticeable separation between the three rice varieties into three clusters by PC1 and PC2. The PLS model indicated that α-linolenic acid, γ-oryzanol, α-tocopherol, γ-aminobutyric acid, 3-hydroxybutyric acid, fumaric acid, fatty acids, threonine, tryptophan, and vanillic acid were significantly correlated with the higher bioactivities demonstrated by GBR that was extracted in 100% ethanol. Subsequently, the proposed biosynthetic pathway analysis revealed that the increased quantities of secondary metabolites found in GBR may contribute to its nutritional value and health benefits.
    Matched MeSH terms: Glycoside Hydrolase Inhibitors/pharmacology*
  7. Jani NA, Sirat HM, Ahmad F, Mohamad Ali NA, Jamil M
    Nat Prod Res, 2017 Dec;31(23):2793-2796.
    PMID: 28278643 DOI: 10.1080/14786419.2017.1294172
    Hydrodistillation of the fresh stem and leaf of Neolitsea kedahense Gamble, collected from Gunung Jerai, Malaysia followed by the GC-FID and GC-MS analysis revealed the detection of a total of 47 constituents of which 28 (86.4%) from the stem and 31 (96.4%) constituents from the leaf. δ-Cadinene (17.4%), 1-epi-cubenol (11.8%), cyperotundone (9.0%), cis-cadin-4-en-7-ol (7.7%), τ-cadinol (7.1%) and α-cadinol (7.1%) were the principle constituents in the stem oil, whereas β-caryophyllene (18.9%), bicyclogermacrene (18.6%) and trans-muurola-4(14),5-diene (9.8%) were the major constituents in the leaf oil. Among the identified constituents, three constituents namely 7-epi-α-selinene, junenol and cis-cadin-4-en-7-ol have not been found previously from Neolitsea oils. The stem and leaf oils were screened for their α-glucosidase inhibitory and antibacterial activities. Both oils displayed potential α-glucosidase inhibitory activity, while the stem oil possessed weak antibacterial activity against Bacillus subtilis.
    Matched MeSH terms: Glycoside Hydrolase Inhibitors/pharmacology*
  8. Ahmed AS, Ahmed Q, Saxena AK, Jamal P
    Pak J Pharm Sci, 2017 Jan;30(1):113-126.
    PMID: 28603121
    Inhibition of intestinal α-amylase and α-glucosidase is an important strategy to regulate diabetes mellitus (DM). Antioxidants from plants are widely regarded in the prevention of diabetes. Fruits of Elettaria cardamomum (L.) Maton (Zingiberaceae) and Piper cubeba L. f. (Piperaceae) and flowers of Plumeria rubra L. (Apocynaceae) are traditionally used to cure DM in different countries. However, the role of these plants has been grossly under reported and is yet to receive proper scientific evaluation with respect to understand their traditional role in the management of diabetes especially as digestive enzymes inhibitors. Hence, methanol and aqueous extracts of the aforementioned plants were evaluated for their in vitro α-glucosidase and α-amylase inhibition at 1 mg/mL and quantification of their antioxidant properties (DPPH, FRAP tests, total phenolic and total flavonoids contents). In vitro optimization studies for the extracts were also performed to enhance in vitro biological activities. The % inhibition of α-glucosidase by the aqueous extracts of the fruits of E. cardamomum, P. cubeba and flowers of P. rubra were 10.41 (0.03), 95.19 (0.01), and -2.92 (0.03), while the methanol extracts exhibited % inhibition 13.73 (0.02), 92.77 (0.01), and -0.98 (0.01), respectively. The % inhibition of α-amylase by the aqueous extracts were 82.99 (0.01), 64.35 (0.01), and 20.28 (0.02), while the methanol extracts displayed % inhibition 39.93 (0.01), 31.06 (0.02), and 39.40 (0.01), respectively. Aqueous extracts displayed good in vitro antidiabetic and antioxidant activities. Moreover, in vitro optimization experiments helped to increase the α-glucosidase inhibitory activity of E. cardamomum. Our findings further justify the traditional claims of these plants as folk medicines to manage diabetes, however, through digestive enzymes inhibition effect.
    Matched MeSH terms: Glycoside Hydrolase Inhibitors/pharmacology
  9. Kasim N, Afzan A, Mediani A, Low KH, Ali AM, Mat N, et al.
    Phytochem Anal, 2022 Dec;33(8):1235-1245.
    PMID: 36192845 DOI: 10.1002/pca.3175
    INTRODUCTION: Ficus deltoidea Jack (Moraceae) is a plant used in Malaysia to treat various ailments, including diabetes. The presence of several varieties raises essential questions regarding which is the potential bioactive variety and what are the bioactive metabolites.

    OBJECTIVES: Here, we explored the phytochemical diversity of the seven varieties from Peninsular Malaysia using Nuclear Magnetic Resonance (NMR) and Liquid Chromatography-Mass Spectrometry (LC-MS) analyses and correlated it with the α-glucosidase inhibitory activity.

    METHODOLOGY: The Nuclear Overhauser Effect Spectroscopy (NOESY) One-Dimensional (1D)-NMR and LC-MS data were processed, annotated, and correlated with in vitro α-glucosidase inhibitory using multivariate data analysis.

    RESULTS: The α-glucosidase results demonstrated that different varieties have varying inhibitory effects, with the highest inhibition rate being F. deltoidea var. trengganuensis and var. kunstleri. Furthermore, diverse habitats and plant ages could also influence the inhibitory rate. The heat map from NMR and LC-MS profiles showed unique patterns according to varying levels of α-glucosidase inhibition rate. The Partial Least Squares (PLS) model constructed from both NMR and LC-MS further confirmed the correlation between the α-glucosidase inhibition rate of F. deltoidea varieties and its metabolite profiles. The Variable Influence on Projection (VIP) and correlation coefficient (p(corr)) values values were used to determine the highly relevant metabolites for explaining the anticipated inhibitory action.

    CONCLUSION: NMR and LC-MS annotations allow the identification of flavan-3-ols and proanthocyanidins as the key bioactive factors. Our current results demonstrated the value of multivariate data analysis to predict the quality of herbal materials from both biological and chemical aspects.

    Matched MeSH terms: Glycoside Hydrolase Inhibitors/pharmacology
  10. Iftikhar M, Shahnawaz, Saleem M, Riaz N, Aziz-Ur-Rehman, Ahmed I, et al.
    Arch Pharm (Weinheim), 2019 Dec;352(12):e1900095.
    PMID: 31544284 DOI: 10.1002/ardp.201900095
    A series of new N-aryl/aralkyl derivatives of 2-methyl-2-{5-(4-chlorophenyl)-1,3,4-oxadiazole-2ylthiol}acetamide were synthesized by successive conversions of 4-chlorobenzoic acid (a) into ethyl 4-chlorobenzoate (1), 4-chlorobenzoylhydrazide (2) and 5-(4-chlorophenyl)-1,3,4-oxadiazole-2-thiol (3), respectively. The required array of compounds (6a-n) was obtained by the reaction of 1,3,4-oxadiazole (3) with various electrophiles (5a-n) in the presence of DMF (N,N-dimethylformamide) and sodium hydroxide at room temperature. The structural determination of these compounds was done by infrared, 1 H-NMR (nuclear magnetic resonance), 13 C-NMR, electron ionization mass spectrometry, and high-resolution electron ionization mass spectrometry analyses. All compounds were evaluated for their α-glucosidase inhibitory potential. Compounds 6a, 6c-e, 6g, and 6i were found to be promising inhibitors of α-glucosidase with IC50 values of 81.72 ± 1.18, 52.73 ± 1.16, 62.62 ± 1.15, 56.34 ± 1.17, 86.35 ± 1.17, 52.63 ± 1.16 µM, respectively. Molecular modeling and ADME (absorption, distribution, metabolism, excretion) predictions supported the findings. The current synthesized library of compounds was achieved by utilizing very common raw materials in such a way that the synthesized compounds may prove to be promising drug leads.
    Matched MeSH terms: Glycoside Hydrolase Inhibitors/pharmacology
  11. Nawaz M, Taha M, Qureshi F, Ullah N, Selvaraj M, Shahzad S, et al.
    J Biomol Struct Dyn, 2022;40(21):10730-10740.
    PMID: 34463216 DOI: 10.1080/07391102.2021.1947892
    Herein, we report the synthesis and inhibitory potential of indazole (Methyl 1H-indazole-4-carboxylate) derivatives (1-13) against α-amylase and α-glucosidase enzymes. The described derivatives demonstrated good inhibitory potential with IC50 values, ranging between 15.04 ± 0.05 to 76.70 ± 0.06 µM ± SEM for α-amylase and 16.99 ± 0.19 to 77.97 ± 0.19 µM ± SEM for α-glucosidase, respectively. In particular, compounds (8-10 and 12) displayed significant inhibitory activities against both the screened enzymes, with their inhibitory potential comparable to the standard acarbose (12.98 ± 0.03 and 12.79 ± 0.17 µM ± SEM, respectively). Additionally, the influence of different substituents on enzyme inhibition activities was assessed to study the structure activity relationships. Molecular docking simulations were performed to rationalize the binding of derivatives/compounds with enzymes. All the synthesized derivatives (1-13) were characterized with the aid of spectroscopic instruments such as 1H-NMR, 13C-NMR, HR-MS, elemental analysis and FTIR.Communicated by Ramaswamy H. Sarma.
    Matched MeSH terms: Glycoside Hydrolase Inhibitors/pharmacology
  12. Nipun TS, Khatib A, Ibrahim Z, Ahmed QU, Redzwan IE, Saiman MZ, et al.
    Molecules, 2020 Dec 12;25(24).
    PMID: 33322801 DOI: 10.3390/molecules25245885
    Psychotria malayana Jack has traditionally been used to treat diabetes. Despite its potential, the scientific proof in relation to this plant is still lacking. Thus, the present study aimed to investigate the α-glucosidase inhibitors in P.malayana leaf extracts using a metabolomics approach and to elucidate the ligand-protein interactions through in silico techniques. The plant leaves were extracted with methanol and water at five various ratios (100, 75, 50, 25 and 0% v/v; water-methanol). Each extract was tested for α-glucosidase inhibition, followed by analysis using liquid chromatography tandem to mass spectrometry. The data were further subjected to multivariate data analysis by means of an orthogonal partial least square in order to correlate the chemical profile and the bioactivity. The loading plots revealed that the m/z signals correspond to the activity of α-glucosidase inhibitors, which led to the identification of three putative bioactive compounds, namely 5'-hydroxymethyl-1'-(1, 2, 3, 9-tetrahydro-pyrrolo (2, 1-b) quinazolin-1-yl)-heptan-1'-one (1), α-terpinyl-β-glucoside (2), and machaeridiol-A (3). Molecular docking of the identified inhibitors was performed using Auto Dock Vina software against the crystal structure of Saccharomyces cerevisiae isomaltase (Protein Data Bank code: 3A4A). Four hydrogen bonds were detected in the docked complex, involving several residues, namely ASP352, ARG213, ARG442, GLU277, GLN279, HIE280, and GLU411. Compound 1, 2, and 3 showed binding affinity values of -8.3, -7.6, and -10.0 kcal/mol, respectively, which indicate the good binding ability of the compounds towards the enzyme when compared to that of quercetin, a known α-glucosidase inhibitor. The three identified compounds that showed potential binding affinity towards the enzymatic protein in molecular docking interactions could be the bioactive compounds associated with the traditional use of this plant.
    Matched MeSH terms: Glycoside Hydrolase Inhibitors/pharmacology
  13. Zaharudin N, Staerk D, Dragsted LO
    Food Chem, 2019 Jan 01;270:481-486.
    PMID: 30174076 DOI: 10.1016/j.foodchem.2018.07.142
    A 5 mg/mL solution of water, methanol and acetone extracts of seaweeds were used for α-glucosidase inhibition assay hyphenated with high performance liquid chromatography-mass spectrometry (HPLC-HRMS). The results showed acetone extracts of Undaria pinnatifida has the strongest inhibitory effect against α-glucosidase activity with IC50 0.08 ± 0.002 mg/mL. The active compound found in Undaria pinnatifida was identified as fucoxanthin. Analytical standard sample of fucoxanthin significantly inhibited α-glucosidase with IC50 value 0.047 ± 0.001 mg/mL. An inhibition kinetics study indicates that fucoxanthin is showing mixed-type inhibition. These results suggest that Undaria pinnatifida has a potential to inhibit α-glucosidase and may be used as a bioactive food ingredient for glycaemic control.
    Matched MeSH terms: Glycoside Hydrolase Inhibitors/pharmacology*
  14. Taha M, Ismail NH, Lalani S, Fatmi MQ, Atia-Tul-Wahab, Siddiqui S, et al.
    Eur J Med Chem, 2015 Mar 6;92:387-400.
    PMID: 25585009 DOI: 10.1016/j.ejmech.2015.01.009
    In an effort to design and synthesize a new class of α-glucosidase inhibitor, we synthesized benzothiazole hybrid having benzohydrazide moiety (5). Compound 5 was reacted with various substituted aryl aldehyde to generate a small library of compounds 6-35. Synthesis of compounds was confirmed by the spectral information. These compounds were screened for their α-glucosidase activity. They showed a varying degree of α-glucosidase inhibition with IC50 values ranging between 5.31 and 53.34 μM. Compounds 6, 7, 9-16, 19, 21-30, 32-35 showed superior activity as compared to standard acarbose (IC50 = 906 ± 6.3 μM). This has identified a new class of α-glucosidase inhibitors. The predicted physico-chemical properties indicated the drug appropriateness for most of these compounds, as they obey Lipinski's rule of five (RO5). A hybrid B3LYP density functional theory (DFT) was employed for energy, minimization of 3D structures for all synthetic compounds using 6-311 + G(d,p) basis sets followed by molecular docking to explore their interactions with human intestinal C- and N-terminal domains of α-glucosidase. All compounds bind to the prospective allosteric site of the C- terminal domain, and consequently, may be considered as mixed inhibitors. It was hypothesized that both the dipole moment and H-bond interactions govern the biological activation of these compounds.
    Matched MeSH terms: Glycoside Hydrolase Inhibitors/pharmacology*
  15. Khan KM, Rahim F, Wadood A, Kosar N, Taha M, Lalani S, et al.
    Eur J Med Chem, 2014 Jun 23;81:245-52.
    PMID: 24844449 DOI: 10.1016/j.ejmech.2014.05.010
    In our effort directed toward the discovery of new anti-diabetic agent for the treatment of diabetes, a library of biscoumarin derivative 1-18 was synthesized and evaluated for α-glucosidase inhibitory potential. All eighteen (18) compounds displayed assorted α-glucosidase activity with IC50 values 16.5-385.9 μM, if compared with the standard acarbose (IC50 = 906 ± 6.387 μM). In addition, molecular docking studies were carried out to explore the binding interactions of biscoumarin derivatives with the enzyme. This study has identified a new class of potent α-glucosidase inhibitors.
    Matched MeSH terms: Glycoside Hydrolase Inhibitors/pharmacology*
  16. Mphahlele MJ, Magwaza NM, Malindisa ST, Choong YS
    Chem Biol Drug Des, 2021 08;98(2):234-247.
    PMID: 34013660 DOI: 10.1111/cbdd.13893
    The 2-aryl-2,3-dihydrobenzodiazaborinin-4(1H)-ones (azaborininone) were synthesized as analogues of the 2-arylquinazoline-4-ones and screened through enzymatic assay in vitro for inhibitory effect against α-glucosidase and α-amylase activities. These azaborininones exhibited moderate to good inhibitory effect against these enzymes compared to acarbose used as a reference standard. The results are supported by the enzyme-ligand interactions through kinetics (in vitro) and molecular docking (in silico) studies. The test compounds also exhibited significant antioxidant activity through the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and nitric oxide (NO) free radical scavenging assays. These azaborininone derivatives exhibited no effect on the viability of the human lung cancer (A549) cell line after 24 hr and were also not toxic towards the Vero cells.
    Matched MeSH terms: Glycoside Hydrolase Inhibitors/pharmacology
  17. Mphahlele MJ, Agbo EN, Choong YS
    Molecules, 2021 May 04;26(9).
    PMID: 34064448 DOI: 10.3390/molecules26092692
    The 2-amino-5-(3/4-fluorostyryl)acetophenones were prepared and reacted with benzaldehyde derivatives to afford the corresponding 5-styryl-2-aminochalcone hybrids. The trans geometry of the styryl and α,β-unsaturated carbonyl arms, and the presence of NH…O intramolecular hydrogen bond were validated using 1H-NMR and X-ray data. The 2-amino-5-styrylacetophenones and their 5-styryl-2-aminochalcone derivatives were screened in vitro for their capability to inhibit α-glucosidase and/or α-amylase activities. Their antioxidant properties were evaluated in vitro through the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and nitric oxide (NO) free radical scavenging assays. Kinetic studies of the most active derivatives from each series against α-glucosidase and/or α-amylase activities have been performed supported by molecular docking studies to determine plausible protein-ligand interactions on a molecular level. The key aspects of the pharmacokinetics of these compounds, i.e., absorption, distribution, metabolism, and excretion have also been simulated at theoretical level. The most active compounds from each series, namely, 2a and 3e, were evaluated for cytotoxicity against the normal monkey kidney cells (Vero cells) and the adenocarcinomic human epithelial (A549) cell line to establish their safety profile at least in vitro.
    Matched MeSH terms: Glycoside Hydrolase Inhibitors/pharmacology
  18. Oyewusi HA, Wu YS, Safi SZ, Wahab RA, Hatta MHM, Batumalaie K
    J Biomol Struct Dyn, 2023;41(13):6203-6218.
    PMID: 35904027 DOI: 10.1080/07391102.2022.2104375
    Diabetes mellitus (DM) is a global chronic disease characterized by hyperglycemia and insulin resistance. The unsavory severe gastrointestinal side-effects of synthetic drugs to regulate hyperglycemia have warranted the search for alternative treatments to inhibit the carbohydrate digestive enzymes (e.g. α-amylase and α-glucosidase). Certain phytochemicals recently captured the scientific community's attention as carbohydrate digestive enzyme inhibitors due to their low toxicity and high efficacy, specifically the Withanolides-loaded extract of Withania somnifera. That said, the present study evaluated in silico the efficacy of Withanolide A in targeting both α-amylase and α-glucosidase in comparison to the synthetic drug Acarbose. Protein-ligand interactions, binding affinity, and stability were characterized using pharmacological profiling, high-end molecular docking, and molecular-dynamic simulation. Withanolide A inhibited the activity of α-glucosidase and α-amylase better, exhibiting good pharmacokinetic properties, absorption, and metabolism. Also, Withanolide A was minimally toxic, with higher bioavailability. Interestingly, Withanolide A bonded well to the active site of α-amylase and α-glucosidase, yielding the lowest binding free energy of -82.144 ± 10.671 kcal/mol and -102.1043 ± 11.231 kcal/mol compared to the Acarbose-enzyme complexes (-63.220 ± 13.283 kcal/mol and -82.148 ± 10.671 kcal/mol). Hence, the findings supported the therapeutic potential of Withanolide A as α-amylase and α-glucosidase inhibitor for DM treatment.Communicated by Ramaswamy H. Sarma.
    Matched MeSH terms: Glycoside Hydrolase Inhibitors/pharmacology
  19. Sivasothy Y, Loo KY, Leong KH, Litaudon M, Awang K
    Phytochemistry, 2016 Feb;122:265-269.
    PMID: 26712615 DOI: 10.1016/j.phytochem.2015.12.007
    A dimeric acylphenol and a potent α-glucosidase inhibitor, giganteone D (IC50 5.05μM), was isolated and characterized from the bark of Myristica cinnamomea King. The bark also yielded an acylphenol with an unprecedented skeleton for which the name cinnamomeone A (IC50 358.80μM) was proposed. Their structures were established by means of NMR and MS spectrometric analyses. The Lineweaver-Burk plot of giganteone D indicated that it was a mixed-type inhibitor. This is the first report on the α-glucosidase inhibiting potential of acylphenols.
    Matched MeSH terms: Glycoside Hydrolase Inhibitors/pharmacology*
  20. Noreen T, Taha M, Imran S, Chigurupati S, Rahim F, Selvaraj M, et al.
    Bioorg Chem, 2017 06;72:248-255.
    PMID: 28482265 DOI: 10.1016/j.bioorg.2017.04.010
    Twenty five derivatives of indole carbohydrazide (1-25) had been synthesized. These compounds were characterized using 1H NMR and EI-MS, and further evaluated for their α-amylase inhibitory potential. The analogs (1-25) showed varying degree of α-amylase inhibitory potential. ranging between 9.28 and 599.0µM when compared with standard acarbose having IC50 value 8.78±0.16µM. Six analogs, 25 (IC50=9.28±0.153µM), 22 (IC50=9.79±0.43µM), 4 (IC50=11.08±0.357µM), 1 (IC50=12.65±0.169µM), 8 (IC50=21.37±0.07µM) and 14 (IC50=43.21±0.14µM) showed potent α-amylase inhibition as compared to the standard acarbose (IC50=8.78±0.16µM). All other analogs displayed good to moderate inhibitory potential. Structure-activity relationship was established through the interaction of the active compounds with enzyme active site with the help of docking studies.
    Matched MeSH terms: Glycoside Hydrolase Inhibitors/pharmacology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links