Displaying publications 41 - 60 of 79 in total

Abstract:
Sort:
  1. Soga T, Lim WL, Khoo AS, Parhar IS
    PMID: 26973595 DOI: 10.3389/fendo.2016.00015
    Kisspeptin, a newly discovered neuropeptide, regulates gonadotropin-releasing hormone (GnRH). Kisspeptins are a large RF-amide family of peptides. The kisspeptin coded by KiSS-1 gene is a 145-amino acid protein that is cleaved to C-terminal peptide kisspeptin-10. G-protein-coupled receptor 54 (GPR54) has been identified as a kisspeptin receptor, and it is expressed in GnRH neurons and in a variety of cancer cells. In this study, enhanced green fluorescent protein (EGFP) labeled GnRH cells with migratory properties, which express GPR54, served as a model to study the effects of kisspeptin on cell migration. We monitored EGFP-GnRH neuronal migration in brain slide culture of embryonic day 14 transgenic rat by live cell imaging system and studied the effects of kisspeptin-10 (1 nM) treatment for 36 h on GnRH migration. Furthermore, to determine kisspeptin-induced molecular pathways related with apoptosis and cytoskeletal changes during neuronal migration, we studied the expression levels of candidate genes in laser-captured EGFP-GnRH neurons by real-time PCR. We found that there was no change in the expression level of genes related to cell proliferation and apoptosis. The expression of ankyrin repeat domain-containing protein (ankrd) 26 in EGFP-GnRH neurons was upregulated by the exposure to kisspeptin. These studies suggest that ankrd 26 gene plays an unidentified role in regulating neuronal movement mediated by kisspeptin-GPR54 signaling, which could be a potential pathway to suppress cell migration.
    Matched MeSH terms: Green Fluorescent Proteins
  2. Bakar FA, Yeo CC, Harikrishna JA
    BMC Biotechnol, 2015;15:26.
    PMID: 25887501 DOI: 10.1186/s12896-015-0138-8
    Bacterial toxin-antitoxin systems usually comprise of a pair of genes encoding a stable toxin and its cognate labile antitoxin and are located in the chromosome or in plasmids of several bacterial species. Chromosomally-encoded toxin-antitoxin systems are involved in bacterial stress responses and activation of the toxins usually leads to cell death or dormancy. Overexpression of the chromosomally-encoded YoeB toxin from the yefM-yoeB toxin-antitoxin locus of the Gram-positive bacterium Streptococcus pneumoniae has been shown to cause cell death in S. pneumoniae as well as E. coli.
    Matched MeSH terms: Green Fluorescent Proteins/genetics; Green Fluorescent Proteins/metabolism; Green Fluorescent Proteins/chemistry
  3. Siew, Ching Ngai, Ramasamy, Rajesh, Syahril Abdullah
    MyJurnal
    Many diseases are potential targets for gene therapy using either non-viral or viral vectors. Unlike nonviralmethods, viral vectors, such as lentiviruses, have the ability to integrate into the host chromosome,which can lead to long-term transgene expression. Lentiviruses have advantages over other types ofviruses due to their capacity to transduce non-dividing cells. An optimized generation of lentivirusescarrying green fluorescent protein (GFP) reporter gene driven by either UbC (LV/UbC/GFP) orCMV (LV/CMV/GFP) promoter is described in this paper. The lentiviruses were produced by cotransfectinglentiviral expression constructs and packaging mix into 293FT lentivirus producer cell lines.Lipofectamine was highly efficient in transfecting the cells compared to Transfast and Polyethyleneimine(PEI). Following cell transfection, syncytia were clearly visible at day 2. Lentiviruses were harvestedat days 1, 2 and 3 post-transfection. The highest transduction efficiency was read from LV/CMV/GFPharvested at day 2 post-transfection and LV/UbC/GFP harvested at day 3 post-transfection. Finally,the GFP expression in COS-7 cells was determined at day 2 and day 14 post-transduction for transientand stable GFP expression. It was found that the GFP expression declined overtime. However, thetransduction efficiency and duration of the transgene expression in COS-7 cells transduced with LV/CMV/GFP were higher compared to LV/UbC/GFP. In conclusion, we have successfully produced lentivirusescarrying GFP with different promoters and shown that the viruses were able to infect COS-7 cells atdifferent efficiencies. Meanwhile, the generation of the active lentiviruses will allow us to proceed to the subsequent analysis of the effect of regulatory elements in future study.
    Matched MeSH terms: Green Fluorescent Proteins
  4. Song CP, Liew PE, Teh Z, Lim SP, Show PL, Ooi CW
    Front Chem, 2018;6:529.
    PMID: 30430106 DOI: 10.3389/fchem.2018.00529
    The formation of aqueous two-phase system (ATPS) with the environmentally friendly and recyclable ionic liquid has been gaining popularity in the field of protein separation. In this study, the ATPSs comprising N,N-dimethylammonium N',N'-dimethylcarbamate (DIMCARB) and thermo-responsive poly(propylene) glycol (PPG) were applied for the recovery of recombinant green fluorescent protein (GFP) derived from Escherichia coli. The partition behavior of GFP in the PPG + DIMCARB + water system was investigated systematically by varying the molecular weight of PPG and the total composition of ATPS. Overall, GFP was found to be preferentially partitioned to the hydrophilic DIMCARB-rich phase. An ATPS composed of 42% (w/w) PPG 1000 and 4.4% (w/w) DIMCARB gave the optimum performance in terms of GFP selectivity (1,237) and yield (98.8%). The optimal system was also successfully scaled up by 50 times without compromising the purification performance. The bottom phase containing GFP was subjected to rotary evaporation of DIMCARB. The stability of GFP was not affected by the distillation of DIMCARB, and the DIMCARB was successfully recycled in three successive rounds of GFP purification. The potential of PPG + DIMCARB + water system as a sustainable protein purification tool is promising.
    Matched MeSH terms: Green Fluorescent Proteins
  5. Liu C, Hirakawa H, Tanaka K, Mohd Saaya F, Nenoi M, Fujimori A, et al.
    Dose Response, 2019 03 04;17(1):1559325819833840.
    PMID: 30858771 DOI: 10.1177/1559325819833840
    Radiotherapy (RT) treats cancer effectively with high doses of ionizing radiation (IR) to killing cancer cells and shrinking tumors while bearing the risk of developing different side effects, including secondary cancer, which is most concerning for long-term health consequences. Genomic instability (GI) is a characteristic of most cancer cells, and IR-induced GI can manifest as delayed homologous recombination (HR). Radioadaptive response (RAR) is capable of reducing genotoxicity, cell transformation, mutation, and carcinogenesis, but the rational evidence describing its contributions to the reduction of radiation risk, in particular, carcinogenesis, remains fragmented. In this work, to investigate the impact of RAR on high-dose, IR-induced GI measured as delayed HR, the frequency of recombinant cells was comparatively studied under RAR-inducible and -uninducible conditions in the nucleated cells in hematopoietic tissues (bone marrow and spleen) using the Rosa26 Direct Repeat-green fluorescent protein (RaDR-GFP) homozygote mice. Results demonstrated that the frequency of recombinant cells was significantly lower in hematopoietic tissues under RAR-inducible condition. These findings suggest that reduction in delayed HR may be at least a part of the mechanisms underlying decreased carcinogenesis by RAR, and application of RAR would contribute to a more rigorous and scientifically grounded system of radiation protection in RT.
    Matched MeSH terms: Green Fluorescent Proteins
  6. Teo CH, Soga T, Parhar IS
    PMID: 28936198 DOI: 10.3389/fendo.2017.00225
    Postweaning social isolation reduces the amplitude of the daily variation of CLOCK protein in the brain and induces lower reproductive activity. Gonadotropin-inhibitory hormone (GnIH) acts as an inhibitor in the reproductive system and has been linked to stress. Social isolation has been shown to lower neuronal activity of GnIH-expressing neurons in the dorsomedial hypothalamus (DMH). The exact mechanism by which social isolation may affect GnIH is still unclear. We investigated the impact of social isolation on regulatory cellular mechanisms in GnIH neurons. We examined via immunohistochemistry the expression of CLOCK protein at four different times throughout the day in GnIH cells tagged with enhanced fluorescent green protein (EGFP-GnIH) in 9-week-old adult male rats that have been raised for 6 weeks under postweaning social isolation and compared them with group-raised control rats of the same age. We also studied the expression of β-catenin-which has been shown to be affected by circadian proteins such as Bmal1-in EGFP-GnIH neurons to determine whether it could play a role in linking CLOCK in GnIH neurons. We found that social isolation modifies the pattern of CLOCK expression in GnIH neurons in the DMH. Socially isolated rats displayed greater CLOCK expression in the dark phase, while control rats displayed increased CLOCK expression in the light phase. Furthermore, β-catenin expression pattern in GnIH cells was disrupted by social isolation. This suggests that social isolation triggers changes in CLOCK and GnIH expression, which may be associated with an increase in nuclear β-catenin during the dark phase.
    Matched MeSH terms: Green Fluorescent Proteins
  7. Abu Bakar F, Yeo CC, Harikrishna JA
    Int J Mol Sci, 2016 Apr 20;17(4).
    PMID: 27104531 DOI: 10.3390/ijms17040321
    Bacterial toxin-antitoxin (TA) systems have various cellular functions, including as part of the general stress response. The genome of the Gram-positive human pathogen Streptococcus pneumoniae harbors several putative TA systems, including yefM-yoeBSpn, which is one of four systems that had been demonstrated to be biologically functional. Overexpression of the yoeBSpn toxin gene resulted in cell stasis and eventually cell death in its native host, as well as in Escherichia coli. Our previous work showed that induced expression of a yoeBSpn toxin-Green Fluorescent Protein (GFP) fusion gene apparently triggered apoptosis and was lethal in the model plant, Arabidopsis thaliana. In this study, we investigated the effects of co-expression of the yefMSpn antitoxin and yoeBSpn toxin-GFP fusion in transgenic A. thaliana. When co-expressed in Arabidopsis, the YefMSpn antitoxin was found to neutralize the toxicity of YoeBSpn-GFP. Interestingly, the inducible expression of both yefMSpn antitoxin and yoeBSpn toxin-GFP fusion in transgenic hybrid Arabidopsis resulted in larger rosette leaves and taller plants with a higher number of inflorescence stems and increased silique production. To our knowledge, this is the first demonstration of a prokaryotic antitoxin neutralizing its cognate toxin in plant cells.
    Matched MeSH terms: Green Fluorescent Proteins/analysis
  8. Das Gupta M, Chan SK, Monteiro A
    PLoS One, 2015;10(7):e0132882.
    PMID: 26173066 DOI: 10.1371/journal.pone.0132882
    Commonly used visible markers for transgenesis use fluorescent proteins expressed at the surface of the body, such as in eyes. One commonly used marker is the 3xP3-EGFP cassette containing synthetic binding sites for the eyeless/Pax6 conserved transcription factor. This marker cassette leads to fluorescent eyes in a variety of animals tested so far. Here we show that upon reaching adulthood, transgenic Bicyclus anynana butterflies containing this marker cassette exponentially loose fluorescence in their eyes. After 12 days, transgenic individuals are no longer distinguishable from wild type individuals. The decreased eye fluorescence is likely due to significantly decreased or halted eyeless/Pax6 expression observed in wild type animals upon adult emergence. Implications from these findings include care in screening transgenic animals before these reach adulthood, or shortly thereafter, and in using adult animals of the same age for quantitative screening of likely homozygote and heterozygote individuals.
    Matched MeSH terms: Green Fluorescent Proteins/metabolism
  9. Yang C, Li X, Li S, Chai X, Guan L, Qiao L, et al.
    J Cell Mol Med, 2019 03;23(3):1813-1826.
    PMID: 30565384 DOI: 10.1111/jcmm.14080
    Organotypic slice culture is a living cell research technique which blends features of both in vivo and in vitro techniques. While organotypic brain slice culture techniques have been well established in rodents, there are few reports on the study of organotypic slice culture, especially of the central nervous system (CNS), in chicken embryos. We established a combined in ovo electroporation and organotypic slice culture method to study exogenous genes functions in the CNS during chicken embryo development. We performed in ovo electroporation in the spinal cord or optic tectum prior to slice culture. When embryonic development reached a specific stage, green fluorescent protein (GFP)-positive embryos were selected and fluorescent expression sites were cut under stereo fluorescence microscopy. Selected tissues were embedded in 4% agar. Tissues were sectioned on a vibratory microtome and 300 μm thick sections were mounted on a membrane of millicell cell culture insert. The insert was placed in a 30-mm culture dish and 1 ml of slice culture media was added. We show that during serum-free medium culture, the slice loses its original structure and propensity to be strictly regulated, which are the characteristics of the CNS. However, after adding serum, the histological structure of cultured-tissue slices was able to be well maintained and neuronal axons were significantly longer than that those of serum-free medium cultured-tissue slices. As the structure of a complete single neuron can be observed from a slice culture, this is a suitable way of studying single neuronal dynamics. As such, we present an effective method to study axon formation and migration of single neurons in vitro.
    Matched MeSH terms: Green Fluorescent Proteins/metabolism*
  10. Govender N, Wong MY
    Phytopathology, 2017 04;107(4):483-490.
    PMID: 27918241 DOI: 10.1094/PHYTO-02-16-0062-R
    A highly efficient and reproducible Agrobacterium-mediated transformation protocol for Ganoderma boninense was developed to facilitate observation of the early stage infection of basal stem rot (BSR). The method was proven amenable to different explants (basidiospore, protoplast, and mycelium) of G. boninense. The transformation efficiency was highest (62%) under a treatment combination of protoplast explant and Agrobacterium strain LBA4404, with successful expression of an hyg marker gene and gus-gfp fusion gene under the control of heterologous p416 glyceraldehyde 3-phosphate dehydrogenase promoter. Optimal transformation conditions included a 1:100 Agrobacterium/explant ratio, induction of Agrobacterium virulence genes in the presence of 250 μm acetosyringone, co-cultivation at 22°C for 2 days on nitrocellulose membrane overlaid on an induction medium, and regeneration of transformants on potato glucose agar prepared with 0.6 M sucrose and 20 mM phosphate buffer. Evaluated transformants were able to infect root tissues of oil palm plantlets with needle-like microhyphae during the penetration event. The availability of this model pathogen system for BSR may lead to a better understanding of the pathogenicity factors associated with G. boninense penetration into oil palm roots.
    Matched MeSH terms: Green Fluorescent Proteins*
  11. Marin-Mogollon C, van de Vegte-Bolmer M, van Gemert GJ, van Pul FJA, Ramesar J, Othman AS, et al.
    Sci Rep, 2018 10 08;8(1):14902.
    PMID: 30297725 DOI: 10.1038/s41598-018-33236-x
    Two members of 6-cysteine (6-cys) protein family, P48/45 and P230, are important for gamete fertility in rodent and human malaria parasites and are leading transmission blocking vaccine antigens. Rodent and human parasites encode a paralog of P230, called P230p. While P230 is expressed in male and female parasites, P230p is expressed only in male gametocytes and gametes. In rodent malaria parasites this protein is dispensable throughout the complete life-cycle; however, its function in P. falciparum is unknown. Using CRISPR/Cas9 methodology we disrupted the gene encoding Pfp230p resulting in P. falciparum mutants (PfΔp230p) lacking P230p expression. The PfΔp230p mutants produced normal numbers of male and female gametocytes, which retained expression of P48/45 and P230. Upon activation male PfΔp230p gametocytes undergo exflagellation and form male gametes. However, male gametes are unable to attach to red blood cells resulting in the absence of characteristic exflagellation centres in vitro. In the absence of P230p, zygote formation as well as oocyst and sporozoite development were strongly reduced (>98%) in mosquitoes. These observations demonstrate that P230p, like P230 and P48/45, has a vital role in P. falciparum male fertility and zygote formation and warrants further investigation as a potential transmission blocking vaccine candidate.
    Matched MeSH terms: Green Fluorescent Proteins/metabolism
  12. Mat Isa N, Abdul Mutalib NE, Alitheen NB, Song AA, Rahim RA
    J. Mol. Microbiol. Biotechnol., 2017;27(4):246-251.
    PMID: 29055951 DOI: 10.1159/000481257
    This study demonstrates that cell wall treatment of Lactococcus lactis harbouring the internal ribosome entry site-incorporated lactococcal bicistronic vector pNZ:VIG mediated the delivery of genes into an eukaryotic cell line, DF1 cells, through bactofection. Bactofection analysis showed that the pNZ:VIG plasmid in L. lactis can be transferred into DF1 cells and that both the VP2 and gfp genes cloned in the plasmid can be transcribed and translated. The protein band relative to the Mr of VP2 protein (49 kDa) was successfully detected via Western blot analysis, while green fluorescence was successfully detected using a fluorescence microscope. The intensity of the bands detected increased for samples treated with both 1.5% (w/v) glycine and 10 μg/mL of lysozyme when compared to L. lactis treated with glycine alone and without treatment. Cell wall treatment of L. lactis with a combination of both glycine and lysozyme was not only shown to mediate plasmid transfer to DF1 cells, but also to increase the plasmid transfer efficiency.
    Matched MeSH terms: Green Fluorescent Proteins/genetics
  13. Shiue SC, Huang MZ, Tsai TF, Chang AC, Choo KB, Huang CJ, et al.
    J Biomed Sci, 2015;22:10.
    PMID: 25616743 DOI: 10.1186/s12929-015-0114-6
    Argininosuccinate synthetase (ASS) participates in urea and nitric oxide production and is a rate-limiting enzyme in arginine biosynthesis. Regulation of ASS expression appears complex and dynamic. In addition to transcriptional regulation, a novel post-transcriptional regulation affecting nuclear precursor RNA stability has been reported. Moreover, many cancers, including hepatocellular carcinoma (HCC), have been found not to express ASS mRNA; therefore, they are auxotrophic for arginine. To study when and where ASS is expressed and whether post-transcriptional regulation is undermined in particular temporal and spatial expression and in pathological events such as HCC, we set up a transgenic mouse system with modified BAC (bacterial artificial chromosome) carrying the human ASS gene tagged with an EGFP reporter.
    Matched MeSH terms: Green Fluorescent Proteins/genetics
  14. Zaborowski MP, Lee K, Na YJ, Sammarco A, Zhang X, Iwanicki M, et al.
    Cell Rep, 2019 Apr 02;27(1):255-268.e6.
    PMID: 30943406 DOI: 10.1016/j.celrep.2019.03.003
    Analysis of cancer-derived extracellular vesicles (EVs) in biofluids potentially provides a source of disease biomarkers. At present there is no procedure to systematically identify which antigens should be targeted to differentiate cancer-derived from normal host cell-derived EVs. Here, we propose a computational framework that integrates information about membrane proteins in tumors and normal tissues from databases: UniProt, The Cancer Genome Atlas, the Genotype-Tissue Expression Project, and the Human Protein Atlas. We developed two methods to assess capture of EVs from specific cell types. (1) We used palmitoylated fluorescent protein (palmtdTomato) to label tumor-derived EVs. Beads displaying antibodies of interest were incubated with conditioned medium from palmtdTomato-expressing cells. Bound EVs were quantified using flow cytometry. (2) We also showed that membrane-bound Gaussia luciferase allows the detection of cancer-derived EVs in blood of tumor-bearing animals. Our analytical and validation platform should be applicable to identify antigens on EVs from any tumor type.
    Matched MeSH terms: Green Fluorescent Proteins/metabolism
  15. Soga T, Kitahashi T, Clarke IJ, Parhar IS
    Endocrinology, 2014 May;155(5):1944-55.
    PMID: 24605826 DOI: 10.1210/en.2013-1786
    Gonadotropin-inhibitory hormone (GnIH) neurons project to GnRH neurons to negatively regulate reproductive function. To fully explore the projections of the GnIH neurons, we created transgenic rats carrying an enhanced green fluorescent protein (EGFP) tagged to the GnIH promoter. With these animals, we show that EGFP-GnIH neurons are localized mainly in the dorsomedial hypothalamic nucleus (DMN) and project to the hypothalamus, telencephalon, and diencephalic thalamus, which parallels and confirms immunocytochemical and gene expression studies. We observed an age-related reduction in c-Fos-positive GnIH cell numbers in female rats. Furthermore, GnIH fiber appositions to GnRH neurons in the preoptic area were lessened in middle-aged females (70 weeks old) compared with their younger counterparts (9-12 weeks old). The fiber density in other brain areas was also reduced in middle-aged female rats. The expression of estrogen and progesterone receptors mRNA in subsets of EGFP-GnIH neurons was shown in laser-dissected single EGFP-GnIH neurons. We then examined estradiol-17β and progesterone regulation of GnIH neurons, using c-Fos presence as a marker. Estradiol-17β treatment reduced c-Fos labeling in EGFP-GnIH neurons in the DMN of young ovariectomized adult females but had no effect in middle-aged females. Progesterone had no effect on the number of GnIH cells positive for c-Fos. We conclude that there is an age-related decline in GnIH neuron number and GnIH inputs to GnRH neurons. We also conclude that the response of GnIH neurons to estrogen diminishes with reproductive aging.
    Matched MeSH terms: Green Fluorescent Proteins/genetics; Green Fluorescent Proteins/metabolism
  16. Nathan FM, Ogawa S, Parhar IS
    J Neurochem, 2015 Nov;135(4):814-29.
    PMID: 26250886 DOI: 10.1111/jnc.13273
    The habenula, located on the dorsal thalamic surface, is an emotional and reward processing center. As in the mammalian brain, the zebrafish habenula is divided into dorsal (dHb) and ventral (vHb) subdivisions that project to the interpeduncular nucleus and median raphe (MR) respectively. Previously, we have shown that kisspeptin 1 (Kiss1) expressing in the vHb, regulates the serotonin (5-HT) system in the MR. However, the connectivity between the Kiss1 neurons and the 5-HT system remains unknown. To resolve this issue, we generated a specific antibody against zebrafish Kiss1 receptor (Kiss-R1); using this primary antibody we found intense immunohistochemical labeling in the ventro-anterior corner of the MR (vaMR) but not in 5-HT neurons, suggesting the potential involvement of interneurons in 5-HT modulation by Kiss1. Double-fluorescence labeling showed that the majority of habenular Kiss1 neurons are glutamatergic. In the MR region, Kiss1 fibers were mainly seen in close association with glutamatergic neurons and only scarcely within GABAergic and 5-HT neurons. Our findings indicate that the habenular Kiss1 neurons potentially modulate the 5-HT system primarily through glutamatergic neurotransmission via as yet uncharacterized interneurons. The neuropeptide kisspeptin (Kiss1) play a key role in vertebrate reproduction. We have previously shown modulatory role of habenular Kiss1 in the raphe serotonin (5-HT) systems. This study proposed that the habenular Kiss1 neurons modulate the 5-HT system primarily through glutamatergic neurotransmission, which provides an important insight for understanding of the modulation of 5-HT system by the habenula-raphe pathway.
    Matched MeSH terms: Green Fluorescent Proteins/genetics; Green Fluorescent Proteins/metabolism
  17. Chin VK, Atika Aziz NA, Hudu SA, Harmal NS, Syahrilnizam A, Jalilian FA, et al.
    J Virol Methods, 2016 10;236:117-125.
    PMID: 27432115 DOI: 10.1016/j.jviromet.2016.07.012
    Human respiratory syncytial virus (RSV) is the leading cause of severe lower respiratory tract infection in infants and young children globally and is a significant pathogen of the elderly and immunocompromised. The M2-2 protein of respiratory syncytial virus (RSV) is particularly important in regulation of viral RNA transcription and replication that could be a potential anti-viral candidate against RSV infection. In this study, we designed and validated siRNAs that specifically target the RSV M2-2 gene. Four siRNAs targeting different regions of the M2-2 gene were designed using web tool. In-vitro evaluation of silencing effect was performed by using RSV infected Vero cell line. Viral M2-2 linked GFP recombinant plasmid was co-transfected with non-targeted siRNA, Pooled siRNA, siRNA 1, siRNA 2, siRNA 3 and siRNA 4 using synthetic cationic polymer. The silencing effect of M2-2 gene at the protein level was measured both qualitatively and quantitatively by using fluorescence microscopy and flow cytometry. Meanwhile, the silencing effect at the mRNA level was assessed by using RT-qPCR. This study showed that all four designed siRNAs can effectively and efficiently silence M2-2 gene. siRNA 2 showed the highest (98%) silencing effect on protein level and siRNA 4 with 83.1% at the mRNA level. The viral assay showed no significant cytopathic effects observed after 6days post-infection with siRNAs. In conclusion, this study showed the effectiveness of siRNA in silencing M2-2 gene both at the protein and mRNA level which could potentially be used as a novel therapeutic agent in the treatment of RSV infection. However, further study is warranted to investigate the silencing effect of M2-2 protein and inhibition of RSV infection.
    Matched MeSH terms: Green Fluorescent Proteins/analysis; Green Fluorescent Proteins/genetics
  18. Lim WL, Soga T, Parhar IS
    Cell Tissue Res, 2014 Feb;355(2):409-23.
    PMID: 24374911 DOI: 10.1007/s00441-013-1765-9
    The migration of gonadotropin-releasing hormone (GnRH) neurons from the olfactory placode to the preoptic area (POA) from embryonic day 13 is important for successful reproduction during adulthood. Whether maternal glucocorticoid exposure alters GnRH neuronal morphology and number in the offspring is unknown. This study determines the effect of maternal dexamethasone (DEX) exposure on enhanced green fluorescent protein (EGFP) driven by GnRH promoter neurons (TG-GnRH) in transgenic rats dual-labelled with GnRH immunofluorescence (IF-GnRH). The TG-GnRH neurons were examined in intact male and female rats at different postnatal ages, as a marker for GnRH promoter activity. Pregnant females were subcutaneously injected with DEX (0.1 mg/kg) or vehicle daily during gestation days 13-20 to examine the number of GnRH neurons in P0 male offspring. The total number of TG-GnRH neurons and TG-GnRH/IF-GnRH neuronal ratio increased from P0 and P5 stages to P47-52 stages, suggesting temporal regulation of GnRH promoter activity during postnatal development in intact rats. In DEX-treated P0 males, the number of IF-GnRH neurons decreased within the medial septum, organum vasculosom of the lamina terminalis (OVLT) and anterior hypothalamus. The percentage of TG-GnRH neurons with branched dendritic structures decreased in the OVLT of DEX-P0 males. These results suggest that maternal DEX exposure affects the number and dendritic development of early postnatal GnRH neurons in the OVLT/POA, which may lead to altered reproductive functions in adults.
    Matched MeSH terms: Green Fluorescent Proteins/metabolism
  19. Masarudin MJ, Yusoff K, Rahim RA, Hussein MZ
    Nanotechnology, 2009 Jan 28;20(4):045602.
    PMID: 19417322 DOI: 10.1088/0957-4484/20/4/045602
    The delivery of a full plasmid, encoding the green fluorescent protein gene into African monkey kidney (Vero3) cells, was successfully achieved using nanobiocomposites based on layered double hydroxides. This demonstrated the potential of using the system as an alternative DNA delivery vector. Intercalation of the circular plasmid DNA, pEGFP-N2, into Mg/Al-NO(3)(-) layered double hydroxides (LDH) was accomplished through anion exchange routes to form the nanobiocomposite material. The host was previously synthesized at the Mg(2+) to Al(3+) molar ratio R(i) = 2 and subsequently intercalated with plasmid DNA. Size expansion of the interlamellae host from 8.8 A in LDH to 42 A was observed in the resulting nanobiocomposite, indicating stable hybridization of the plasmid DNA. The powder x-ray diffraction (PXRD) results, supplemented with Fourier-transform infrared (FTIR) spectroscopy, compositional and electrophoresis studies confirmed the encapsulation episode of the biomaterial. In order to elucidate the use of this resulting nanobiocomposite as a delivery vector, an MTT assay was performed to determine any cytotoxic effects of the host towards cells. The intercalated pEGFP-N2 anion was later successfully recovered through acidification with HNO(3) after treatment with DNA-degrading enzymes, thus also showing the ability of the LDH host to protect the intercalated biomaterial from degradation. Cell transfection studies on Vero3 cells were then performed, where cells transfected with the nanobiocomposite exhibited fluorescence as early as 12 h post-treatment compared to naked delivery of the plasmid itself.
    Matched MeSH terms: Green Fluorescent Proteins/genetics
  20. Ngai SC, Rosli R, Al Abbar A, Abdullah S
    Biomed Res Int, 2015;2015:346134.
    PMID: 25961011 DOI: 10.1155/2015/346134
    Stable introduction of a functional gene in hematopoietic progenitor cells (HPCs) has appeared to be an alternative approach to correct genetically linked blood diseases. However, it is still unclear whether lentiviral vector (LV) is subjected to gene silencing in HPCs. Here, we show that LV carrying green fluorescent protein (GFP) reporter gene driven by cytomegalovirus (CMV) promoter was subjected to transgene silencing after transduction into HPCs. This phenomenon was not due to the deletion of proviral copy number. Study using DNA demethylating agent and histone deacetylase (HDAC) inhibitor showed that the drugs could either prevent or reverse the silencing effect. Using sodium bisulfite sequencing and chromatin immunoprecipitation (ChIP) assay, we demonstrated that DNA methylation occurred soon after LV transduction. At the highest level of gene expression, CMV promoter was acetylated and was in a euchromatin state, while GFP reporter gene was acetylated but was strangely in a heterochromatin state. When the expression declined, CMV promoter underwent transition from acetylated and euchromatic state to a heterochromatic state, while the GFP reporter gene was in deacetylated and heterochromatic state. With these, we verify that DNA methylation and dynamic histone modifications lead to transgene silencing in HPCs transduced with LV.
    Matched MeSH terms: Green Fluorescent Proteins/genetics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links