Displaying publications 41 - 60 of 77 in total

Abstract:
Sort:
  1. Rehman U, Sarfraz RM, Mahmood A, Hussain Z, Thu HE, Zafar N, et al.
    Curr Drug Deliv, 2021 Feb 11.
    PMID: 33583374 DOI: 10.2174/1567201818666210212085912
    BACKGROUND: Despite exhibiting promising anticancer potential, the clinical significance of capecitabine (a potent prodrug of 5-fluorouracil used for treatment of colorectal cancer) is limited owing to its acidic and enzymatic hydrolysis, lower absorption following the oral administration, poor bioavailability, short plasma half-life and poor patient compliance.

    OBJECTIVES: The present study was aimed to fabricate the capecitabine as smart pH-responsive hydrogel network to efficiently facilitate its oral delivery while shielding its stability in the gastric media.

    METHODS: The smart pH sensitive HP-β-CD/agarose-g-poly(MAA) hydrogel network was developed using an aqueous free radical polymerization technique. The developed hydrogels were characterized for drug-loading efficiency, structural and compositional features, thermal stability, swelling behaviour, morphology, physical form, and release kinetics. The pH-responsive behaviour of developed hydrogels was established by conducting the swelling and release behaviour at different pH values (1.2 and 7.4), demonstrating significantly higher swelling and release at pH 7.4 as compared with pH 1.2. The capecitabine-loaded hydrogels were also screened for acute oral toxicity in animals by analysing the body weight, water and food intake, dermal toxicity, ocular toxicity, biochemical analysis, and histological examination.

    RESULTS: The characteristic evaluations revealed that capecitabine (anticancer agent) was successfully loaded into the hydrogel network. Capecitabine loading was ranged from 71.22% to 90.12%. An interesting feature of hydrogel was its pH-responsive behaviour which triggers release at basic pH (94.25%). Optimum swelling (95%) was seen at pH 7.4. Based upon regression coefficient R2 (0.96 - 0.99) best fit model was zero order. The extensive toxicity evaluations evidenced good safety profile with no signs of oral, dermal or ocular toxicities, as well as no variations in blood parameters and histology of vital organs.

    CONCLUSION: Our findings conclusively evinced that the developed hydrogel exhibited excellent pharmaceutical and therapeutic potential and thus can be employed as pH-responsive system for controlled delivery of anticancer agents.

    Matched MeSH terms: Half-Life
  2. Lim SJ, Oslan SN
    PeerJ, 2021;9:e11315.
    PMID: 34046253 DOI: 10.7717/peerj.11315
    Background: -amylases catalyze the endo-hydrolysis of -1,4-D-glycosidic bonds in starch into smaller moieties. While industrial processes are usually performed at harsh conditions, -amylases from mainly the bacteria, fungi and yeasts are preferred for their stabilities (thermal, pH and oxidative) and specificities (substrate and product). Microbial -amylases can be purified and characterized for industrial applications. While exploring novel enzymes with these properties in the nature is time-costly, the advancements in protein engineering techniques including rational design, directed evolution and others have privileged their modifications to exhibit industrially ideal traits. However, the commentary on the strategies and preferably mutated residues are lacking, hindering the design of new mutants especially for enhanced substrate specificity and oxidative stability. Thus, our review ensures wider accessibility of the previously reported experimental findings to facilitate the future engineering work.

    Survey methodology and objectives: A traditional review approach was taken to focus on the engineering of microbial -amylases to enhance industrially favoured characteristics. The action mechanisms of - and -amylases were compared to avoid any bias in the research background. This review aimed to discuss the advances in modifying microbial -amylases via protein engineering to achieve longer half-life in high temperature, improved resistance (acidic, alkaline and oxidative) and enhanced specificities (substrate and product). Captivating results were discussed in depth, including the extended half-life at 100C, pH 3.5 and 10, 1.8 M hydrogen peroxide as well as enhanced substrate (65.3%) and product (42.4%) specificities. These shed light to the future microbial -amylase engineering in achieving paramount biochemical traits ameliorations to apt in the industries.

    Conclusions: Microbial -amylases can be tailored for specific industrial applications through protein engineering (rational design and directed evolution). While the critical mutation points are dependent on respective enzymes, formation of disulfide bridge between cysteine residues after mutations is crucial for elevated thermostability. Amino acids conversion to basic residues was reported for enhanced acidic resistance while hydrophobic interaction resulted from mutated hydrophobic residues in carbohydrate-binding module or surface-binding sites is pivotal for improved substrate specificity. Substitution of oxidation-prone methionine residues with non-polar residues increases the enzyme oxidative stability. Hence, this review provides conceptual advances for the future microbial -amylases designs to exhibit industrially significant characteristics. However, more attention is needed to enhance substrate specificity and oxidative stability since they are least reported.

    Matched MeSH terms: Half-Life
  3. Yap MK, Tan NH, Sim SM, Fung SY
    Toxicon, 2013 Jun;68:18-23.
    PMID: 23537711 DOI: 10.1016/j.toxicon.2013.02.017
    Existing protocols for antivenom treatment of snake envenomations are generally not well optimized due partly to inadequate knowledge of the toxicokinetics of venoms. The toxicokinetics of Naja sputatrix (Javan spitting cobra) venom was investigated following intravenous and intramuscular injections of the venom into rabbits using double-sandwich ELISA. The toxicokinetics of the venom injected intravenously fitted a two-compartment model. When the venom was injected intramuscularly, the serum concentration-time profile exhibited a more complex absorption and/or distribution pattern. Nevertheless, the terminal half-life, volume of distribution by area and systemic clearance of the venom injected intramuscularly were not significantly different (p > 0.05) from that of the venom injected intravenously. The systemic bioavailability of the venom antigens injected by intramuscular route was 41.7%. Our toxicokinetic finding is consistent with other reports, and may indicate that some cobra venom toxins have high affinity for the tissues at the site of injection. Our results suggest that the intramuscular route of administration doesn't significantly alter the toxicokinetics of N. sputatrix venom although it significantly reduces the systemic bioavailability of the venom.
    Matched MeSH terms: Half-Life
  4. Wong JW, Yuen KH
    Int J Pharm, 2001 Oct 04;227(1-2):177-85.
    PMID: 11564552
    The bioavailability of beta- and gamma-cyclodextrin artemisinin complexes was evaluated in comparison with a normal commercially available preparation, Artemisinin 250. Twelve healthy male volunteers participated in the study conducted according to a three-way crossover design. The bioavailability was compared using the parameters, total area under the plasma level-time curve (AUC(0-infinity)), peak plasma concentration (C(max)), and time to reach peak plasma concentration (T(max)). A statistically significant difference was observed between the values of the complexes and Artemisinin 250 for the three parameters. However, no statistically significant difference was observed between the values of the beta- and gamma-cyclodextrin complexes. Moreover, the 90% confidence interval for the ratio of the AUC(0-infinity) values of the beta-cyclodextrin complex over those of Artemisinin 250 was estimated to be between 1.51-2.04, while that of C(max) was between 1.73-2.93. For the gamma-cyclodextrin complex, the respective intervals were 1.30-1.76 and 1.43-2.43. These findings indicated that the beta- and gamma-cyclodextrin complexes had a much higher rate and extent of bioavailability compared to Artemisinin 250. In addition, the absorption of artemisinin was observed to be poor and negligible when the preparations started to arrive in the colon. This could be attributed to poor dissolution of artemisinin in the semi-solid faecal matter in the lower part of the gastrointestinal tract.
    Matched MeSH terms: Half-Life
  5. Ei Thu H, Hussain Z, Shuid AN
    Curr Drug Targets, 2018;19(8):865-876.
    PMID: 27894237 DOI: 10.2174/1389450117666161125174625
    Psychotic disorders are recognized as severe mental disorders that rigorously affect patient's personality, critical thinking, and perceptional ability. High prevalence, global dissemination and limitations of conventional pharmacological approaches compel a significant burden to the patient, medical professionals and the healthcare system. To date, numerous orally administered therapies are available for the management of depressive disorders, schizophrenia, anxiety, bipolar disorders and autism spectrum problems. However, poor water solubility, erratic oral absorption, extensive first-pass metabolism, low oral bioavailability and short half-lives are the major factors which limit the pharmaceutical significance and therapeutic feasibility of these agents. In recent decades, nanotechnology-based delivery systems have gained remarkable attention of the researchers to mitigate the pharmaceutical issues related to the antipsychotic therapies and to optimize their oral drug delivery, therapeutic outcomes, and patient compliance. Therefore, the present review was aimed to summarize the available in vitro and in vivo evidences signifying the pharmaceutical importance of the advanced delivery systems in improving the aqueous solubility, transmembrane permeability, oral bioavailability and therapeutic outcome of the antipsychotic agents.
    Matched MeSH terms: Half-Life
  6. Yap MKK, Misuan N
    PMID: 30417596 DOI: 10.1111/bcpt.13169
    Type II diabetes mellitus (T2DM) is a chronic non-communicable disease due to abnormal insulin actions causing uncontrolled hyperglycaemia. The treatment for T2DM, for instance, metformin and incretin mimetic, mainly focuses on the restoration of insulin sensitivity and secretion. Exendin-4 is a short incretin-mimetic peptide consisting of 39 amino acids. It is discovered in the venom of Heloderma suspectum as a full agonist for the glucagon-like peptide 1 (GLP-1) receptor and produces insulinotropic effects. It is more resistant to enzymatic degradation by dipeptidyl-peptidase-4 and has a longer half-life than the endogenous GLP-1; thus, it is further developed as an incretin hormone analogue used to treat T2DM. The helical region of the peptide first interacts with the extracellular N-terminal domain (NTD) of GLP-1 receptor while the C-terminal extension containing the tryptophan cage further enhances its binding affinity. After binding to the NTD of the receptor, it may cause the receptor to switch from its auto-inhibited state of the receptor to its auto-activated state. Exendin-4 enhances the physiological functions of β-cells and the up-regulation of GLP-1 receptors, thus reducing the plasma glucose levels. Moreover, exendin-4 has also been found to ameliorate neuropathy, nephropathy and ventricular remodelling. The therapeutic effects of exendin-4 have also been extrapolated into several clinical trials. Although exendin-4 has a reasonable subcutaneous bioavailability, its half-life is rather short. Therefore, several modifications have been undertaken to improve its pharmacokinetics and insulinotropic potency. This review focuses on the pharmacology of exendin-4 and the structure-function relationships of exendin-4 with GLP-1 receptor. The review also highlights some challenges and future directions in the improvement of exendin-4 as an anti-diabetic drug.
    Matched MeSH terms: Half-Life
  7. Choudhury H, Maheshwari R, Pandey M, Tekade M, Gorain B, Tekade RK
    Mater Sci Eng C Mater Biol Appl, 2020 Jan;106:110275.
    PMID: 31753398 DOI: 10.1016/j.msec.2019.110275
    Etoposide (ETS), topoisomerase-II inhibitor, is a first-line anticancer therapeutics used in diverse cancer types. However, the therapeutic potential of this molecule has mainly impeded due to its detrimental toxicity profile, unfavorable rejection by the cancer cells due to P-glycoprotein (P-gp) efflux activity, and rapid hepatic clearance through extensive metabolism by Cytochrome-P450. To increase the therapeutic potency without significant adverse effects, the implication of novel ETS-nanoformulation strategies have recommended mainly. Nanomedicine based nanoformulation approaches based on nanoparticles (NPs), dendrimers, carbon-nanotubes (CNTs), liposomes, polymeric micelles, emulsions, dendrimers, solid-lipid NPs, etc offers immense potential opportunities to improve the therapeutic potential of pharmaceutically problematic drugs. This review provides an up-to-date argument on the work done in the field of nanomedicine to resolve pharmacokinetic and pharmacodynamic issues associated with ETS. The review also expounds the progress in regards to the regulatory, patenting and clinical trials related to the innovative formulation aspects of ETS.
    Matched MeSH terms: Half-Life
  8. Zaman R, Islam RA, Ibnat N, Othman I, Zaini A, Lee CY, et al.
    J Control Release, 2019 05 10;301:176-189.
    PMID: 30849445 DOI: 10.1016/j.jconrel.2019.02.016
    Macromolecular protein and peptide therapeutics have been proven to be effective in treating critical human diseases precisely. Thanks to biotechnological advancement, a huge number of proteins and peptide therapeutics were made their way to pharmaceutical market in past few decades. However, one of the biggest challenges to be addressed for protein therapeutics during clinical application is their fast degradation in serum and quick elimination owing to enzymatic degradation, renal clearance, liver metabolism and immunogenicity, attributing to the short half-lives. Size and hydrophobicity of protein molecules make them prone to kidney filtration and liver metabolism. On the other hand, proteasomes responsible for protein destruction possess the capability of specifically recognizing almost all kinds of foreign proteins while avoiding any unwanted destruction of cellular components. At present almost all protein-based drug formulations available in market are administered intravenously (IV) or subcutaneously (SC) with high dosing at frequent interval, eventually creating dose-fluctuation-related complications and reducing patient compliance vastly. Therefore, artificially increasing the therapeutic half-life of a protein by attaching to it a molecule that increases the overall size (eg, PEG) or helps with receptor mediated recycling (eg, albumin), or manipulating amino acid chain in a way that makes it more prone towards aggregate formation, are some of the revolutionary approaches to avoid the fast degradation in vivo. Half-life extension technologies that are capable of dramatically enhancing half-lives of proteins in circulation (2-100 folds) and thus improving their overall pharmacokinetic (PK) parameters have been successfully applied on a wide range of protein therapeutics from hormones and enzymes, growth factor, clotting factor to interferon. The focus of the review is to assess the technological advancements made so far in enhancing circulatory half-lives and improving therapeutic potency of proteins.
    Matched MeSH terms: Half-Life
  9. Mohtar NS, Abdul Rahman MB, Mustafa S, Mohamad Ali MS, Raja Abd Rahman RNZ
    PeerJ, 2019;7:e6880.
    PMID: 31183251 DOI: 10.7717/peerj.6880
    Sago starch is traditionally used as food especially in Southeast Asia. Generally, sago is safe for consumption, biodegradable, easily available and inexpensive. Therefore, this research was done to expand the potential of sago by using it as a support for enzyme immobilization. In this study, ARM lipase, which was isolated from Geobacillus sp. strain ARM, was overexpressed in Escherichia coli system and then purified using affinity chromatography. The specific activity of the pure enzyme was 650 U/mg, increased 7 folds from the cell lysate. The purified enzyme was immobilized in gelatinized sago and spray-dried by entrapment technique in order to enhance the enzyme operational stability for handling at high temperature and also for storage. The morphology of the gelatinized sago and immobilized enzyme was studied by scanning electron microscopy. The results showed that the spray-dried gelatinized sago was shrunken and became irregular in structure as compared to untreated sago powder. The surface areas and porosities of spray-dried gelatinized sago with and without the enzyme were analyzed using BET and BJH method and have shown an increase in surface area and decrease in pore size. The immobilized ARM lipase showed good performance at 60-80  °C, with a half-life of 4 h and in a pH range 6-9. The immobilized enzyme could be stored at 10 °C with the half-life for 9 months. Collectively, the spray-dried immobilized lipase shows promising capability for industrial uses, especially in food processing.
    Matched MeSH terms: Half-Life
  10. Yap SP, Yuen KH, Wong JW
    J Pharm Pharmacol, 2001 Jan;53(1):67-71.
    PMID: 11206194
    We have investigated the pharmacokinetics and bioavailability of alpha-, gamma- and delta-tocotrienols under fed and fasted conditions in eight healthy volunteers. The volunteers were administered a single oral dose of mixed tocotrienols (300 mg) under fed or fasted conditions. The bioavailability of tocotrienols under the two conditions was compared using the parameters peak plasma concentration (Cmax), time to reach peak plasma concentration (Tmax) and total area under the plasma concentration-time curve (AUC(o-infinity)). A statistically significant difference was observed between the fed and fasted logarithmic transformed values of Cmax (P < 0.01) and AUC(0-infinity) (P < 0.01) for all three tocotrienols. In addition, the 90% confidence intervals for the ratio of the logarithmic transformed AUC(0-infinity) values of alpha-, gamma- and delta-tocotrienols under the fed state over those of the fasted state were found to lie between 2.24-3.40, 2.05-4.09 and 1.59-3.81, respectively, while those of the Cmax were between 2.28-4.39, 2.31-5.87 and 1.52-4.05, respectively. However, no statistically significant difference was observed between the fed and fasted Tmax values of the three homologues. The mean apparent elimination half-life (t(1/2)) of alpha-, gamma- and delta-tocotrienols was estimated to be 4.4, 4.3 and 2.3 h, respectively, being between 4.5- to 8.7-fold shorter than that reported for alpha-tocopherol. No statistically significant difference was observed between the fed and fasted t(1/2) values. The mean apparent volume of distribution (Vd/f) values under the fed state were significantly smaller than those of the fasted state, which could be attributed to increased absorption of the tocotrienols in the fed state.
    Matched MeSH terms: Half-Life
  11. Mohd Firdaus MA, Agatz A, Hodson ME, Al-Khazrajy OSA, Boxall ABA
    Environ Toxicol Chem, 2018 05;37(5):1420-1429.
    PMID: 29341233 DOI: 10.1002/etc.4094
    Nanopesticides are novel plant protection products offering numerous benefits. Because nanoparticles behave differently from dissolved chemicals, the environmental risks of these materials could differ from conventional pesticides. We used soil-earthworm systems to compare the fate and uptake of analytical-grade bifenthrin to that of bifenthrin in traditional and nanoencapsulated formulations. Apparent sorption coefficients for bifenthrin were up to 3.8 times lower in the nano treatments than in the non-nano treatments, whereas dissipation half-lives of the nano treatments were up to 2 times longer. Earthworms in the nano treatments accumulated approximately 50% more bifenthrin than those in the non-nano treatments. In the non-nano treatments, most of the accumulated material was found in the earthworm tissue, whereas in the nano treatments, the majority resided in the gut. Evaluation of toxicokinetic modeling approaches showed that models incorporating the release rate of bifenthrin from the nanocapsule and distribution within the earthworm provided the best estimations of uptake from the nano-formulations. Overall, our findings indicate that the risks of nanopesticides may be different from those of conventional formulations. The modeling presented provides a starting point for assessing risks of these materials but needs to be further developed to better consider the behavior of the nanoencapsulated pesticide within the gut system. Environ Toxicol Chem 2018;37:1420-1429. © 2018 SETAC.
    Matched MeSH terms: Half-Life
  12. Wang Y, Chen G, Liang J, Zou Y, Wen X, Liao X, et al.
    Environ Sci Pollut Res Int, 2015 Dec;22(23):18469-76.
    PMID: 26278905 DOI: 10.1007/s11356-015-5170-7
    Using manure collected from swine fed with diet containing antibiotics and antibiotic-free swine manure spiked with antibiotics are the two common methods of studying the degradation behavior of veterinary antibiotic in manure in the environment. However, few studies had been conducted to co-compare these two different antibiotic addition methods. This study used oxytetracycline (OTC) as a model antibiotic to study antibiotic degradation behavior in manure under the above two OTC addition methods. In addition, the role of microorganisms present in the manure on degradation behavior was also examined. The results showed that degradation half-life of OTC in manure from swine fed OTC (9.04 days) was significantly shorter than that of the manure directly treated with OTC (9.65 days). Concentration of 4-epi-OTC in manure from swine fed OTC peaked earlier than that in manure spiked with OTC, and the degradation rates of 4-epi-OTC and α-apo-OTC in the manure from swine fed OTC were faster, but the peak concentrations were lower, than those in manure spiked with OTC. Bacterial diversity and relative abundance of Bacillus cereus data demonstrated that sterilization of the manure before experiment significantly decreased OTC degradation rate in both of the addition methods. Results of the present study demonstrated that the presence of the metabolites (especially 4-epi-OTC) and microorganisms had significant influence on OTC degradation.
    Matched MeSH terms: Half-Life
  13. Maznah Z, Halimah M, Ismail S, Idris AS
    Environ Sci Pollut Res Int, 2015 Dec;22(24):19648-57.
    PMID: 26276276 DOI: 10.1007/s11356-015-5178-z
    Hexaconazole is a potential fungicide to be used in the oil palm plantation for controlling the basal stem root (BSR) disease caused by Ganoderma boninense. Therefore, the dissipation rate of hexaconazole in an oil palm agroecosystem under field conditions was studied. Two experimental plots were treated with hexaconazole at the recommended dosage of 4.5 g a.i. palm(-1) (active ingredient) and at double the recommended dosage (9.0 g a.i. palm(-1)), whilst one plot was untreated as control. The residue of hexaconazole was detected in soil samples in the range of 2.74 to 0.78 and 7.13 to 1.66 mg kg(-1) at the recommended and double recommended dosage plots, respectively. An initial relatively rapid dissipation rate of hexaconazole residues occurred but reduced with time. The dissipation of hexaconazole in soil was described using first-order kinetics with the value of coefficient regression (r (2) > 0.8). The results indicated that hexaconazole has moderate persistence in the soil and the half-life was found to be 69.3 and 86.6 days in the recommended and double recommended dosage plot, respectively. The results obtained highlight that downward movement of hexaconazole was led by preferential flow as shown in image analysis. It can be concluded that varying soil conditions, environmental factors, and pesticide chemical properties of hexaconazole has a significant impact on dissipation of hexaconazole in soil under humid conditions.
    Matched MeSH terms: Half-Life
  14. Yap MK, Tan NH, Sim SM, Fung SY, Tan CH
    Basic Clin Pharmacol Toxicol, 2015 Oct;117(4):274-9.
    PMID: 25819552 DOI: 10.1111/bcpt.12398
    The treatment protocol of antivenom in snake envenomation remains largely empirical, partly due to the insufficient knowledge of the pharmacokinetics of snake venoms and the effects of antivenoms on the blood venom levels in victims. In this study, we investigated the effect of a polyvalent antivenom on the serum venom antigen levels of Naja sputatrix (Javan spitting cobra) venom in experimentally envenomed rabbits. Intravenous infusion of 4 ml of Neuro Polyvalent Snake Antivenom [NPAV, F(ab')2 ] at 1 hr after envenomation caused a sharp decline of the serum venom antigen levels, followed by transient resurgence an hour later. The venom antigen resurgence was unlikely to be due to the mismatch of pharmacokinetics between the F(ab')2 and venom antigens, as the terminal half-life and volume of distribution of the F(ab')2 in serum were comparable to that of venom antigens (p > 0.05). Infusion of an additional 2 ml of NPAV was able to prevent resurgence of the serum venom antigen level, resulting in a substantial decrease (67.1%) of the total amount of circulating venom antigens over time course of envenomation. Our results showed that the neutralization potency of NPAV determined by neutralization assay in mice may not be an adequate indicator of its capability to modulate venom kinetics in relation to its in vivo efficacy to neutralize venom toxicity. The findings also support the recommendation of giving high initial dose of NPAV in cobra envenomation, with repeated doses as clinically indicated in the presence of rebound antigenemia and symptom recurrence.
    Matched MeSH terms: Half-Life
  15. Collins PW, Young G, Knobe K, Karim FA, Angchaisuksiri P, Banner C, et al.
    Blood, 2014 Dec 18;124(26):3880-6.
    PMID: 25261199 DOI: 10.1182/blood-2014-05-573055
    This multinational, randomized, single-blind trial investigated the safety and efficacy of nonacog beta pegol, a recombinant glycoPEGylated factor IX (FIX) with extended half-life, in 74 previously treated patients with hemophilia B (FIX activity ≤2 IU/dL). Patients received prophylaxis for 52 weeks, randomized to either 10 IU/kg or 40 IU/kg once weekly or to on-demand treatment of 28 weeks. No patients developed inhibitors, and no safety concerns were identified. Three hundred forty-five bleeding episodes were treated, with an estimated success rate of 92.2%. The median annualized bleeding rates (ABRs) were 1.04 in the 40 IU/kg prophylaxis group, 2.93 in the 10 IU/kg prophylaxis group, and 15.58 in the on-demand treatment group. In the 40 IU/kg group, 10 (66.7%) of 15 patients experienced no bleeding episodes into target joints compared with 1 (7.7%) of 13 patients in the 10 IU/kg group. Health-related quality of life (HR-QoL) assessed with the EuroQoL-5 Dimensions visual analog scale score improved from a median of 75 to 90 in the 40 IU/kg prophylaxis group. Nonacog beta pegol was well tolerated and efficacious for the treatment of bleeding episodes and was associated with low ABRs in patients receiving prophylaxis. Once-weekly prophylaxis with 40 IU/kg resolved target joint bleeds in 66.7% of the affected patients and improved HR-QoL. This trial was registered at www.clinicaltrials.gov as #NCT01333111.
    Matched MeSH terms: Half-Life
  16. Kandasamy M, Mak KK, Devadoss T, Thanikachalam PV, Sakirolla R, Choudhury H, et al.
    BMC Chem, 2019 Dec;13(1):117.
    PMID: 31572984 DOI: 10.1186/s13065-019-0633-4
    Background: The transcription factor Nuclear factor erythroid-2-related factor 2 (NRF2) and its principal repressive regulator, Kelch-like ECH-associated protein 1 (KEAP1), are perilous in the regulation of inflammation, as well as maintenance of homeostasis. Thus, NRF2 activation is involved in cytoprotection against many inflammatory disorders. N'-Nicotinoylquinoxaline-2-carbohdyrazide (NQC) was structurally designed by the combination of important pharmacophoric features of bioactive compounds reported in the literature.

    Methods: NQC was synthesised and characterised using spectroscopic techniques. The compound was tested for its anti-inflammatory effect using Lipopolysaccharide from Escherichia coli (LPSEc) induced inflammation in mouse macrophages (RAW 264.7 cells). The effect of NQC on inflammatory cytokines was measured using enzyme-linked immune sorbent assay (ELISA). The Nrf2 activity of the compound NQC was determined using 'Keap1:Nrf2 Inhibitor Screening Assay Kit'. To obtain the insights on NQC's activity on Nrf2, molecular docking studies were performed using Schrödinger suite. The metabolic stability of NQC was determined using mouse, rat and human microsomes.

    Results: NQC was found to be non-toxic at the dose of 50 µM on RAW 264.7 cells. NQC showed potent anti-inflammatory effect in an in vitro model of LPSEc stimulated murine macrophages (RAW 264.7 cells) with an IC50 value 26.13 ± 1.17 µM. NQC dose-dependently down-regulated the pro-inflammatory cytokines [interleukin (IL)-1β (13.27 ± 2.37 μM), IL-6 (10.13 ± 0.58 μM) and tumor necrosis factor (TNF)-α] (14.41 ± 1.83 μM); and inflammatory mediator, prostaglandin E2 (PGE2) with IC50 values, 15.23 ± 0.91 µM. Molecular docking studies confirmed the favourable binding of NQC at Kelch domain of Keap-1. It disrupts the Nrf2 interaction with kelch domain of keap 1 and its IC50 value was 4.21 ± 0.89 µM. The metabolic stability studies of NQC in human, rat and mouse liver microsomes revealed that it is quite stable with half-life values; 63.30 ± 1.73, 52.23 ± 0.81, 24.55 ± 1.13 min; microsomal intrinsic clearance values; 1.14 ± 0.31, 1.39 ± 0.87 and 2.96 ± 0.34 µL/min/g liver; respectively. It is observed that rat has comparable metabolic profile with human, thus, rat could be used as an in vivo model for prediction of pharmacokinetics and metabolism profiles of NQC in human.

    Conclusion: NQC is a new class of NRF2 activator with potent in vitro anti-inflammatory activity and good metabolic stability.

    Matched MeSH terms: Half-Life
  17. Ahmad N, Samiulla DS, Teh BP, Zainol M, Zolkifli NA, Muhammad A, et al.
    Pharmaceutics, 2018 Jul 11;10(3).
    PMID: 29997335 DOI: 10.3390/pharmaceutics10030090
    Eurycoma longifolia is one of the commonly consumed herbal preparations and its major chemical compound, eurycomanone, has been described to have antimalarial, antipyretic, aphrodisiac, and cytotoxic activities. Today, the consumption of E. longifolia is popular through the incorporation of its extract in food items, most frequently in drinks such as tea and coffee. In the current study, the characterisation of the physicochemical and pharmacokinetic (PK) attributes of eurycomanone were conducted via a series of in vitro and in vivo studies in rats and mice. The solubility and chemical stability of eurycomanone under the conditions of the gastrointestinal tract environment were determined. The permeability of eurycomanone was investigated by determining its distribution coefficient in aqueous and organic environments and its permeability using the parallel artificial membrane permeability assay system and Caco-2 cultured cells. Eurycomanone's stability in plasma and its protein-binding ability were measured by using an equilibrium dialysis method. Its stability in liver microsomes across species (mice, rat, dog, monkey, and human) and rat liver hepatocytes was also investigated. Along with the PK evaluations of eurycomanone in mice and rats, the PK parameters for the Malaysian Standard (MS: 2409:201) standardised water extract of E. longifolia were also evaluated in rats. Both rodent models showed that eurycomanone in both the compound form and extract form had a half-life of 0.30 h. The differences in the bioavailability of eurycomanone in the compound form between the rats (11.8%) and mice (54.9%) suggests that the PK parameters cannot be directly extrapolated to humans. The results also suggest that eurycomanone is not readily absorbed across biological membranes. However, once absorbed, the compound is not easily metabolised (is stable), hence retaining its bioactive properties, which may be responsible for the various reported biological activities.
    Matched MeSH terms: Half-Life
  18. Yuen KH, Wong JW, Peh KK, Julianto T, Choy WP
    Drug Dev Ind Pharm, 2000 Jul;26(7):803-7.
    PMID: 10872103
    The bioavailability of a generic preparation of pentoxifylline sustained-release (SR) tablet was evaluated in comparison with a proprietary product (Trental 400). For the study, 12 healthy male volunteers participated; the study was conducted according to a randomized, two-way crossover design. The bioavailability was compared using the parameters total area under the plasma level-time curve AUC0-infinity, peak plasma concentration Cmax, and time to reach peak plasma concentration Tmax. No statistically significant difference was observed between the values of the two products in all three parameters. The 90% confidence interval for the ratio of the logarithmic transformed AUC0-infinity values of the generic pentoxifylline over those of Trental 400 was found to lie between 0.83 and 1.00, while that of the parameter Cmax was between 0.91 and 1.29. In addition, elimination half-life t1/2 and apparent volume of distribution Vd were calculated. There was no statistically significant difference between the t1/2 Vd values obtained from the data of the two preparations.
    Matched MeSH terms: Half-Life
  19. Giangrande P, Abdul Karim F, Nemes L, You CW, Landorph A, Geybels MS, et al.
    J Thromb Haemost, 2020 Sep;18 Suppl 1(Suppl 1):5-14.
    PMID: 32544297 DOI: 10.1111/jth.14959
    BACKGROUND: N8-GP (turoctocog alfa pegol; Esperoct® , Novo Nordisk A/S, Bagsvaerd, Denmark) is a glycoPEGylated human recombinant factor VIII with a half-life of ~1.6-fold of standard FVIII products. pathfinder2 (NCT01480180) was a multi-national, open-label trial of N8-GP in previously treated adolescent and adult patients with severe hemophilia A.

    OBJECTIVE: We report end-of-trial efficacy and safety of N8-GP from pathfinder2.

    METHODS: pathfinder2 main phase and extension phase part 1 results have been previously reported. During extension phase part 2, patients could switch from N8-GP prophylaxis 50 IU/kg every fourth day (Q4D) or 75 IU/kg once weekly (Q7D), depending on bleeding status. Extension phase part 2 collected long-term safety and efficacy data for all regimens until trial end (first patient in main phase, 30 January 2012; trial end, 10 December 2018).

    RESULTS: Overall, 186 patients were exposed to N8-GP for up to 6.6 years (median 5.4 years). The estimated annualized bleeding rate (ABR) was 2.14 (median 0.84) for the Q4D prophylaxis arm and 1.31 (median 1.67) for the Q7D prophylaxis arm. Nearly 30% of patients experienced zero bleeds throughout the entire duration of the trial, the hemostatic response was 83.2% across all treatment arms, and patient-reported outcomes were maintained or slightly improved. No safety concerns were detected.

    CONCLUSION: Data from the completed pathfinder2 trial, one of the largest and longest-running clinical trials to investigate treatment of severe hemophilia A, demonstrate the efficacy and safety of N8-GP in previously treated adolescent and adult patients.

    Matched MeSH terms: Half-Life
  20. Ramanathan S, Karupiah S, Nair NK, Olliaro PL, Navaratnam V, Wernsdorfer WH, et al.
    PMID: 16046285
    A new approach using a simple solid-phase extraction technique has been developed for the determination of pyronaridine (PND), an antimalarial drug, in human plasma. After extraction with C18 solid-phase sorbent, PND was analyzed using a reverse phase chromatographic method with fluorescence detection (at lambda(ex)=267 nm and lambda(em)=443 nm). The mean extraction recovery for PND was 95.2%. The coefficient of variation for intra-assay precision, inter-assay precision and accuracy was less than 10%. The quantification limit with fluorescence detection was 0.010 microg/mL plasma. The method described herein has several advantages over other published methods since it is easy to perform and rapid. It also permits reducing both, solvent use and sample preparation time. The method has been used successfully to assay plasma samples from clinical pharmacokinetic studies.
    Matched MeSH terms: Half-Life
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links