Displaying publications 41 - 60 of 84 in total

Abstract:
Sort:
  1. Tiong SH, Looi CY, Hazni H, Arya A, Paydar M, Wong WF, et al.
    Molecules, 2013 Aug 15;18(8):9770-84.
    PMID: 23955322 DOI: 10.3390/molecules18089770
    Catharanthus roseus (L.) G. Don is a herbal plant traditionally used by local populations in India, South Africa, China and Malaysia to treat diabetes. The present study reports the in vitro antioxidant and antidiabetic activities of the major alkaloids isolated from Catharanthus roseus (L.) G. Don leaves extract. Four alkaloids--vindoline I, vindolidine II, vindolicine III and vindolinine IV--were isolated and identified from the dichloromethane extract (DE) of this plant's leaves. DE and compounds I-III were not cytotoxic towards pancreatic β-TC6 cells at the highest dosage tested (25.0 µg/mL). All four alkaloids induced relatively high glucose uptake in pancreatic β-TC6 or myoblast C2C12 cells, with III showing the highest activity. In addition, compounds II-IV demonstrated good protein tyrosine phosphatase-1B (PTP-1B) inhibition activity, implying their therapeutic potential against type 2 diabetes. III showed the highest antioxidant potential in ORAC and DPPH assays and it also alleviated H₂O₂-induced oxidative damage in β-TC6 cells at 12.5 µg/mL and 25.0 µg/mL.
    Matched MeSH terms: Hypoglycemic Agents/chemistry
  2. Roney M, Issahaku AR, Huq AKMM, Sapari S, Abdul Razak FI, Wilhelm A, et al.
    Cell Biochem Biophys, 2024 Dec;82(4):3351-3366.
    PMID: 39020086 DOI: 10.1007/s12013-024-01419-1
    Diabetes mellitus (DM) a metabolic disorder characterized by high blood sugar levels causing damage to various organs over time. Current anti-diabetic drugs have limitations and side effects, prompting a search for new inhibitors targeting the α-amylase enzyme. This study aims to discover such inhibitors from thirty isoxazole derivatives of usnic acid using in silico approaches. The potential inhibitory effects of compounds were investigated using ADMET, molecular docking, molecular dynamic simulation, principal component analysis and density functional theory studies. ADMET analysis exhibited a wide range of physicochemical, pharmacokinetic, and drug-like qualities with no significant side effects which were then investigated using molecular docking experiment to determine the lead compound with the best binding affinity for the α-amylase enzyme. All compounds showed good binding affinity against α-amylase enzyme (-7.9 to -9.2 kcal/mol) where compound-13 showed the best binding affinity of -9.2 kcal/mol forming hydrogen bonds with Leu162, Tyr62, Glu233 and Asp300 amino acids. Furthermore, the binding posture and the stability of the compound-13-α-amylase enzyme complex was confirmed by molecular dynamic simulation experiment. Moreover, compound-13 showed binding energy value of -27.92 ± 5.61 kcal/mol, which indicated it could be an α-amylase inhibitor. Additionally, the reactivity of compound-13 was further confirmed by density functional theory analysis. The above findings suggest compound-13 to be a potential α-amylase inhibitor in DM. And setting the stage for further in vitro and in vivo experimental validation.
    Matched MeSH terms: Hypoglycemic Agents/chemistry
  3. Tiong SH, Looi CY, Arya A, Wong WF, Hazni H, Mustafa MR, et al.
    Fitoterapia, 2015 Apr;102:182-8.
    PMID: 25665941 DOI: 10.1016/j.fitote.2015.01.019
    Vindogentianine, a new indole alkaloid together with six known alkaloids, vindoline, vindolidine, vindolicine, vindolinine, perivine and serpentine were isolated from leaf extract (DA) of Catharanthus roseus (L.) G. Don. Their structures were elucidated by spectroscopic methods; NMR, MS, UV and IR. Vindogentianine is a dimer containing a vindoline moiety coupled to a gentianine moiety. After 24h incubation, vindogentianine exhibited no cytotoxic effect in C2C12 mouse myoblast and β-TC6 mouse pancreatic cells (IC50>50μg/mL). Real-time cell proliferation monitoring also indicated vindogentianine had little or no effect on C2C12 mouse myoblast cell growth at the highest dose tested (200μg/mL), without inducing cell death. Vindogentianine exhibited potential hypoglycemic activity in β-TC6 and C2C12 cells by inducing higher glucose uptake and significant in vitro PTP-1B inhibition. However, in vitro α-amylase and α-glucosidase inhibition assay showed low inhibition under treatment of vindogentianine. This suggests that hypoglycemic activity of vindogentianine may be due to the enhancement of glucose uptake and PTP-1B inhibition, implying its therapeutic potential against type 2 diabetes.
    Matched MeSH terms: Hypoglycemic Agents/chemistry*
  4. Giribabu N, Kumar KE, Rekha SS, Muniandy S, Salleh N
    Int J Med Sci, 2014;11(11):1172-84.
    PMID: 25249786 DOI: 10.7150/ijms.9056
    The effect of C. borivilianum root on blood glucose, glycated hemoglobin (HbAIc), insulin and lipid profile levels in diabetes mellitus are not fully understood. This study therefore investigated the effect of C. borivilianum root on the above parameters and oxidative stress of the pancreas in diabetes.
    METHODS: C. borivilianum root aqueous extract (250 and 500 mg/kg/day) was administered to streptozotocin (STZ)-induced male diabetic rats for 28 days. Body weight, blood glucose, HbA1c, insulin, lipid profile levels and glucose homeostasis indices were determined. Histopathological changes and oxidative stress parameters i.e. lipid peroxidation (LPO) and antioxidant enzymes activity levels of the pancreas were investigated.
    RESULTS: C. borivilianum root extract treatment to diabetic rats maintained near normal body weight, blood glucose, HbA1c, lipid profile and insulin levels with higher HOMA-β cell functioning index, number of Islets/pancreas, number of β-cells/Islets however with lower HOMA-insulin resistance (IR) index as compared to non-treated diabetic rats. Negative correlations between serum insulin and blood glucose, HbA1c, triglyceride (TG) and total cholesterol (TC) levels were observed. C. borivilianum root extract administration prevented the increase in lipid peroxidation and the decrease in activity levels of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) with mild histopathological changes in the pancreas of diabetic rats.
    CONCLUSIONS: C. borivilianum root maintains near normal levels of these metabolites and prevented oxidative stress-induced damage to the pancreas in diabetes.
    KEYWORDS: Chlorophytum borivilianum; diabetes; glucose; lipid profile; oxidative stress.; pancreas
    Matched MeSH terms: Hypoglycemic Agents/chemistry
  5. Moghadamtousi SZ, Goh BH, Chan CK, Shabab T, Kadir HA
    Molecules, 2013 Aug 30;18(9):10465-83.
    PMID: 23999722 DOI: 10.3390/molecules180910465
    Swietenia macrophylla King (Meliaceae) is an endangered and medicinally important plant indigenous to tropical and subtropical regions of the World. S. macrophylla has been widely used in folk medicine to treat various diseases. The review reveals that limonoids and its derivatives are the major constituents of S. macrophylla. There are several data in the literature indicating a great variety of pharmacological activities of S. macrophylla, which exhibits antimicrobial, anti-inflammatory, antioxidant effects, antimutagenic, anticancer, antitumor and antidiabetic activities. Various other activities like anti-nociceptive, hypolipidemic, antidiarrhoeal, anti-infective, antiviral, antimalarial, acaricidal, antifeedant and heavy metal phytoremediation activity have also been reported. In view of the immense medicinal importance of S. macrophylla, this review aimed at compiling all currently available information on its ethnomedicinal uses, phytochemistry and biological activities of S. macrophylla, showing its importance.
    Matched MeSH terms: Hypoglycemic Agents/chemistry
  6. Algariri K, Meng KY, Atangwho IJ, Asmawi MZ, Sadikun A, Murugaiyah V, et al.
    Asian Pac J Trop Biomed, 2013 May;3(5):358-66.
    PMID: 23646298 DOI: 10.1016/S2221-1691(13)60077-5
    To study the antidiabetic activity of Gynura procumbens (G. procumbens) used in the traditional management of diabetes in Southern Asia.
    Matched MeSH terms: Hypoglycemic Agents/chemistry
  7. Robert SD, Ismail AA, Rosli WI
    Eur J Nutr, 2016 Oct;55(7):2275-80.
    PMID: 26358163 DOI: 10.1007/s00394-015-1037-4
    PURPOSE: This study aimed to determine whether fenugreek seed powder could reduce the glycemic response and glycemic index (GI) when added to buns and flatbreads.

    METHODS: In a randomised, controlled crossover trial, ten healthy human subjects (five men, five women) were given 50 g glucose (reference food, twice); buns (0 and 10 % fenugreek seed powder); and flatbreads (0 and 10 % fenugreek seed powder) on six different occasions. Finger prick capillary blood samples were collected at 0, 15, 30, 45, 60, 90 and 120 min after the start of the meal. The palatability of the test meals was scored using Likert scales.

    RESULTS: The incremental areas under the glucose curve value of buns and flatbreads with 10 % fenugreek (138 ± 17 mmol × min/L; 121 ± 16 mmol × min/L) were significantly lower than those of 0 % fenugreek bun and flatbreads (227 ± 15 mmol × min/L; 174 ± 14 mmol × min/L, P = <0.01). Adding 10 % fenugreek seed powder reduced the GI of buns from 82 ± 5 to 51 ± 7 (P 

    Matched MeSH terms: Hypoglycemic Agents/chemistry
  8. Razavi M, Karimian H, Yeong CH, Sarji SA, Chung LY, Nyamathulla S, et al.
    Drug Des Devel Ther, 2015;9:3125-39.
    PMID: 26124637 DOI: 10.2147/DDDT.S82935
    The purpose of this study is to evaluate the in vitro and in vivo performance of gastro-retentive matrix tablets having Metformin HCl as model drug and combination of natural polymers. A total of 16 formulations were prepared by a wet granulation method using xanthan, tamarind seed powder, tamarind kernel powder and salep as the gel-forming agents and sodium bicarbonate as a gas-forming agent. All the formulations were evaluated for compendial and non-compendial tests and in vitro study was carried out on a USP-II dissolution apparatus at a paddle speed of 50 rpm. MOX2 formulation, composed of salep and xanthan in the ratio of 4:1 with 96.9% release, was considered as the optimum formulation with more than 90% release in 12 hours and short floating lag time. In vivo study was carried out using gamma scintigraphy in New Zealand White rabbits, optimized formulation was incorporated with 10 mg of (153)Sm for labeling MOX2 formulation. The radioactive samarium oxide was used as the marker to trace transit of the tablets in the gastrointestinal tract. The in vivo data also supported retention of MOX2 formulation in the gastric region for 12 hours and were different from the control formulation without a gas and gel forming agent. It was concluded that the prepared floating gastro-retentive matrix tablets had a sustained-release effect in vitro and in vivo, gamma scintigraphy played an important role in locating the oral transit and the drug-release pattern.
    Matched MeSH terms: Hypoglycemic Agents/chemistry
  9. Panda BP, Krishnamoorthy R, Bhattamisra SK, Shivashekaregowda NKH, Seng LB, Patnaik S
    Sci Rep, 2019 11 22;9(1):17331.
    PMID: 31758056 DOI: 10.1038/s41598-019-53996-4
    Drug delivery and therapeutic challenges of gliclazide, a BCS class II drug used in type 2 diabetes mellitus (T2DM) can be overcome by exploring smarter carriers of second-generation nanocrystals (SGNCs). A combined method of emulsion diffusion, high-pressure homogenization and solvent evaporation method were employed in the preparation of gliclazide loaded poly (D, L-lactide-co-glycolide) (PLGA) SGNCs. Taguchi experimental design was adopted in fabrication of Gliclazide SGNc using Gliclazide -PLGA ratio at 1:0.5, 1:0.75, 1:1 with stabilizer (Poloxamer-188, PEG 4000, HPMC E15 at 0.5, 0.75, 1% w/v). The formulated gliclazide of SGNCs were investigated for physicochemical properties, in vitro drug release, and in vivo performance studies using type-2 diabetes rat model. The formulation (SGNCF1) with Drug: PLGA 1: 0.5 ratio with 0.5% w/v Poloxamer-188 produced optimized gliclazide SGNCs. SGNCF1 showed spherical shape, small particle size (106.3 ± 2.69 nm), good zeta potential (-18.2 ± 1.30 mV), small PDI (0.222 ± 0.104) and high entrapment efficiency (86.27 ± 0.222%). The solubility, dissolution rate and bioavailability of gliclazide SGNCs were significantly improved compared to pure gliclazide. The findings emphasize gliclazide SGNCs produce faster release initially, followed by delayed release with improved bioavailability, facilitate efficient delivery of gliclazide in T2DM with better therapeutic effect.
    Matched MeSH terms: Hypoglycemic Agents/chemistry
  10. Tan DC, Idris KI, Kassim NK, Lim PC, Safinar Ismail I, Hamid M, et al.
    Pharm Biol, 2019 Dec;57(1):345-354.
    PMID: 31185767 DOI: 10.1080/13880209.2019.1610462
    Context:Paederia foetida L. (Rubiaceae) is an edible plant distributed in Asian countries including Malaysia. Fresh leaves have been traditionally used as a remedy for indigestion and diarrhea. Several phytochemical studies of the leaves have been documented, but there are few reports on twigs. Objective: This study investigates the enzyme inhibition of P. foetida twig extracts and compound isolated from them. In addition, in silico molecular docking of scopoletin was investigated. Materials and methods: Plants were obtained from two locations in Malaysia, Johor (PFJ) and Pahang (PFP). Hexane, chloroform and methanol extracts along with isolated compound (scopoletin) were evaluated for their enzyme inhibition activities (10,000-0.000016 µg/mL). The separation and identification of bio-active compounds were carried out using column chromatography and spectroscopic techniques, respectively. In silico molecular docking of scopoletin with receptors (α-amylase and α-glucosidase) was carried out using AutoDock 4.2. Results: The IC50 values of α-amylase and α-glucosidase inhibition activity of PFJ chloroform extract were 9.60 and 245.6 µg/mL, respectively. PFP chloroform extract exhibited α-amylase and α-glucosidase inhibition activity (IC50 = 14.83 and 257.2 µg/mL, respectively). The α-amylase and α-glucosidase inhibitory activity of scopoletin from both locations had IC50 values of 0.052 and 0.057 µM, respectively. Discussion and conclusions: Separation of PFJ chloroform extract afforded scopoletin (1), stigmasterol (2) and γ-sitosterol (3) and the PFP chloroform extract yielded (1), (2), (3) and ergost-5-en-3-ol (4). Scopoletin was isolated from this species for the first time. In silico calculations gave a binding energy between scopoletin and α-amylase of -6.03 kcal/mol.
    Matched MeSH terms: Hypoglycemic Agents/chemistry
  11. Nokhala A, Siddiqui MJ, Ahmed QU, Ahamad Bustamam MS, Zakaria AZA
    Biomolecules, 2020 02 12;10(2).
    PMID: 32059529 DOI: 10.3390/biom10020287
    Stone leaf (Tetracera scandens) is a Southeast Asian medicinal plant that has been traditionally used for the management of diabetes mellitus. The underlying mechanisms of the antidiabetic activity have not been fully explored yet. Hence, this study aimed to evaluate the α-glucosidase inhibitory potential of the hydromethanolic extracts of T. scandens leaves and to characterize the metabolites responsible for such activity through gas chromatography-mass spectrometry (GC-MS) metabolomics. Crude hydromethanolic extracts of different strengths were prepared and in vitro assayed for α-glucosidase inhibition. GC-MS analysis was further carried out and the mass spectral data were correlated to the corresponding α-glucosidase inhibitory IC50 values via an orthogonal partial least squares (OPLS) model. The 100%, 80%, 60% and 40% methanol extracts displayed potent α-glucosidase inhibitory potentials. Moreover, the established model identified 16 metabolites to be responsible for the α-glucosidase inhibitory activity of T. scandens. The putative α-glucosidase inhibitory metabolites showed moderate to high affinities (binding energies of -5.9 to -9.8 kcal/mol) upon docking into the active site of Saccharomyces cerevisiae isomaltase. To sum up, an OPLS model was developed as a rapid method to characterize the α-glucosidase inhibitory metabolites existing in the hydromethanolic extracts of T. scandens leaves based on GC-MS metabolite profiling.
    Matched MeSH terms: Hypoglycemic Agents/chemistry
  12. Ahmed QU, Ali AHM, Mukhtar S, Alsharif MA, Parveen H, Sabere ASM, et al.
    Molecules, 2020 Nov 24;25(23).
    PMID: 33255206 DOI: 10.3390/molecules25235491
    In recent years, there is emerging evidence that isoflavonoids, either dietary or obtained from traditional medicinal plants, could play an important role as a supplementary drug in the management of type 2 diabetes mellitus (T2DM) due to their reported pronounced biological effects in relation to multiple metabolic factors associated with diabetes. Hence, in this regard, we have comprehensively reviewed the potential biological effects of isoflavonoids, particularly biochanin A, genistein, daidzein, glycitein, and formononetin on metabolic disorders and long-term complications induced by T2DM in order to understand whether they can be future candidates as a safe antidiabetic agent. Based on in-depth in vitro and in vivo studies evaluations, isoflavonoids have been found to activate gene expression through the stimulation of peroxisome proliferator-activated receptors (PPARs) (α, γ), modulate carbohydrate metabolism, regulate hyperglycemia, induce dyslipidemia, lessen insulin resistance, and modify adipocyte differentiation and tissue metabolism. Moreover, these natural compounds have also been found to attenuate oxidative stress through the oxidative signaling process and inflammatory mechanism. Hence, isoflavonoids have been envisioned to be able to prevent and slow down the progression of long-term diabetes complications including cardiovascular disease, nephropathy, neuropathy, and retinopathy. Further thoroughgoing investigations in human clinical studies are strongly recommended to obtain the optimum and specific dose and regimen required for supplementation with isoflavonoids and derivatives in diabetic patients.
    Matched MeSH terms: Hypoglycemic Agents/chemistry
  13. Saddique FA, Aslam S, Ahmad M, Ashfaq UA, Muddassar M, Sultan S, et al.
    Molecules, 2021 May 20;26(10).
    PMID: 34065194 DOI: 10.3390/molecules26103043
    Diabetes mellitus (DM) is a chronic disorder and has affected a large number of people worldwide. Insufficient insulin production causes an increase in blood glucose level that results in DM. To lower the blood glucose level, various drugs are employed that block the activity of the α-glucosidase enzyme, which is considered responsible for the breakdown of polysaccharides into monosaccharides leading to an increase in the intestinal blood glucose level. We have synthesized novel 2-(3-(benzoyl/4-bromobenzoyl)-4-hydroxy-1,1-dioxido-2H-benzo[e][1,2]thiazin-2-yl)-N-arylacetamides and have screened them for their in silico and in vitro α-glucosidase inhibition activity. The derivatives 11c, 12a, 12d, 12e, and 12g emerged as potent inhibitors of the α-glucosidase enzyme. These compounds exhibited good docking scores and excellent binding interactions with the selected residues (Asp203, Asp542, Asp327, His600, Arg526) during in silico screening. Similarly, these compounds also showed good in vitro α-glucosidase inhibitions with IC50 values of 30.65, 18.25, 20.76, 35.14, and 24.24 μM, respectively, which were better than the standard drug, acarbose (IC50 = 58.8 μM). Furthermore, a good agreement was observed between in silico and in vitro modes of study.
    Matched MeSH terms: Hypoglycemic Agents/chemistry
  14. Zulkawi N, Ng KH, Zamberi NR, Yeap SK, Satharasinghe DA, Tan SW, et al.
    Drug Des Devel Ther, 2018;12:1373-1383.
    PMID: 29872261 DOI: 10.2147/DDDT.S157803
    Background: Fermented food has been widely consumed as health food to ameliorate or prevent several chronic diseases including diabetes. Xeniji™, a fermented food paste (FFP), has been previously reported with various bioactivities, which may be caused by the presence of several metabolites including polyphenolic acids, flavonoids, and vitamins. In this study, the anti-hyperglycemic and anti-inflammatory effects of FFP were assessed.

    Methods: In this study, type 2 diabetes model mice were induced by streptozotocin and high-fat diet (HFD) and used to evaluate the antihyperglycemic and anti-inflammatory effects of FFP. Mice were fed with HFD and challenged with 30 mg/kg body weight (BW) of streptozotocin for 1 month followed by 6 weeks of supplementation with 0.1 and 1.0 g/kg BW of FFP. Metformin was used as positive control treatment.

    Results: Xeniji™-supplemented hyperglycemic mice were recorded with lower glucose level after 6 weeks of duration. This effect was contributed by the improvement of insulin sensitivity in the hyperglycemic mice indicated by the oral glucose tolerance test, insulin tolerance test, and end point insulin level. In addition, gene expression study has shown that the antihyperglycemic effect of FFP is related to the improvement of lipid and glucose metabolism in the mice. Furthermore, both 0.1 and 1 g/kg BW of FFP was able to reduce hyperglycemia-related inflammation indicated by the reduction of proinflammatory cytokines, NF-kB and iNOS gene expression and nitric oxide level.

    Conclusion: FFP potentially demonstrated in vivo antihyperglycemic and anti-inflammatory effects on HFD and streptozotocin-induced diabetic mice.

    Matched MeSH terms: Hypoglycemic Agents/chemistry
  15. Azam AA, Pariyani R, Ismail IS, Ismail A, Khatib A, Abas F, et al.
    BMC Complement Altern Med, 2017 May 25;17(1):278.
    PMID: 28545435 DOI: 10.1186/s12906-017-1777-1
    BACKGROUND: Orthosiphon stamineus (OS) is a herb known in ethnomedicine for treating diabetes mellitus (DM). In this study, a (1)H NMR based urine metabolomics tool has been used for the first time to identify the metabolic protective mechanism of OS in DM using Streptozotocin (STZ) induced experimental model in rats.

    METHODS: Four different solvent extracts of OS, namely aqueous, ethanolic, 50% aqueous ethanolic and methanolic, at a dose of 500 mg/kg body weight (bw) were orally administered for 14 days to diabetic rats induced via intraperitoneal injection of 60 mg/kg bw STZ. NMR metabolomics approach using pattern recognition combined with multivariate statistical analysis was applied in the rat urine to study the resulted metabolic perturbations.

    RESULTS: OS aqueous extract (OSAE) caused a reversal of DM comparable to that of 10 mg/kg bw glibenclamide. A total of 15 urinary metabolites, which levels changed significantly upon treatment were identified as the biomarkers of OSAE in diabetes. A systematic metabolic pathways analysis identified that OSAE contributed to the antidiabetic activity mainly through regulating the tricarboxylic acid cycle, glycolysis/gluconeogenesis, lipid and amino acid metabolism.

    CONCLUSIONS: The results of this study validated the ethnopharmacological use of OS in diabetes and unveiled the biochemical and metabolic mechanisms involved.

    Matched MeSH terms: Hypoglycemic Agents/chemistry
  16. Taha M, Rahim F, Imran S, Ismail NH, Ullah H, Selvaraj M, et al.
    Bioorg Chem, 2017 10;74:30-40.
    PMID: 28750203 DOI: 10.1016/j.bioorg.2017.07.009
    Discovery of α-glucosidase inhibitors has been actively pursued with the aim to develop therapeutics for the treatment of type-II diabetes mellitus and the other carbohydrate mediated disease. In continuation of our drug discovery research on potential antidiabetic agents, we synthesized novel tris-indole-oxadiazole hybrid analogs (1-21), structurally characterized by various spectroscopic techniques such as 1H NMR, EI-MS, and 13C NMR. Elemental analysis was found in agreement with the calculated values. All compounds were evaluated for α-glucosidase inhibiting potential and showed potent inhibitory activity in the range of IC50=2.00±0.01-292.40±3.16μM as compared to standard acarbose (IC50=895.09±2.04µM). The pharmacokinetic predictions of tris-indole series using descriptor properties showed that almost all compounds in this series indicate the drug aptness. Detailed binding mode analyses with docking simulation was also carried out which showed that the inhibitors can be stabilized by the formation of hydrogen bonds with catalytic residues and the establishment of hydrophobic contacts at the opposite side of the active site.
    Matched MeSH terms: Hypoglycemic Agents/chemistry
  17. Bayrami A, Alioghli S, Rahim Pouran S, Habibi-Yangjeh A, Khataee A, Ramesh S
    Ultrason Sonochem, 2019 Jul;55:57-66.
    PMID: 31084791 DOI: 10.1016/j.ultsonch.2019.03.010
    The synthesis of nanoparticles often result in the generation of harmful chemical pollutants. As such, many researchers have focused on developing green processes, which include the biosynthesis. In this research, ZnO nanoparticles were prepared using the leaf extract of whortleberry (Vaccinium arctostaphylos L.) via a simple ultrasonic-assisted method. The morphology, crystal size and structure, surface, thermal, and optical properties of the bio-mediated ZnO sample (ZnOext) were analyzed and compared with that produced without incorporating the extract (ZnOchem). The ZnO samples were evaluated for their antidiabetic, antibacterial, as well as their sono- and photo-catalytic performances. Initially, the samples were intraperitoneal injected to alloxan-diabetic rats to examine their treatment efficiency in terms of effects on fasting blood glucose, insulin, cholesterol, high-density lipoprotein, and total triglyceride levels. The ZnOext showed significantly higher efficiency for improving the health status of alloxan-diabetic rats in contrast with other tested treatments, vis. ZnOchem, insulin, and only leaf extract. In addition, both the ZnO samples were assessed against gram-negative and gram-positive bacteria and through sono- and photo-catalytic processes for removing rhodamine B, respectively. The results of this study indicated that not only the ZnOext sample was pollution free, it also exhibited higher potentials for treating diabetic rats, bacterial decontamination, and also oxidative removal of organic compounds under the influences of ultrasound and UV irradiations when compared with ZnOchem sample.
    Matched MeSH terms: Hypoglycemic Agents/chemistry
  18. Hellal K, Maulidiani M, Ismail IS, Tan CP, Abas F
    Molecules, 2020 Mar 10;25(5).
    PMID: 32164186 DOI: 10.3390/molecules25051247
    Claims of effective therapy against diabetes using plants including Peganum harmala L., Zygophyllum album, Anacyclus valentinus L., Ammodaucus leucotrichus, Lupinus albus, and Marrubium vulgare in Algerian empirical medicine prompted our interest in evaluating their antidiabetic activity by screening their free radical scavenging (DPPH), α-glucosidase, and nitric oxide (NO) inhibitory activities as well as the total phenolic content (TPC). Extracts of the selected plants were prepared using different ratios of ethanol (0, 50, 80, and 100%). In this study, 100%, and 80% ethanol extracts of L. albus were found to be the most potent, in inhibiting α-glucosidase activity with IC50 values of 6.45 and 8.66 μg/mL, respectively. The 100% ethanol extract of A. leucotrichus exhibited the highest free radical scavenging activity with an IC50 value of 26.26 μg/mL. Moreover, the highest TPC of 612.84 μg GAE/mg extract was observed in M. vulgare, extracted with 80% ethanol. Metabolite profiling of the active extract was conducted using 1H-NMR metabolomics. Partial least square analysis (PLS) was used to assess the relationship between the α-glucosidase inhibitory activity of L. albus and the metabolites identified in the extract. Based on the PLS model, isoflavonoids (lupinoisoflavone G, lupisoflavone, lupinoisolone C), amino acids (asparagine and thiamine), and several fatty acids (stearic acid and oleic acid) were identified as metabolites that contributed to the inhibition of α-glucosidase activity. The results of this study have clearly strengthened the traditional claim of the antihyperglycemic effects of L. albus.
    Matched MeSH terms: Hypoglycemic Agents/chemistry
  19. Akinyede KA, Oyewusi HA, Hughes GD, Ekpo OE, Oguntibeju OO
    Molecules, 2021 Dec 28;27(1).
    PMID: 35011387 DOI: 10.3390/molecules27010155
    Diabetes mellitus (DM) is a chronic metabolic condition that can lead to significant complications and a high fatality rate worldwide. Efforts are ramping up to find and develop novel α-glucosidase and α-amylase inhibitors that are both effective and potentially safe. Traditional methodologies are being replaced with new techniques that are less complicated and less time demanding; yet, both the experimental and computational strategies are viable and complementary in drug discovery and development. As a result, this study was conducted to investigate the in vitro anti-diabetic potential of aqueous acetone Helichrysum petiolare and B.L Burtt extract (AAHPE) using a 2-NBDG, 2-(N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl) amino)-2-deoxy-d-glucose uptake assay. In addition, we performed molecular docking of the flavonoid constituents identified and quantified by liquid chromatography-mass spectrometry (LC-MS) from AAHPE with the potential to serve as effective and safe α-amylase and α-glucosidase inhibitors, which are important in drug discovery and development. The results showed that AAHPE is a potential inhibitor of both α-amylase and α-glucosidase, with IC50 values of 46.50 ± 6.17 (µg/mL) and 37.81 ± 5.15 (µg/mL), respectively. This is demonstrated by a significant increase in the glucose uptake activity percentage in a concentration-dependent manner compared to the control, with the highest AAHPE concentration of 75 µg/mL of glucose uptake activity being higher than metformin, a standard anti-diabetic drug, in the insulin-resistant HepG2 cell line. The molecular docking results displayed that the constituents strongly bind α-amylase and α-glucosidase while achieving better binding affinities that ranged from ΔG = -7.2 to -9.6 kcal/mol (compared with acarbose ΔG = -6.1 kcal/mol) for α-amylase, and ΔG = -7.3 to -9.0 kcal/mol (compared with acarbose ΔG = -6.3 kcal/mol) for α-glucosidase. This study revealed the potential use of the H. petiolare plant extract and its phytochemicals, which could be explored to develop potent and safe α-amylase and α-glucosidase inhibitors to treat postprandial glycemic levels in diabetic patients.
    Matched MeSH terms: Hypoglycemic Agents/chemistry*
  20. Taha M, Alrashedy AS, Almandil NB, Iqbal N, Anouar EH, Nawaz M, et al.
    Int J Biol Macromol, 2021 Nov 01;190:301-318.
    PMID: 34481854 DOI: 10.1016/j.ijbiomac.2021.08.207
    In this study, we have investigated a series of indole-based compounds for their inhibitory study against pancreatic α-amylase and intestinal α-glucosidase activity. Inhibitors of carbohydrate degrading enzymes appear to have an essential role as antidiabetic drugs. All analogous exhibited good to moderate α-amylase (IC50 = 3.80 to 47.50 μM), and α-glucosidase inhibitory interactions (IC50 = 3.10-52.20 μM) in comparison with standard acarbose (IC50 = 12.28 μM and 11.29 μM). The analogues 4, 11, 12, 15, 14 and 17 had good activity potential both for enzymes inhibitory interactions. Structure activity relationships were deliberated to propose the influence of substituents on the inhibitory potential of analogues. Docking studies revealed the interaction of more potential analogues and enzyme active site. Further, we studied their kinetic study of most active compounds showed that compounds 15, 14, 12, 17 and 11 are competitive for α-amylase and non- competitive for α-glucosidase.
    Matched MeSH terms: Hypoglycemic Agents/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links