Displaying publications 41 - 60 of 256 in total

Abstract:
Sort:
  1. Lim SV, Rahman MB, Tejo BA
    BMC Bioinformatics, 2011;12 Suppl 13:S24.
    PMID: 22373153 DOI: 10.1186/1471-2105-12-S13-S24
    The dengue virus is the most significant arthropod-borne human pathogen, and an increasing number of cases have been reported over the last few decades. Currently neither vaccines nor drugs against the dengue virus are available. NS5 methyltransferase (MTase), which is located on the surface of the dengue virus and assists in viral attachment to the host cell, is a promising antiviral target. In order to search for novel inhibitors of NS5 MTase, we performed a computer-aided virtual screening of more than 5 million commercially available chemical compounds using two approaches: i) structure-based screening using the crystal structure of NS5 MTase and ii) ligand-based screening using active ligands of NS5 MTase. Structure-based screening was performed using the LIDAEUS (LIgand Discovery At Edinburgh UniverSity) program. The ligand-based screening was carried out using the EDULISS (EDinburgh University LIgand Selection System) program.
    Matched MeSH terms: Ligands
  2. Teo CY, Shave S, Chor AL, Salleh AB, Rahman MB, Walkinshaw MD, et al.
    BMC Bioinformatics, 2012;13 Suppl 17:S4.
    PMID: 23282142 DOI: 10.1186/1471-2105-13-S17-S4
    BACKGROUND: Rheumatoid arthritis (RA) is an autoimmune disease with unknown etiology. Anticitrullinated protein autoantibody has been documented as a highly specific autoantibody associated with RA. Protein arginine deiminase type 4 (PAD4) is the enzyme responsible for catalyzing the conversion of peptidylarginine into peptidylcitrulline. PAD4 is a new therapeutic target for RA treatment. In order to search for inhibitors of PAD4, structure-based virtual screening was performed using LIDAEUS (Ligand discovery at Edinburgh university). Potential inhibitors were screened experimentally by inhibition assays.

    RESULTS: Twenty two of the top-ranked water-soluble compounds were selected for inhibitory screening against PAD4. Three compounds showed significant inhibition of PAD4 and their IC50 values were investigated. The structures of the three compounds show no resemblance with previously discovered PAD4 inhibitors, nor with existing drugs for RA treatment.

    CONCLUSION: Three compounds were discovered as potential inhibitors of PAD4 by virtual screening. The compounds are commercially available and can be used as scaffolds to design more potent inhibitors against PAD4.

    Matched MeSH terms: Ligands
  3. Kabir MZ, Feroz SR, Mukarram AK, Alias Z, Mohamad SB, Tayyab S
    J Biomol Struct Dyn, 2016 Aug;34(8):1693-704.
    PMID: 26331959 DOI: 10.1080/07391102.2015.1089187
    Interaction of a tyrosine kinase inhibitor, vandetanib (VDB), with the major transport protein in the human blood circulation, human serum albumin (HSA), was investigated using fluorescence spectroscopy, circular dichroism (CD) spectroscopy, and molecular docking analysis. The binding constant of the VDB-HSA system, as determined by fluorescence quenching titration method was found in the range, 8.92-6.89 × 10(3 )M(-1) at three different temperatures, suggesting moderate binding affinity. Furthermore, decrease in the binding constant with increasing temperature revealed involvement of static quenching mechanism, thus affirming the formation of the VDB-HSA complex. Thermodynamic analysis of the binding reaction between VDB and HSA yielded positive ΔS (52.76 J mol(-1) K(-1)) and negative ΔH (-6.57 kJ mol(-1)) values, which suggested involvement of hydrophobic interactions and hydrogen bonding in stabilizing the VDB-HSA complex. Far-UV and near-UV CD spectral results suggested alterations in both secondary and tertiary structures of HSA upon VDB-binding. Three-dimensional fluorescence spectral results also showed significant microenvironmental changes around the Trp residue of HSA consequent to the complex formation. Use of site-specific marker ligands, such as phenylbutazone (site I marker) and diazepam (site II marker) in competitive ligand displacement experiments indicated location of the VDB binding site on HSA as Sudlow's site I (subdomain IIA), which was further established by molecular docking results. Presence of some common metal ions, such as Ca(2+), Zn(2+), Cu(2+), Ba(2+), Mg(2+), and Mn(2+) in the reaction mixture produced smaller but significant alterations in the binding affinity of VDB to HSA.
    Matched MeSH terms: Ligands
  4. Manoharan P, Wong YH, Tayyab S
    Protein Pept Lett, 2015;22(7):611-7.
    PMID: 25961707
    Stabilizing effect of diazepam and ketoprofen, Sudlow's site II markers on human serum albumin (HSA) against urea denaturation was studied using fluorescence spectroscopy. The two-step, three-state urea transition of HSA was transformed into a single-step, two-state transition with the abolishment of the intermediate state along with a shift of the transition curve towards higher urea concentrations in the presence of diazepam or ketoprofen. Interestingly, a greater shift in the transition curve of HSA was observed in the presence of ketoprofen compared to diazepam. A comparison of the intrinsic fluorescence and three-dimensional fluorescence spectra of HSA and partially-denatured HSAs, obtained in the absence and the presence of diazepam or ketoprofen suggested significant retention of native-like conformation in the partially-denatured states of HSA in the presence of Sudlow's site II markers. Taken together, all these results suggested stabilization of HSA in the presence of diazepam or ketoprofen, being greater in the presence of ketoprofen.
    Matched MeSH terms: Ligands
  5. Roslan AA, Tayyab S
    Biochem Mol Biol Educ, 2019 03;47(2):156-160.
    PMID: 30629781 DOI: 10.1002/bmb.21207
    A laboratory exercise on the interaction between the herbicide pendimethalin (PM) and goat serum albumin (GSA), a carrier protein present in mammalian blood circulation, is described. Fluorescence spectroscopy was used to study the binding reaction between PM and GSA. Titration of a constant amount of the protein (GSA) with increasing ligand (PM) concentrations produced a consecutive decrease in the protein's fluorescence. Treatment of the fluorescence quenching data according to the Stern-Volmer equation yielded the values of the Stern-Volmer constant (Ksv ) and bimolecular quenching rate constant (kq ), whereas values of the binding constant (Ka ) and number of binding sites (n) were obtained from the double logarithmic plot. This experiment provides an exciting opportunity for undergraduate students to independently perform ligand binding studies with a protein, in addition to providing the means for the determination of their binding parameters. © 2019 International Union of Biochemistry and Molecular Biology, 47(2): 156-160, 2019.
    Matched MeSH terms: Ligands
  6. Kim BB, Abdul Kadir H, Tayyab S
    Pak J Biol Sci, 2008 Oct 15;11(20):2418-22.
    PMID: 19137852
    Interaction of bromophenol blue (BPB) with serum albumins from different mammalian species, namely, human (HSA), bovine (BSA), goat (GSA), sheep (SSA), rabbit (RbSA), porcine (PSA) and dog (DSA) was studied using absorption and absorption difference spectroscopy. BPB-albumin complexes showed significant differences in the spectral characteristics, i.e., extent of bathochromic shift and hypochromism relative to the spectral features of free BPB. Absorption difference spectra of these complexes also showed variations in the position of maxima and absorption difference (deltaAbs.) values. Absorption difference spectra of different bilirubin (BR)-albumin complexes showed a significant blue shift accompanied by decrease in deltaAbs. values in presence of BPB which were indicative of the displacement of bound BR from its binding site in BR-albumin complexes. These changes in the difference spectral characteristics of BR-albumin complexes were more marked at higher BPB concentration. However, the extent of these changes was different for different BR-albumin complexes. Taken together, all these results suggest that BPB partially shares BR binding site on albumin and different mammalian albumins show differences in the microenvironment of the BR/BPB binding site.
    Matched MeSH terms: Ligands
  7. Sasikumar G, Subramani A, Tamilarasan R, Rajesh P, Sasikumar P, Albukhaty S, et al.
    Molecules, 2023 Mar 24;28(7).
    PMID: 37049692 DOI: 10.3390/molecules28072931
    A new series of ternary metal complexes, including Co(II), Ni(II), Cu(II), and Zn(II), were synthesized and characterized by elemental analysis and diverse spectroscopic methods. The complexes were synthesized from respective metal salts with Schiff's-base-containing amino acids, salicylaldehyde derivatives, and heterocyclic bases. The amino acids containing Schiff bases showed promising pharmacological properties upon complexation. Based on satisfactory elemental analyses and various spectroscopic techniques, these complexes revealed a distorted, square pyramidal geometry around metal ions. The molecular structures of the complexes were optimized by DFT calculations. Quantum calculations were performed with the density functional method for which the LACVP++ basis set was used to find the optimized molecular structure of the complexes. The metal complexes were subjected to an electrochemical investigation to determine the redox behavior and oxidation state of the metal ions. Furthermore, all complexes were utilized for catalytic assets of a multi-component Mannich reaction for the preparation of -amino carbonyl derivatives. The synthesized complexes were tested to determine their antibacterial activity against E. coli, K. pneumoniae, and S. aureus bacteria. To evaluate the cytotoxic effects of the Cu(II) complexes, lung cancer (A549), cervical cancer (HeLa), and breast cancer (MCF-7) cells compared to normal cells, cell lines such as human dermal fibroblasts (HDF) were used. Further, the docking study parameters were supported, for which it was observed that the metal complexes could be effective in anticancer applications.
    Matched MeSH terms: Ligands
  8. Toh SY, Citartan M, Gopinath SC, Tang TH
    Biosens Bioelectron, 2015 Feb 15;64:392-403.
    PMID: 25278480 DOI: 10.1016/j.bios.2014.09.026
    The application of antibodies in enzyme-linked immunosorbent assay (ELISA) is the basis of this diagnostic technique which is designed to detect a potpourri of complex target molecules such as cell surface antigens, allergens, and food contaminants. However, development of the systematic evolution of Ligands by Exponential Enrichment (SELEX) method, which can generate a nucleic acid-based probe (aptamer) that possess numerous advantages compared to antibodies, offers the possibility of using aptamers as an alternative molecular recognition element in ELISA. Compared to antibodies, aptamers are smaller in size, can be easily modified, are cheaper to produce, and can be generated against a wide array of target molecules. The application of aptamers in ELISA gives rise to an ELISA-derived assay called enzyme-linked apta-sorbent assay (ELASA). As with the ELISA method, ELASA can be used in several different configurations, including direct, indirect, and sandwich assays. This review provides an overview of the strategies involved in aptamer-based ELASA.
    Matched MeSH terms: Ligands
  9. Lee KW, Tey BT, Ho KL, Tan WS
    J Appl Microbiol, 2012 Jan;112(1):119-31.
    PMID: 21992228 DOI: 10.1111/j.1365-2672.2011.05176.x
    To display a liver-specific ligand on the hepatitis B virus core particles for cell-targeting delivery.
    Matched MeSH terms: Ligands*
  10. Ho KL, Yusoff K, Seow HF, Tan WS
    J Med Virol, 2003 Jan;69(1):27-32.
    PMID: 12436474
    M13 phages that display random disulfide constrained heptapeptides on their gpIII proteins were used to select for high affinity ligands to hepatitis B core antigen (HBcAg). Phages bearing the amino acid sequences C-WSFFSNI-C and C-WPFWGPW-C were isolated, and a binding assay in solution showed that these phages bind tightly to full-length and truncated HBcAg with K D rel values less than 25 nM, which is at least 10 orders of magnitude higher than phage carrying the peptide sequence LLGRMK selected from a linear peptide library. Both the phages that display the constrained peptides were inhibited from binding to HBcAg particles by a monoclonal antibody that binds specifically to the immunodominant region of the particles. A synthetic heptapeptide with the amino acid sequence WSFFSNI derived from one of the fusion peptides inhibits the binding of large surface antigen (L-HBsAg) to core particles with an IC50 value of 12 +/- 2 microM. This study has identified a smaller peptide with a greater inhibitory effect on L-HBsAg-HBcAg association.
    Matched MeSH terms: Ligands
  11. Chew ST, Lo KM, Lee SK, Heng MP, Teoh WY, Sim KS, et al.
    Eur J Med Chem, 2014 Apr 9;76:397-407.
    PMID: 24602785 DOI: 10.1016/j.ejmech.2014.02.049
    Four new copper(II) complexes containing phosphonium substituted hydrazone (L) with the formulations [CuL]Cl(3), [Cu(phen)L]Cl(4), [Cu(bpy)L]Cl(5), [Cu(dbpy)L]Cl(6), (where L = doubly deprotonated hydrazone; phen = 1,10'-phenanthroline; bpy = 2,2'-bipyridine; dbpy = 5,5'-dimethyl-2,2'-bipyridine) have been synthesized. The compounds were characterized by elemental analysis, spectroscopic methods and in the case of crystalline products by X-ray crystallography. The cytotoxicity and topoisomerase I (topo I) inhibition activities of these compounds were studied. It is noteworthy that the addition of N,N-ligands to the copper(II) complex lead to the enhancement in the cytotoxicity of the compounds, especially against human prostate adenocarcinoma cell line (PC-3). Complex 4 exhibits the highest activity against PC-3 with the IC₅₀ value of 3.2 μΜ. The complexes can also inhibit topo I through the binding to DNA and the enzyme.
    Matched MeSH terms: Ligands
  12. Heng MP, Sinniah SK, Teoh WY, Sim KS, Ng SW, Cheah YK, et al.
    PMID: 26057090 DOI: 10.1016/j.saa.2015.05.095
    Testosterone thiosemicarbazone, L and its nickel (II) complex 1 were synthesized and characterized by using FTIR, CHN, (1)H NMR, and X-ray crystallography. X-ray diffraction study confirmed the formation of L from condensation of testosterone and thiosemicarbazide. Mononuclear complex 1 is coordinated to two Schiff base ligands via two imine nitrogens and two tautomeric thiol sulfurs. The cytotoxicity of both compounds was investigated via MTT assay with cisplatin as positive reference standard. L is more potent towards androgen-dependent LNCaP (prostate) and HCT 116 (colon). On the other hand, complex 1, which is in a distorted square planar environment with L acting as a bidentate NS-donor ligand, is capable of inhibiting the growth of all the cancer cell lines tested, including PC-3 (prostate). It is noteworthy that both compounds are less toxic towards human colon cell CCD-18Co. The intrinsic DNA binding constant (Kb) of both compounds were evaluated via UV-Vis spectrophotometry. Both compounds showed Kb values which are comparable to the reported Kb value of typical classical intercalator such as ethidium bromide. The binding constant of the complex is almost double compared with ligand L. Both compounds were unable to inhibit the action topoisomerase I, which is the common target in cancer treatment (especially colon cancer). This suggest a topoisomerase I independent-cell death mechanism.
    Matched MeSH terms: Ligands
  13. Heng MP, Sim KS, Tan KW
    J Inorg Biochem, 2020 07;208:111097.
    PMID: 32438269 DOI: 10.1016/j.jinorgbio.2020.111097
    Two new Schiff base ligands (TE and TF) were prepared from conjugation of testosterone with 4-(4-ethylphenyl)-3-thiosemicarbazide and 4-(4-fluorophenyl)-3-thiosemicarbazide, respectively. Their nickel (NE and NF) and zinc (ZE and ZF) complexes were reported. X-ray crystallography revealed a distorted square planar geometry was adopted by NE. The compounds demonstrated excellent selectivity towards the colorectal carcinoma cell line HCT 116 despite their weak preferences towards the prostate cancer cell lines (PC-3 and LNCaP). Against HCT 116, all these compounds were able to arrest cell cycle at G0/G1 phase and induce apoptosis via mitochondria-dependent (TE, NE, and TF) and extrinsic apoptotic pathway (ZE, NF, and ZF). Moreover, only ZE was able to act as topoisomease I poison and halt its enzymatic reactions although all compounds presented excellent affinity towards DNA.
    Matched MeSH terms: Ligands
  14. Watabe M, Arjunan SNV, Chew WX, Kaizu K, Takahashi K
    Phys Rev E, 2019 Jul;100(1-1):010402.
    PMID: 31499827 DOI: 10.1103/PhysRevE.100.010402
    We propose a computational method to quantitatively evaluate the systematic uncertainties that arise from undetectable sources in biological measurements using live-cell imaging techniques. We then demonstrate this method in measuring the biological cooperativity of molecular binding networks, in particular, ligand molecules binding to cell-surface receptor proteins. Our results show how the nonstatistical uncertainties lead to invalid identifications of the measured cooperativity. Through this computational scheme, the biological interpretation can be more objectively evaluated and understood under a specific experimental configuration of interest.
    Matched MeSH terms: Ligands
  15. Watabe M, Arjunan SNV, Chew WX, Kaizu K, Takahashi K
    Phys Rev E, 2019 Dec;100(6-1):062407.
    PMID: 31962468 DOI: 10.1103/PhysRevE.100.062407
    While cooperativity in ligand-induced receptor dimerization has been linked with receptor-receptor couplings via minimal representations of physical observables, effects arising from higher-order oligomer, e.g., trimer and tetramer, formations of unobserved receptors have received less attention. Here we propose a dimerization model of ligand-induced receptors in multivalent form representing physical observables under basis vectors of various aggregated receptor states. Our simulations of multivalent models not only reject Wofsy-Goldstein parameter conditions for cooperativity, but show that higher-order oligomer formations can shift cooperativity from positive to negative.
    Matched MeSH terms: Ligands
  16. Roney M, Huq AKMM, Issahaku AR, Soliman MES, Hossain MS, Mustafa AH, et al.
    J Biomol Struct Dyn, 2023;41(21):12186-12203.
    PMID: 36645141 DOI: 10.1080/07391102.2023.2166123
    Dengue fever is a significant public health concern throughout the world, causing an estimated 500,000 hospitalizations and 20,000 deaths each year, despite the lack of effective therapies. The DENV-2 RdRp has been identified as a potential target for the development of new and effective dengue therapies. This research's primary objective was to discover an anti-DENV inhibitor using in silico ligand- and structure-based approaches. To begin, a ligand-based pharmacophore model was developed, and 130 distinct natural products (NPs) were screened. Docking of the pharmacophore-matched compounds were performed to the active site of DENV-2 RdRp protease . Eleven compounds were identified as potential DENV-2 RdRp inhibitors based on docking energy and binding interactions. ADMET and drug-likeness were done to predict their pharmacologic, pharmacokinetic, and drug-likeproperties . Compounds ranked highest in terms of pharmacokinetics and drug-like appearances were then subjected to additional toxicity testing to determine the leading compound. Additionally, MD simulation of the lead compound was performed to confirm the docked complex's stability and the binding site determined by docking. As a result, the lead compound (compound-108) demonstrated an excellent match to the pharmacophore, a strong binding contact and affinity for the RdRp enzyme, favourable pharmacokinetics, and drug-like characteristics. In summary, the lead compound identified in this study could be a possible DENV-2 RdRp inhibitor that may be further studied on in vitro and in vivo models to develop as a drug candidate.Communicated by Ramaswamy H. Sarma.
    Matched MeSH terms: Ligands
  17. Al-Najjar BO, Wahab HA, Tengku Muhammad TS, Shu-Chien AC, Ahmad Noruddin NA, Taha MO
    Eur J Med Chem, 2011 Jun;46(6):2513-29.
    PMID: 21482446 DOI: 10.1016/j.ejmech.2011.03.040
    Peroxisome Proliferator-Activated Receptor γ (PPARγ) activators have drawn great recent attention in the clinical management of type 2 diabetes mellitus, prompting several attempts to discover and optimize new PPARγ activators. With this in mind, we explored the pharmacophoric space of PPARγ using seven diverse sets of activators. Subsequently, genetic algorithm and multiple linear regression analysis were employed to select an optimal combination of pharmacophoric models and 2D physicochemical descriptors capable of accessing self-consistent and predictive quantitative structure-activity relationship (QSAR) (r2(71)=0.80, F=270.3, r2LOO=0.73, r2PRESS against 17 external test inhibitors=0.67). Three orthogonal pharmacophores emerged in the QSAR equation and were validated by receiver operating characteristic (ROC) curves analysis. The models were then used to screen the national cancer institute (NCI) list of compounds. The highest-ranking hits were tested in vitro. The most potent hits illustrated EC50 values of 15 and 224 nM.
    Matched MeSH terms: Ligands
  18. Hadariah Bahron, Siti Solihah Khaidir, Amalina Mohd Tajuddin, Syed Abdul Illah Alyahya Syed Abd Kadir
    MyJurnal
    A mononuclear and new tetranuclear metal complexes of Zn(II) with Schiff base ligands L1 and L2 respectively, were synthesised. L1 was obtained through the condensation of salicylaldehyde with ortho-phenylenediamine while L2 was the product of reaction between of ortho-vanillin with 2,4,6-trimethyl-m-phenylenediamine. The ligands and complexes were characterised via elemental analysis, melting point, IR and NMR spectroscopy. The shifting of v(C=N), v(C-OH) and v(O-CH3) infrared peaks upon coordination with Zn(II) indicated that these three moieties play a significant role in the complexation. It was found that L1 acted as tetradentate ligand, coordinating with Zn(II) centres through phenolic oxygen and imine nitrogen. The ligand L2 acted as a hexadentate ligand, bonded to metal via phenolic oxygen, imine nitrogen and methoxy oxygen, where four Zn(II) centres formed bridges to connect two ligands.
    Matched MeSH terms: Ligands
  19. Ghani SA, Wan Ismail WF, Md Salleh MS, Yahaya S, Syahrul Fitri ZM
    Indian J Orthop, 2018 2 9;52(1):31-34.
    PMID: 29416167 DOI: 10.4103/ortho.IJOrtho_153_17
    Background: Giant cell tumor (GCT) of bone is a benign locally aggressive primary bone tumor which is risky for local recurrences and pulmonary metastasis. Till date, there are still many uncertainties in predicting the aggressiveness of GCT. We aim to investigate whether receptor activator nuclear kappa-B ligand (RANKL) expression may determine the prognosis of the lesion.

    Materials and Methods: We examined RANKL expression in 39 patients (21 males, 18 females) by immunohistochemistry. Four patients (10%) were presented with tumor recurrence, eight patients (20%) were complicated with lung metastasis, and two patients (5%) were presented with both recurrence and lung metastasis. Positive RANKL expression was assessed according to a scoring system evaluating the percentage of the immunostained epithelial area and the staining intensity. The cumulative score was calculated to determine the final score value. Data were analyzed using PASW version 18.0 and independent t-test between nonrecurrence/recurrence groups, and nonlung metastasis/lung metastasis groups. Significance was set at P < 0.05.

    Results: Thirty-two patients (82%) scored 3 in RANKL-staining percentage from whole stromal cell population (>75%), 6 patients scored 2, and 1 patient scored 1. Nine patients (23%) scored 3 in RANKL-staining intensity (most intense), 19 patients (48%) scored 2, and 11 patients (29%) scored 1. Twenty six patients (67%) had strong RANKL expression (total score of 5-6), 12 patients (31%) showed moderate score (3-4) whereas only 1 patient (2%) showed weak RANKL expression. Together, the mean value of RANKL-staining percentage was 2.79, intensity 1.95 and the total score 4.77. The mean RANKL-staining percentage between recurrence and nonrecurrence groups was statistically significant (P = 0.009). There was no significant difference in the mean staining intensity and total score between nonrecurrence and recurrence groups, and staining percentage staining intensity and a total cumulative score of RANKL expression between lung metastasis and nonlung metastasis groups.

    Conclusion: RANKL expression is generally high in Stage III GCT and is a reliable prognostic marker in predicting the risk of local recurrence however not in lung metastasis.

    Matched MeSH terms: Ligands
  20. Kanathasan JS, Palanisamy UD, Radhakrishnan AK, Chakravarthi S, Thong TB, Swamy V
    Nanomedicine (Lond), 2022 Sep;17(21):1511-1528.
    PMID: 36382634 DOI: 10.2217/nnm-2022-0017
    Background: Porous silicon (pSi) nanoparticles (NPs) functionalized with suitable targeting ligands are now established cancer bioimaging agents and drug-delivery platforms. With growing interest in peptides as tumor-targeting ligands, much work has focused on the use of various peptides in combination with pSi NPs for cancer theranostics. Here, the authors investigated the targeting potential of pSi NPs functionalized with two types of peptide, a linear 10-mer peptide and its branched (Y-shaped) equivalent, that respond to legumain activity in tumor cells. Results: In vitro experiments established that the linear peptide-pSi NP conjugate had better aqueous stability under tumor conditions and higher binding efficiency (p  0.05) of linear peptide-conjugated pSi NPs in the tumor site within 4 h compared with nonconjugated pSi NPs. These results suggest that the linear peptide-pSi NP formulation is a nontoxic, stable and efficient fluorescence bioimaging agent and potential drug-delivery platform.
    Matched MeSH terms: Ligands
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links