NEW METHOD: In this study the presence of reactive astrocytes and NG2 proteoglycans was investigated in two ex vivo models of SCI; stab injury and transection injury. Stereological analysis to measure immunohistochemical staining was performed on the scar and injury zones to detect astrocytes and the chondroitin sulphate proteoglycan NG2.
RESULTS: The volume fraction (Vv) of reactive astrocytes and NG2 proteoglycans increased significantly between day 3 and day 10 post injury in both ex vivo models. This data shows how ex vivo SCI models are a useful research tool allowing reduction of research cost and time involved in carrying out animal studies, as well as reducing the numbers of animals used.
COMPARISON WITH EXISTING METHOD: This is the first evidence of an ex vivo stab injury model of SCI and also the first comparison of immunohistochemical staining for injury markers within stab injured and transection injured ex vivo slice cultures.
CONCLUSIONS: The use of organotypic slice culture models provide a simple way to study the cellular consequences following SCI and they can also be used as a platform for potential therapeutics regimes for the treatment of SCI.
Methods: We performed whole-genome sequencing on 121 H. pylori clinical strains, among which 73 were metronidazole-resistant. Sequence-alignment analysis of core protein clusters derived from clinical strains containing full-length RdxA was performed. Variable sites in each alignment were statistically compared between the resistant and susceptible groups to determine candidate genes along with their respective amino-acid changes that may account for the development of metronidazole resistance in H. pylori.
Results: Resistance due to RdxA truncation was identified in 34% of metronidazole-resistant strains. Analysis of core protein clusters derived from the remaining 48 metronidazole-resistant strains and 48 metronidazole-susceptible identified four variable sites significantly associated with metronidazole resistance. These sites included R16H/C in RdxA, D85N in the inner-membrane protein RclC (HP0565), V265I in a biotin carboxylase protein (HP0370) and A51V/T in a putative threonylcarbamoyl-AMP synthase (HP0918).
Conclusions: Our approach identified new potential mechanisms for metronidazole resistance in H. pylori that merit further investigation.
METHODS: Here, an advanced search of articles was conducted using PubMed, Scopus, EBSCOhost, and Web of Science databases using terms from Medical Subject Heading (MeSH) like SARS-CoV-2, lipid metabolism and transcriptomic as the keywords. From 428 retrieved studies, only clinical studies using next-generation sequencing as a gene expression method in COVID-19 patients were accepted. Study design, study population, sample type, the method for gene expression and differentially expressed genes (DEGs) were extracted from the five included studies. The DEGs obtained from the studies were pooled and analyzed using the bioinformatics software package, DAVID, to determine the enriched pathways. The DEGs involved in lipid metabolic pathways were selected and further analyzed using STRING and Cytoscape through visualization by protein-protein interaction (PPI) network complex.
RESULTS: The analysis identified nine remarkable clusters from the PPI complex, where cluster 1 showed the highest molecular interaction score. Three potential candidate genes (PPARG, IFITM3 and APOBEC3G) were pointed out from the integrated bioinformatics analysis in this systematic review and were chosen due to their significant role in regulating lipid metabolism. These candidate genes were significantly involved in enriched lipid metabolic pathways, mainly in regulating lipid homeostasis affecting the pathogenicity of SARS-CoV-2, specifically in mechanisms of viral entry and viral replication in COVID-19 patients.
CONCLUSIONS: Taken together, our findings in this systematic review highlight the affected lipid-metabolic pathways along with the affected genes upon SARS-CoV-2 invasion, which could be a potential target for new therapeutic strategies study in the future.