Displaying publications 41 - 60 of 630 in total

Abstract:
Sort:
  1. Khan A, Shahab M, Nasir F, Waheed Y, Alshammari A, Mohammad A, et al.
    SAR QSAR Environ Res, 2023;34(9):689-708.
    PMID: 37675795 DOI: 10.1080/1062936X.2023.2250723
    In the current study, we used molecular screening and simulation approaches to target I7L protease from monkeypox virus (mpox) from the Traditional Chinese Medicines (TCM) database. Using molecular screening, only four hits TCM27763, TCM33057, TCM34450 and TCM31564 demonstrated better pharmacological potential than TTP6171 (control). Binding of these molecules targeted Trp168, Asn171, Arg196, Cys237, Ser240, Trp242, Glu325, Ser326, and Cys328 residues and may affect the function of I7L protease in in vitro assay. Moreover, molecular simulation revealed stable dynamics, tighter structural packing and less flexible behaviour for all the complexes. We further reported that the average hydrogen bonds in TCM27763, TCM33057, TCM34450 and TCM31564I7L complexes remained higher than the control drug. Finally, the BF energy results revealed -62.60 ± 0.65 for the controlI7L complex, for the TCM27763I7L complex -71.92 ± 0.70 kcal/mol, for the TCM33057I7L complex the BF energy was -70.94 ± 0.70 kcal/mol, for the TCM34450I7L the BF energy was -69.94 ± 0.85 kcal/mol while for the TCM31564I7L complex the BF energy was calculated to be -69.16 ± 0.80 kcal/mol. Although, we used stateoftheart computational methods, these are theoretical insights that need further experimental validation.
    Matched MeSH terms: Molecular Docking Simulation
  2. Li D, Faiza M, Ali S, Wang W, Tan CP, Yang B, et al.
    Appl Biochem Biotechnol, 2018 Apr;184(4):1061-1072.
    PMID: 28948493 DOI: 10.1007/s12010-017-2594-1
    A highly efficient process for reducing the fatty acid (FA) content of high-acid rice bran oil (RBO) was developed by immobilized partial glycerides-selective lipase SMG1-F278N-catalyzed esterification/transesterification using methanol as a novel acyl acceptor. Molecular docking simulation indicated that methanol was much closer to the catalytic serine (Ser-171) compared with ethanol and glycerol, which might be one of the reasons for its high efficiency in the deacidification of high-acid RBO. Additionally, the reaction parameters were optimized to minimize the FA content of high-acid RBO. Under the optimal conditions (substrate molar ratio of methanol to FAs of 1.8:1, enzyme loading of 40 U/g, and at 30 °C), FA content decreased from 25.14 to 0.03% after 6 h of reaction. Immobilized SMG1-F278N exhibited excellent methanol tolerance and retained almost 100% of its initial activity after being used for ten batches. After purification by molecular distillation, the final product contained 97.86% triacylglycerol, 2.10% diacylglycerol, and 0.04% FA. The acid value of the final product was 0.09 mg KOH/g, which reached the grade one standard of edible oil. Overall, methanol was a superior acyl acceptor for the deacidification of high-acid RBO and the high reusability of immobilized SMG1-F278N indicates an economically attractive process.
    Matched MeSH terms: Molecular Docking Simulation*
  3. Hamid N, Junaid M, Manzoor R, Sultan M, Chuan OM, Wang J
    Sci Total Environ, 2023 Dec 20;905:167213.
    PMID: 37730032 DOI: 10.1016/j.scitotenv.2023.167213
    Per- and polyfluoroalkyl substances (PFAS) are also known as "forever chemicals" due to their persistence and ubiquitous environmental distribution. This review aims to summarize the global PFAS distribution in surface water and identify its ecological and human risks through integrated assessment. Moreover, it provides a holistic insight into the studies highlighting the human biomonitoring and toxicological screening of PFAS in freshwater and marine species using quantitative structure-activity relationship (QSAR) based models. Literature showed that PFOA and PFOS were the most prevalent chemicals found in surface water. The highest PFAS levels were reported in the US, China, and Australia. The TEST model showed relatively low LC50 of PFDA and PFOS for Pimephales promelas (0.36 and 0.91 mg/L) and high bioaccumulation factors (518 and 921), revealing an elevated associated toxicity. The risk quotients (RQs) values for P. promelas and Daphnia magna were found to be 269 and 23.7 for PFOS. Studies confirmed that long-chain PFAS such as PFOS and PFOA undergo bioaccumulation in aquatic organisms and induce toxicological effects such as oxidative stress, transgenerational epigenetic effects, disturbed genetic and enzymatic responses, perturbed immune system, hepatotoxicity, neurobehavioral toxicity, altered genetic and enzymatic responses, and metabolism abnormalities. Human biomonitoring studies found the highest PFOS, PFOA, and PFHxS levels in urine, cerebrospinal fluid, and serum samples. Further, long-chain PFOA and PFOS exposure create severe health implications such as hyperuricemia, reduced birth weight, and immunotoxicity in humans. Molecular docking analysis revealed that short-chain PFBS (-11.84 Kcal/mol) and long-chain PFUnDA (-10.53 Kcal/mol) displayed the strongest binding interactions with human serum albumin protein. Lastly, research challenges and future perspectives for PFAS toxicological implications were also discussed, which helps to mitigate associated pollution and ecological risks.
    Matched MeSH terms: Molecular Docking Simulation
  4. Hong W, Li J, Laughton CA, Yap LF, Paterson IC, Wang H
    J Mol Graph Model, 2014 Jun;51:193-202.
    PMID: 24937176 DOI: 10.1016/j.jmgm.2014.05.010
    Protein arginine methyltransferases (PRMTs) catalyse the methylation of arginine residues of target proteins. PRMTs utilise S-adenosyl methionine (SAM) as the methyl group donor, leading to S-adenosyl homocysteine (SAH) and monomethylarginine (mMA). A combination of homology modelling, molecular docking, Active Site Pressurisation, molecular dynamic simulations and MM-PBSA free energy calculations is used to investigate the binding poses of three PRMT1 inhibitors (ligands 1-3), which target both SAM and substrate arginine binding sites by containing a guanidine group joined by short linkers with the SAM derivative. It was assumed initially that the adenine moieties of the inhibitors would bind in sub-site 1 (PHE44, GLU137, VAL136 and GLU108), the guanidine side chain would occupy sub-site 2 (GLU 161, TYR160, TYR156 and TRP302), with the amino acid side chain occupying sub-site 3 (GLU152, ARG62, GLY86 and ASP84; pose 1). However, the SAH homocysteine moiety does not fully occupy sub-site 3, suggesting another binding pose may exist (pose 2), whereby the adenine moiety binds in sub-site 1, the guanidine side chain occupies sub-site 3, and the amino acid side chain occupies sub-site 2. Our results indicate that ligand 1 (pose 1 or 2), ligand 2 (pose 2) and ligand 3 (pose 1) are the predominant binding poses and we demonstrate for the first time that sub-site 3 contains a large space that could be exploited in the future to develop novel inhibitors with higher binding affinities.
    Matched MeSH terms: Molecular Docking Simulation
  5. Wu H, Sun Y, Wong WL, Cui J, Li J, You X, et al.
    Eur J Med Chem, 2020 Mar 01;189:112042.
    PMID: 31958737 DOI: 10.1016/j.ejmech.2020.112042
    Transforming growth factor-β (TGF-β) plays an important role in regulating epithelial to mesenchymal transition (EMT) and the TGF-β signaling pathway is a potential target for therapeutic intervention in the development of many diseases, such as fibrosis and cancer. Most currently available inhibitors of TGF-β signaling function as TGF-β receptor I (TβR-I) kinase inhibitors, however, such kinase inhibitors often lack specificity. In the present study, we targeted the extracellular protein binding domain of the TGF-β receptor II (TβR-II) to interfere with the protein-protein interactions (PPIs) between TGF-β and its receptors. One compound, CJJ300, inhibited TGF-β signaling by disrupting the formation of the TGF-β-TβR-I-TβR-II signaling complex. Treatment of A549 cells with CJJ300 resulted in the inhibition of downstream signaling events such as the phosphorylation of key factors along the TGF-β pathway and the induction of EMT markers. Concomitant with these effects, CJJ300 significantly inhibited cell migration. The present study describes for the first time a designed molecule that can regulate TGF-β-induced signaling and EMT by interfering with the PPIs required for the formation of the TGF-β signaling complex. Therefore, CJJ300 can be an important lead compound with which to study TGF-β signaling and to design more potent TGF-β signaling antagonists.
    Matched MeSH terms: Molecular Docking Simulation
  6. Mydin RBSMN, Mahboob A, Sreekantan S, Saharudin KA, Qazem EQ, Hazan R, et al.
    Biotechnol Appl Biochem, 2023 Jun;70(3):1072-1084.
    PMID: 36567620 DOI: 10.1002/bab.2421
    In biomedical implant technology, nanosurface such as titania nanotube arrays (TNA) could provide better cellular adaptation, especially for long-term tissue acceptance response. Mechanotransduction activities of TNA nanosurface could involve the cytoskeleton remodeling mechanism. However, there is no clear insight into TNA mechano-cytoskeleton remodeling activities, especially computational approaches. Epithelial cells have played critical interface between biomedical implant surface and tissue acceptance, particularly for long-term interaction. Therefore, this study investigates genomic responses that are responsible for cell-TNA mechano-stimulus using epithelial cells model. Findings suggested that cell-TNA interaction may improve structural and extracellular matrix (ECM) support on the cells as an adaptive response toward the nanosurface topography. More specifically, the surface topography of the TNA might improve the cell polarity and adhesion properties via the interaction of the plasma membrane and intracellular matrix responses. TNA nanosurface might engross the cytoskeleton remodeling activities for multidirectional cell movement and cellular protrusions on TNA nanosurface. These observations are supported by the molecular docking profiles that determine proteins' in silico binding mechanism on TNA. This active cell-surface revamping would allow cells to adapt to develop a protective barrier toward TNA nanosurface, thus enhancing biocompatibility properties distinctly for long-term interaction. The findings from this study will be beneficial toward nano-molecular knowledge of designing functional nanosurface technology for advanced medical implant applications.
    Matched MeSH terms: Molecular Docking Simulation
  7. Oyewusi HA, Huyop F, Wahab RA
    J Biomol Struct Dyn, 2020 Oct 23.
    PMID: 33094694 DOI: 10.1080/07391102.2020.1835727
    The high dependency and surplus use of agrochemical products have liberated enormous quantities of toxic halogenated pollutants into the environment and threaten the well-being of humankind. Herein, this study performed molecular docking, molecular dynamic (MD) simulations, molecular mechanics-Poisson Boltzmann Surface Area (MM-PBSA) calculations on the DehH2 from Bacillus thuringiensis, to identify the order of which the enzyme degrades different substrates, haloacids, haloacetate and chlorpyrifos. The study discovered that the DehH2 favored the degradation of haloacids and haloacetates (-3.3 - 4.6 kcal/mol) and formed three hydrogen bonds with Asp125, Arg201 and Lys202. Despite the inconclusive molecular docking result, chlorpyrifos was consistently shown to be the least favored substrate of the DehH2 in MD simulations and MM-PBSA calculations. Results of MD simulations revealed the DehH2-haloacid- (RMSD 0.15 - 0.25 nm) and DehH2-haloacetates (RMSF 0.05 - 0.25 nm) were more stable, with the DehH2-L-2CP complex being the most stable while the least was the DehH2-chlorpyrifos (RMSD 0.295 nm; RMSF 0.05 - 0.59 nm). The Molecular Mechanics Poisson-Boltzmann Surface Area calculations showed the DehH2-L-2CP complex (-24.27 kcal/mol) having the lowest binding energy followed by DehH2-MCA (-22.78 kcal/mol), DehH2-D-2CP (-21.82 kcal/mol), DehH2-3CP (-21.11 kcal/mol), DehH2-2,2-DCP (-18.34 kcal/mol), DehH2-2,3-DCP (-8.34 kcal/mol), DehH2-TCA (-7.62 kcal/mol), while chlorpyrifos was unable to spontaneously bind to DehH2 (+127.16 kcal/mol). In a nutshell, the findings of this study offer valuable insights into the rational tailoring of the DehH2 for expanding its substrate specificity and catalytic activity in the near future.Communicated by Ramaswamy H. Sarma.
    Matched MeSH terms: Molecular Docking Simulation
  8. Kamarulzaman EE, Vanderesse R, Gazzali AM, Barberi-Heyob M, Boura C, Frochot C, et al.
    J Biomol Struct Dyn, 2017 Jan;35(1):26-45.
    PMID: 26766582 DOI: 10.1080/07391102.2015.1131196
    Vascular endothelial growth factor (VEGF) and its co-receptor neuropilin-1 (NRP-1) are important targets of many pro-angiogenic factors. In this study, nine peptides were synthesized and evaluated for their molecular interaction with NRP-1 and compared to our previous peptide ATWLPPR. Docking study showed that the investigated peptides shared the same binding region as shown by tuftsin known to bind selectively to NRP-1. Four pentapeptides (DKPPR, DKPRR, TKPPR and TKPRR) and a hexapeptide CDKPRR demonstrated good inhibitory activity against NRP-1. In contrast, peptides having arginine residue at sites other than the C-terminus exhibited low activity towards NRP-1 and this is confirmed by their inability to displace the VEGF165 binding to NRP-1. Docking study also revealed that replacement of carboxyl to amide group at the C-terminal arginine of the peptide did not affect significantly the binding interaction to NRP-1. However, the molecular affinity study showed that these peptides have marked reduction in the activity against NRP-1. Pentapeptides having C-terminal arginine showed strong interaction and good inhibitory activity with NRP thus may be a good template for anti-angiogenic targeting agent.
    Matched MeSH terms: Molecular Docking Simulation
  9. Hariono M, Choi SB, Roslim RF, Nawi MS, Tan ML, Kamarulzaman EE, et al.
    PLoS One, 2019;14(1):e0210869.
    PMID: 30677071 DOI: 10.1371/journal.pone.0210869
    Dengue virus Type 2 (DENV-2) is predominant serotype causing major dengue epidemics. There are a number of studies carried out to find its effective antiviral, however to date, there is still no molecule either from peptide or small molecules released as a drug. The present study aims to identify small molecules inhibitor from National Cancer Institute database through virtual screening. One of the hits, D0713 (IC50 = 62 μM) bearing thioguanine scaffold was derivatised into 21 compounds and evaluated for DENV-2 NS2B/NS3 protease inhibitory activity. Compounds 18 and 21 demonstrated the most potent activity with IC50 of 0.38 μM and 16 μM, respectively. Molecular dynamics and MM/PBSA free energy of binding calculation were conducted to study the interaction mechanism of these compounds with the protease. The free energy of binding of 18 calculated by MM/PBSA is -16.10 kcal/mol compared to the known inhibitor, panduratin A (-11.27 kcal/mol), which corroborates well with the experimental observation. Results from molecular dynamics simulations also showed that both 18 and 21 bind in the active site and stabilised by the formation of hydrogen bonds with Asn174.
    Matched MeSH terms: Molecular Docking Simulation
  10. Azman NAN, Alhawarri MB, Rawa MSA, Dianita R, Gazzali AM, Nogawa T, et al.
    Molecules, 2020 Oct 04;25(19).
    PMID: 33020403 DOI: 10.3390/molecules25194545
    Seventeen methanol extracts from different plant parts of five different Cassia species, including C. timorensis, C. grandis, C. fistula, C. spectabilis, and C. alata were screened against acetylcholinesterase (AChE). C. timorensis extracts were found to exhibit the highest inhibition towards AChE whereby the leaf, stem, and flower methanol extracts showed 94-97% inhibition. As far as we are aware, C. timorensis is one of the least explored Cassia spp. for bioactivity. Further fractionation led to the identification of six compounds, isolated for the first time from C. timorensis: 3-methoxyquercetin (1), benzenepropanoic acid (2), 9,12,15-octadecatrienoic acid (3), β-sitosterol (4), stigmasterol (5), and 1-octadecanol (6). Compound 1 showed moderate inhibition towards AChE (IC50: 83.71 μM), while the other compounds exhibited poor to slightly moderate AChE inhibitory activity. Molecular docking revealed that the methoxy substitution of 1 formed a hydrogen bond with TYR121 at the peripheral anionic site (PAS) and the hydroxyl group at C5 formed a covalent hydrogen bond with ASP72. Additionally, the OH group at the C3' position formed an interaction with the protein at the acyl pocket (PHE288). This possibly explains the activity of 1 in blocking the entry of acetylcholine (ACh, the neurotransmitter), thus impeding the hydrolysis of ACh.
    Matched MeSH terms: Molecular Docking Simulation*
  11. Al-Thiabat MG, Saqallah FG, Gazzali AM, Mohtar N, Yap BK, Choong YS, et al.
    Molecules, 2021 Feb 18;26(4).
    PMID: 33670773 DOI: 10.3390/molecules26041079
    Folate receptor alpha (FRα) is known as a biological marker for many cancers due to its overexpression in cancerous epithelial tissue. The folic acid (FA) binding affinity to the FRα active site provides a basis for designing more specific targets for FRα. Heterocyclic rings have been shown to interact with many receptors and are important to the metabolism and biological processes within the body. Nineteen FA analogs with substitution with various heterocyclic rings were designed to have higher affinity toward FRα. Molecular docking was used to study the binding affinity of designed analogs compared to FA, methotrexate (MTX), and pemetrexed (PTX). Out of 19 FA analogs, analogs with a tetrazole ring (FOL03) and benzothiophene ring (FOL08) showed the most negative binding energy and were able to interact with ASP81 and SER174 through hydrogen bonds and hydrophobic interactions with amino acids of the active site. Hence, 100 ns molecular dynamics (MD) simulations were carried out for FOL03, FOL08 compared to FA, MTX, and PTX. The root mean square deviation (RMSD) and root mean square fluctuation (RMSF) of FOL03 and FOL08 showed an apparent convergence similar to that of FA, and both of them entered the binding pocket (active site) from the pteridine part, while the glutamic part was stuck at the FRα pocket entrance during the MD simulations. Molecular mechanics Poisson-Boltzmann surface accessible (MM-PBSA) and H-bond analysis revealed that FOL03 and FOL08 created more negative free binding and electrostatic energy compared to FA and PTX, and both formed stronger H-bond interactions with ASP81 than FA with excellent H-bond profiles that led them to become bound tightly in the pocket. In addition, pocket volume calculations showed that the volumes of active site for FOL03 and FOL08 inside the FRα pocket were smaller than the FA-FRα system, indicating strong interactions between the protein active site residues with these new FA analogs compared to FA during the MD simulations.
    Matched MeSH terms: Molecular Docking Simulation
  12. Muchtaridi M, Yusuf M, Diantini A, Choi SB, Al-Najjar BO, Manurung JV, et al.
    Int J Mol Sci, 2014 Apr 25;15(5):7225-49.
    PMID: 24776765 DOI: 10.3390/ijms15057225
    Fevicordin-A (FevA) isolated from Phaleria macrocarpa (Scheff) Boerl. seeds was evaluated for its potential anticancer activity by in vitro and in silico approaches. Cytotoxicity studies indicated that FevA was selective against cell lines of human breast adenocarcinoma (MCF-7) with an IC50 value of 6.4 µM. At 11.2 µM, FevA resulted in 76.8% cell death of T-47D human breast cancer cell lines. Critical pharmacophore features amongst human Estrogen Receptor-α (hERα) antagonists were conserved in FevA with regard to a hypothesis that they could make notable contributions to its pharmacological activity. The binding stability as well as the dynamic behavior of FevA towards the hERα receptor in agonist and antagonist binding sites were probed using molecular dynamics (MD) simulation approach. Analysis of MD simulation suggested that the tail of FevA was accountable for the repulsion of the C-terminal of Helix-11 (H11) in both agonist and antagonist receptor forms. The flexibility of loop-534 indicated the ability to disrupt the hydrogen bond zipper network between H3 and H11 in hERα. In addition, MM/GBSA calculation from the molecular dynamic simulations also revealed a stronger binding affinity of FevA in antagonistic action as compared to that of agonistic action. Collectively, both the experimental and computational results indicated that FevA has potential as a candidate for an anticancer agent, which is worth promoting for further preclinical evaluation.
    Matched MeSH terms: Molecular Docking Simulation
  13. Riswanto FDO, Rawa MSA, Murugaiyah V, Salin NH, Istyastono EP, Hariono M, et al.
    Med Chem, 2021;17(5):442-452.
    PMID: 31808389 DOI: 10.2174/1573406415666191206095032
    BACKGROUND: Chalcones, originated from natural product, have been broadly studied their biological activity against various proteins which at the molecular level, are responsible for the progress of the diseases in cancer (e.g. kinases), inflammation (oxidoreductases), atherosclerosis (cathepsins receptor), and diabetes (e.g. α-glucosidase).

    OBJECTIVE: Here we synthesize 10 chalcone derivatives to be evaluated their in vitro enzymatic inhibition activity against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE).

    METHODS: The synthesis was carried out using Claissen-Schimdt condensation and the in vitro assay was conducted using Ellman Method.

    RESULTS: Compounds 2b and 4b demonstrated as the best IC50 of 9.3 μM and 68.7 μM respectively, towards AChE and BChE inhibition. Molecular docking studies predicted that this activity might be due to the interaction of the chalcones with important amino acid residues in the binding site of AChE such as SER200 and in that of BChE, such as TRP82, SER198, TRP430, TYR440, LEU286 and VAL288.

    CONCLUSION: Chalcone can be used as the scaffold for cholinesterase inhibitor, in particularly either fluorine or nitro group to be augmented at the para-position of Ring B, whereas the hydrophobic chain is necessary at the meta-position of Ring B.

    Matched MeSH terms: Molecular Docking Simulation
  14. Muchtaridi M, Lestari D, Khairul Ikram NK, Gazzali AM, Hariono M, Wahab HA
    Molecules, 2021 Jun 04;26(11).
    PMID: 34199752 DOI: 10.3390/molecules26113402
    Coffee has been studied for its health benefits, including prevention of several chronic diseases, such as type 2 diabetes mellitus, cancer, Parkinson's, and liver diseases. Chlorogenic acid (CGA), an important component in coffee beans, was shown to possess antiviral activity against viruses. However, the presence of caffeine in coffee beans may also cause insomnia and stomach irritation, and increase heart rate and respiration rate. These unwanted effects may be reduced by decaffeination of green bean Arabica coffee (GBAC) by treatment with dichloromethane, followed by solid-phase extraction using methanol. In this study, the caffeine and chlorogenic acid (CGA) level in the coffee bean from three different areas in West Java, before and after decaffeination, was determined and validated using HPLC. The results showed that the levels of caffeine were reduced significantly, with an order as follows: Tasikmalaya (2.28% to 0.097% (97 ppm), Pangalengan (1.57% to 0.049% (495 ppm), and Garut (1.45% to 0.00002% (0.2 ppm). The CGA levels in the GBAC were also reduced as follows: Tasikmalaya (0.54% to 0.001% (118 ppm), Pangalengan (0.97% to 0.0047% (388 ppm)), and Garut (0.81% to 0.029% (282 ppm). The decaffeinated samples were then subjected to the H5N1 neuraminidase (NA) binding assay to determine its bioactivity as an anti-influenza agent. The results show that samples from Tasikmalaya, Pangalengan, and Garut possess NA inhibitory activity with IC50 of 69.70, 75.23, and 55.74 μg/mL, respectively. The low level of caffeine with a higher level of CGA correlates with their higher levels of NA inhibitory, as shown in the Garut samples. Therefore, the level of caffeine and CGA influenced the level of NA inhibitory activity. This is supported by the validation of CGA-NA binding interaction via molecular docking and pharmacophore modeling; hence, CGA could potentially serve as a bioactive compound for neuraminidase activity in GBAC.
    Matched MeSH terms: Molecular Docking Simulation
  15. Hariono M, Abdullah N, Damodaran KV, Kamarulzaman EE, Mohamed N, Hassan SS, et al.
    Sci Rep, 2016 12 20;6:38692.
    PMID: 27995961 DOI: 10.1038/srep38692
    We report the computational and experimental efforts in the design and synthesis of novel neuraminidase (NA) inhibitors from ferulic acid and vanillin. Two proposed ferulic acid analogues, MY7 and MY8 were predicted to inhibit H1N1 NA using molecular docking. From these two analogues, we designed, synthesised and evaluated the biological activities of a series of ferulic acid and vanillin derivatives. The enzymatic H1N1 NA inhibition assay showed MY21 (a vanillin derivative) has the lowest IC50 of 50 μM. In contrast, the virus inhibition assay showed MY15, a ferulic acid derivative has the best activity with the EC50 of ~0.95 μM. Modelling studies further suggest that these predicted activities might be due to the interactions with conserved and essential residues of NA with ΔGbind values comparable to those of oseltamivir and zanamivir, the two commercial NA inhibitors.
    Matched MeSH terms: Molecular Docking Simulation
  16. Sharma G, Vasanth Kumar S, Wahab HA
    J Biomol Struct Dyn, 2018 01;36(1):233-242.
    PMID: 28013578 DOI: 10.1080/07391102.2016.1274271
    A series of dimeric naphthoquinones containing natural 2-hydroxy-1-4-naphthoquinone moiety was designed, synthesized, and evaluated against neuraminidase of H5N1 virus. p-hydroxy derivatives showed higher inhibition when compared to p-halogenated compounds. Molecular docking studies conducted with H5N1 neuraminidase clearly demonstrated different binding modes of the most active compound onto the open and closed conformations of loop 150. The results thus provide not only evidences of a novel scaffold evaluated as inhibitor, but also a rational explanation involving molecular modeling and the role of loop 150 in the binding.
    Matched MeSH terms: Molecular Docking Simulation*
  17. Hariono M, Rollando R, Karamoy J, Hariyono P, Atmono M, Djohan M, et al.
    Molecules, 2020 Oct 14;25(20).
    PMID: 33066411 DOI: 10.3390/molecules25204691
    Matrix metalloproteinase9 (MMP9) is known to be highly expressed during metastatic cancer where most known potential inhibitors failed in the clinical trials. This study aims to select local plants in our state, as anti-breast cancer agent with hemopexin-like domain of MMP9 (PEX9) as the selective protein target. In silico screening for PEX9 inhibitors was performed from our in house-natural compound database to identify the plants. The selected plants were extracted using methanol and then a step-by-step in vitro screening against MMP9 was performed from its crude extract, partitions until fractions using FRET-based assay. The partitions were obtained by performing liquid-liquid extraction on the methanol extract using n-hexane, ethylacetate, n-butanol, and water representing nonpolar to polar solvents. The fractions were made from the selected partition, which demonstrated the best inhibition percentage toward MMP9, using column chromatography. Of the 200 compounds screened, 20 compounds that scored the binding affinity -11.2 to -8.1 kcal/mol toward PEX9 were selected as top hits. The binding of these hits were thoroughly investigated and linked to the plants which they were reported to be isolated from. Six of the eight crude extracts demonstrated inhibition toward MMP9 with the IC50 24 to 823 µg/mL. The partitions (1 mg/mL) of Ageratum conyzoides aerial parts and Ixora coccinea leaves showed inhibition 94% and 96%, whereas their fractions showed IC50 43 and 116 µg/mL, respectively toward MMP9. Using MTT assay, the crude extract of Ageratum exhibited IC50 22 and 229 µg/mL against 4T1 and T47D cell proliferations, respectively with a high safety index concluding its potential anti-breast cancer from herbal.
    Matched MeSH terms: Molecular Docking Simulation
  18. Hariono M, Rollando R, Yoga I, Harjono A, Suryodanindro A, Yanuar M, et al.
    Molecules, 2021 Mar 08;26(5).
    PMID: 33800366 DOI: 10.3390/molecules26051464
    In our previous work, the partitions (1 mg/mL) of Ageratum conyzoides (AC) aerial parts and Ixora coccinea (IC) leaves showed inhibitions of 94% and 96%, respectively, whereas their fractions showed IC50 43 and 116 µg/mL, respectively, toward Matrix Metalloproteinase9 (MMP9), an enzyme that catalyzes a proteolysis of extracellular matrix. In this present study, we performed IC50 determinations for AC n-hexane, IC n-hexane, and IC ethylacetate partitions, followed by the cytotoxicity study of individual partitions against MDA-MB-231, 4T1, T47D, MCF7, and Vero cell lines. Successive fractionations from AC n-hexane and IC ethylacetate partitions led to the isolation of two compounds, oxytetracycline (OTC) and dioctyl phthalate (DOP). The result showed that AC n-hexane, IC n-hexane, and IC ethylacetate partitions inhibit MMP9 with their respective IC50 as follows: 246.1 µg/mL, 5.66 µg/mL, and 2.75 × 10-2 µg/mL. Toward MDA-MB-231, 4T1, T47D, and MCF7, AC n-hexane demonstrated IC50 2.05, 265, 109.70, and 2.11 µg/mL, respectively, whereas IC ethylacetate showed IC50 1.92, 57.5, 371.5, and 2.01 µg/mL, respectively. The inhibitions toward MMP9 by OTC were indicated by its IC50 18.69 µM, whereas DOP was inactive. A molecular docking study suggested that OTC prefers to bind to PEX9 rather than its catalytic domain. Against 4T1, OTC showed inhibition with IC50 414.20 µM. In conclusion, this study furtherly supports the previous finding that AC and IC are two herbals with potential to be developed as triple-negative anti-breast cancer agents.
    Matched MeSH terms: Molecular Docking Simulation
  19. Barakat A, Islam MS, Al-Majid AM, Ghabbour HA, Fun HK, Javed K, et al.
    Bioorg Med Chem, 2015 Oct 15;23(20):6740-8.
    PMID: 26381063 DOI: 10.1016/j.bmc.2015.09.001
    We describe here the synthesis of dihydropyrimidines derivatives 3a-p, and evaluation of their α-glucosidase enzyme inhibition activities. Compounds 3b (IC50=62.4±1.5 μM), 3c (IC50=25.3±1.26 μM), 3d (IC50=12.4±0.15 μM), 3e (IC50=22.9±0.25 μM), 3g (IC50=23.8±0.17 μM), 3h (IC50=163.3±5.1 μM), 3i (IC50=30.6±0.6 μM), 3m (IC50=26.4±0.34 μM), and 3o (IC50=136.1±6.63 μM) were found to be potent α-glucosidase inhibitors in comparison to the standard drug acarbose (IC50=840±1.73 μM). The compounds were also evaluated for their in vitro cytotoxic activity against PC-3, HeLa, and MCF-3 cancer cell lines, and 3T3 mouse fibroblast cell line. All compounds were found to be non cytotoxic, except compounds 3f and 3m (IC50=17.79±0.66-20.44±0.30 μM), which showed a weak cytotoxic activity against the HeLa, and 3T3 cell lines. In molecular docking simulation study, all the compounds were docked into the active site of the predicted homology model of α-glucosidase enzyme. From the docking result, it was observed that most of the synthesized compounds showed interaction through carbonyl oxygen atom and polar phenyl ring with active site residues of the enzyme.
    Matched MeSH terms: Molecular Docking Simulation
  20. Khan KM, Qurban S, Salar U, Taha M, Hussain S, Perveen S, et al.
    Bioorg Chem, 2016 10;68:245-58.
    PMID: 27592296 DOI: 10.1016/j.bioorg.2016.08.010
    Current study based on the synthesis of new thiazole derivatives via "one pot" multicomponent reaction, evaluation of their in vitro α-glucosidase inhibitory activities, and in silico studies. All synthetic compounds were fully characterized by (1)H NMR, (13)C NMR and EIMS. CHN analysis was also performed. These newly synthesized compounds showed activities in the range of IC50=9.06±0.10-82.50±1.70μM as compared to standard acarbose (IC50=38.25±0.12μM). It is worth mentioning that most of the compounds such as 1 (IC50=23.60±0.39μM), 2 (IC50=22.70±0.60μM), 3 (IC50=22.40±0.32μM), 4 (IC50=26.5±0.40μM), 6 (IC50=34.60±0.60μM), 7 (IC50=26.20±0.43μM), 8 (IC50=14.06±0.18μM), 9 (IC50=17.60±0.28μM), 10 (IC50=27.16±0.41μM), 11 (IC50=19.16±0.19μM), 12 (IC50=9.06±0.10μM), 13 (IC50=12.80±0.21μM), 14 (IC50=11.94±0.18μM), 15 (IC50=16.90±0.20μM), 16 (IC50=12.60±0.14μM), 17 (IC50=16.30±0.29μM), and 18 (IC50=32.60±0.61μM) exhibited potent inhibitory potential. Molecular docking study was performed in order to understand the molecular interactions between the molecule and enzyme. Newly identified α-glucosidase inhibitors except few were found to be completely non-toxic.
    Matched MeSH terms: Molecular Docking Simulation*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links