Displaying publications 41 - 60 of 113 in total

Abstract:
Sort:
  1. Sirat HM, Rezali MF, Ujang Z
    J Agric Food Chem, 2010 Oct 13;58(19):10404-9.
    PMID: 20809630 DOI: 10.1021/jf102231h
    Phytochemical and bioactivity studies of the leaves and stem barks of Tibouchina semidecandra L. have been carried out. The ethyl acetate extract of the leaves yielded four flavonoid compounds, identified as quercetin, quercetin 3-O-α-l-(2''-O-acetyl) arabinofuranoside, avicularin, and quercitrin, while the stem barks gave one ellagitannin, identified as 3,3'-O-dimethyl ellagic acid 4-O-α-l-rhamnopyranoside. Evaluation of the antioxidative activity on the crude extracts and pure compounds by electron spin resonance (ESR) and ultraviolet-visible (UV-vis) spectrophotometric assays showed that the pure isolated polyphenols and the EtOAc extract possessed strong antioxidative capabilities. Quercetin was found to be the most active radical scavenger in DPPH-UV and ESR methods with SC(50) values of 0.7 μM ± 1.4 and 0.7 μM ± 0.6 μM, respectively, in the antioxidant assay. A combination of quercetin and quercitrin was tested for synergistic antioxidative capacity;, however, there was no significant improvement observed. Quercetin also exhibited strong antityrosinase activity with a percent inhibition of 95.0% equivalent to the positive control, kojic acid, in the tyrosinase inhibition assay.
    Matched MeSH terms: Phenols/pharmacology*
  2. Sulaiman SF, Moon JK, Shibamoto T
    J Diet Suppl, 2011 Sep;8(3):293-310.
    PMID: 22432728 DOI: 10.3109/19390211.2011.593618
    In order to investigate the role of roasting conditions in antioxidant formation, methanol and hot water extracts from Robusta coffee beans roasted for various lengths of time and at various temperatures were analyzed for total phenolic acid, chlorogenic acid, and caffeine content, as well as for their antioxidant activities using 1,1-diphenyl-2-picryhydrazyl (DPPH), thiobarbituric acid (TBA), and malonaldehyde/gas chromatography (MA/GC) assays. The amount of total phenolics in methanol extracts decreased linearly over the roasting temperature from 63.51 ± 0.77 mg chlorogenic acid equivalent (CAE)/g coffee beans (roasted at 200°C) to 42.56 ± 0.33 mg CAE/g coffee beans (roasted at 240°C). The total chlorogenic acid content decreased when the roasting time was increased from 78.33 ± 1.41 mg/g (green coffee beans) to 4.31 ± 0.23 mg/g (roasted for 16 min at 250°C). All methanol extracts from roasted coffee beans possessed over 90% antioxidant activities in the DPPH assay. The antioxidant activity of methanol extracts ranged from 41.38 ± 1.77% (roasted at 250°C for 10 min) to 98.20 ± 1.49% (roasted at 230°C for 16 min) as tested by the TBA assay. The antioxidant activity of methanol extracts of green coffee beans and roasted coffee beans ranged from 93.01% (green coffee beans) to 98.62 ± 1.32% (roasted at 250°C for 14 min) in the MA/GC assays. All hot water extracts exhibited moderate pro-oxidant activities in TBA and MA/GC assays. The results indicated that roasting conditions of coffee beans play an important role in the formation of antioxidants in brewed coffee, which can be dietary supplements having beneficial effect to human health.
    Matched MeSH terms: Phenols/pharmacology
  3. Surendran A, Siddiqui Y, Saud HM, Ali NS, Manickam S
    J Appl Microbiol, 2018 Sep;125(3):876-887.
    PMID: 29786938 DOI: 10.1111/jam.13922
    AIM: Lignolytic (lignin degrading) enzyme, from oil palm pathogen Ganoderma boninense Pat. (Syn G. orbiforme (Ryvarden)), is involved in the detoxification and the degradation of lignin in the oil palm and is the rate-limiting step in the infection process of this fungus. Active inhibition of lignin-degrading enzymes secreted by G. boninense by various naturally occurring phenolic compounds and estimation of efficiency on pathogen suppression was aimed at.

    METHODS AND RESULTS: In our work, 10 naturally occurring phenolic compounds were evaluated for their inhibitory potential towards the lignolytic enzymes of G. boninense. Additionally, the lignin-degrading enzymes were characterized. Most of the peholic compounds exhibited an uncompetitive inhibition towards the lignin-degrading enzymes. Benzoic acid was the superior inhibitor to the production of lignin-degrading enzymes, when compared between the 10 phenolic compounds. The inhibitory potential of the phenolic compounds towards the lignin-degrading enzymes are higher than that of the conventional metal ion inhibitor. The lignin-degrading enzymes were stable in a wide range of pH but were sensitive to higher temperature.

    CONCLUSION: The study demonstrated the inhibitor potential of 10 naturally occurring phenolic compounds towards the lignin-degrading enzymes of G. boninense with different efficacies.

    SIGNIFICANCE AND IMPACT OF THE STUDY: The study has shed a light towards a new management strategy to control basal stem rot disease in oil palm. It serves as a replacement for the existing chemical control.

    Matched MeSH terms: Phenols/pharmacology*
  4. Surendran A, Siddiqui Y, Ali NS, Manickam S
    J Appl Microbiol, 2018 Jun;124(6):1544-1555.
    PMID: 29405525 DOI: 10.1111/jam.13717
    AIM: Ganoderma sp, the causal pathogen of the basal stem rot (BSR) disease of oil palm, secretes extracellular hydrolytic enzymes. These play an important role in the pathogenesis of BSR by nourishing the pathogen through the digestion of cellulose and hemicellulose of the host tissue. Active suppression of hydrolytic enzymes secreted by Ganoderma boninense by various naturally occurring phenolic compounds and estimation of their efficacy on pathogen suppression is focused in this study.

    METHODS AND RESULTS: Ten naturally occurring phenolic compounds were assessed for their inhibitory effect on the hydrolytic enzymes of G. boninense. The enzyme kinetics (Vmax and Km ) and the stability of the hydrolytic enzymes were also characterized. The selected compounds had shown inhibitory effect at various concentrations. Two types of inhibitions namely uncompetitive and noncompetitive were observed in the presence of phenolic compounds. Among all the phenolic compounds tested, benzoic acid was the most effective compound suppressive to the growth and production of hydrolytic enzymes secreted by G. boninense. The phenolic compounds as inhibitory agents can be a better replacement for the metal ions which are known as conventional inhibitors till date. The three hydrolytic enzymes were stable in a wide range of pH and temperature.

    CONCLUSION: These findings highlight the efficacy of the applications of phenolic compounds to control Ganoderma.

    SIGNIFICANCE AND IMPACT OF THE STUDY: The study has proved a replacement for chemical controls of G. boninense with naturally occurring phenolic compounds.

    Matched MeSH terms: Phenols/pharmacology*
  5. Lay MM, Karsani SA, Malek SN
    Biomed Res Int, 2014;2014:468157.
    PMID: 24579081 DOI: 10.1155/2014/468157
    2,4',6-Trihydroxy-4-methoxybenzophenone was isolated from the ethyl acetate fraction of Phaleria macrocarpa (Scheff.) Boerl. fruits. It was found to inhibit cell proliferation in HT-29 human colon carcinoma cell line but caused little damage to WRL-68 normal human liver and MRC-5 normal human fibroblast lung cell lines. The compound was found to sharply affect the viability of HT-29 cells in a dose- and time-dependent manner. HT-29 cells treated with the compound showed morphological changes under microscopic examination such as cell shrinkage, membrane blebbing, DNA fragmentation, and the occurrence of apoptotic nuclei. The percentage of early apoptotic, late apoptotic, and dead or necrotic cells was determined by flow cytometry using annexin V-FTIC/PI staining. In addition, flow cytometry showed that, when the HT-29 cells were treated with 115 µM of the compound, it resulted in G0/G1 phase arrest in a time-dependent manner. Western blot revealed an upregulation of PUMA, Bak, Bcl-2, and Mcl-1 proteins suggesting that the compound induced apoptosis in HT-29 cells by regulating these proteins.
    Matched MeSH terms: Phenols/pharmacology
  6. Audah KA, Ettin J, Darmadi J, Azizah NN, Anisa AS, Hermawan TDF, et al.
    Molecules, 2022 Nov 30;27(23).
    PMID: 36500458 DOI: 10.3390/molecules27238369
    Methicillin-resistant Staphylococcus aureus (MRSA) is an S. aureus strain that has developed resistance against ß-lactam antibiotics, resulting in a scarcity of a potent cure for treating Staphylococcus infections. In this study, the anti-MRSA and antioxidant activity of the Indonesian mangrove species Sonneratia caseolaris, Avicennia marina, Rhizophora mucronata, and Rhizophora apiculata were studied. Disk diffusion, DPPH, a brine shrimp lethality test, and total phenolic and flavonoid assays were conducted. Results showed that among the tested mangroves, ethanol solvent-based S. caseolaris leaves extract had the highest antioxidant and anti-MRSA activities. An antioxidant activity assay showed comparable activity when compared to ascorbic acid, with an IC50 value of 4.2499 ± 3.0506 ppm and 5.2456 ± 0.5937 ppm, respectively, classifying the extract as a super-antioxidant. Moreover, S. caseolaris leaves extract showed the highest content of strongly associated antioxidative and antibacterial polyphenols, with 12.4% consisting of nontoxic flavonoids with the minimum inhibitory concentration of the ethanol-based S. caseolaris leaves extract being approximately 5000 ppm. LC-MS/MS results showed that phenolic compounds such as azelaic acid and aspirin were found, as well as flavonoid glucosides such as isovitexin and quercitrin. This strongly suggested that these compounds greatly contributed to antibacterial and antioxidant activity. Further research is needed to elucidate the interaction of the main compounds in S. caseolaris leaves extract in order to confirm their potential either as single or two or more compounds that synergistically function as a nontoxic antioxidant and antibacterial against MRSA.
    Matched MeSH terms: Phenols/pharmacology
  7. Nordin ML, Abdul Kadir A, Zakaria ZA, Abdullah R, Abdullah MNH
    BMC Complement Altern Med, 2018 Mar 12;18(1):87.
    PMID: 29530022 DOI: 10.1186/s12906-018-2153-5
    BACKGROUND: Ardisia crispa Thunb. D.C is used mostly in some parts of the Asian region by traditional practitioners to treat certain diseases associated with oxidative stress and inflammation including cancer and rheumatism. In Malaysia, it is popularly known as 'Mata Ayam' and local traditional practitioners believed that the root of the plant is therapeutically beneficial.

    METHODS: The cytotoxic effect of hydromethanolic extract of A. crispa and its solvents partitions (ethyl acetate and aqueous extracts) against breast cancer cells were evaluated by using MTT assay. The cells were treated with concentration of extracts ranging from 15.63 μg/mL- 1000 μg/mL for 72 h. The quantification of phenolic and flavonoid contents of the extracts were carried out to determine the relationship between of phytochemical compounds responsible for cytotoxic and antioxidative activities. The antioxidant capacity was measured by DPPH and ABTS free radical scavenging assay and expressed as milligram (mg) Trolox equivalent antioxidant capacity per 1 g (g) of tested extract.

    RESULTS: The hydromethanolic and ethyl acetate extracts showed moderate cytotoxic effect against MCF-7 with IC50 values of 57.35 ± 19.33 μg/mL, and 54.98 ± 14.10 μg/mL, respectively but aqueous extract was inactive against MCF-7. For MDA-MB-231, hydromethanolic, ethyl acetate and aqueous extracts exhibited weak cytotoxic effects against MDA-MB-231 with IC50 values more than 100 μg/mL. The plant revealed high total phenolic content, total flavonoid and antioxidant capacity.

    CONCLUSION: The response of different type of breast cancer cell lines towards A. crispa extract and its partitions varied. Accordingly, hydromethanolic and ethyl acetate extracts appear to be more cytotoxic to oestrogen receptor (ER) positive breast cancer than oestrogen receptor (ER) negative breast cancer. However, aqueous extract appears to have poor activity to both types of breast cancer. Besides that, hydromethanolic and ethyl acetate extracts exhibit higher TPC, TFC and antioxidant capacity compared to aqueous extract. Synergistic effect of anticancer and antioxidant bioactives compounds of A. crispa plausibly contributed to the cytotoxic effects of the extract.

    Matched MeSH terms: Phenols/pharmacology
  8. Zakaria ZA, Mohamed AM, Jamil NS, Rofiee MS, Hussain MK, Sulaiman MR, et al.
    Am J Chin Med, 2011;39(1):183-200.
    PMID: 21213408
    The in vitro antiproliferative and antioxidant activities of the aqueous, chloroform and methanol extracts of Muntingia calabura leaves were determined in the present study. Assessed using the 3,(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) (MTT) assay, the aqueous and methanol extracts of M. calabura inhibited the proliferation of MCF-7, HeLa, HT-29, HL-60 and K-562 cancer cells while the chloroform extract only inhibited the proliferation of MCF-7, HeLa, HL-60 and K-562 cancer cells. Interestingly, all extracts of M. calabura, which failed to inhibit the MDA-MB-231 cells proliferation, did not inhibit the proliferation of 3T3 (normal) cells, indicating its safety. All extracts (20, 100 and 500 μg/ml) were found to possess antioxidant activity when tested using the DPPH radical scavenging and superoxide scavenging assays with the methanol, followed by the aqueous and chloroform, extract exhibiting the highest antioxidant activity in both assays. The total phenolic content for the aqueous, methanol and chloroform extracts were 2970.4 ± 6.6, 1279.9 ± 6.1 and 2978.1 ± 4.3 mg/100 g gallic acid, respectively. In conclusion, the M. calabura leaves possess potential antiproliferative and antioxidant activities that could be attributed to its high content of phenolic compounds, and thus, needs to be further explored.
    Matched MeSH terms: Phenols/pharmacology
  9. Zakaria ZA, Rofiee MS, Mohamed AM, Teh LK, Salleh MZ
    J Acupunct Meridian Stud, 2011 Dec;4(4):248-56.
    PMID: 22196508 DOI: 10.1016/j.jams.2011.09.016
    The present study aims to determine the in vitro antiproliferative and antioxidant activities of various extracts from the leaves of Melastoma malabathricum using various established in vitro assays. The aqueous extract inhibited the proliferation of Caov-3 and HL-60 cell lines, while the chloroform extract exhibited antiproliferative activity against the Caov-3, HL-60, and CEM-SS cell lines. The methanol extract demonstrated antiproliferative activity against more cell lines, including the MCF-7, HeLa, Caov-3, HL-60, CEM-SS, and MDA-MB-231 cancer cell lines. Interestingly, all extracts did not inhibit the proliferation of 3T3 cells, thus indicating their noncytotoxic properties. Unlike the chloroform extracts, the aqueous and methanol extracts of M malabathricum (20, 100, and 500 μg/ml) produced high antioxidant activity for the superoxide scavenging assay with only the 500 μg/ml aqueous and methanol extracts exhibited high activity for the 2,2-diphenyl -1-picrylhydrazyl radical scavenging assay. The total phenolic content recorded for the aqueous, methanol, and chloroform extracts were 3344.2 ± 19.1, 3055.1 ± 8.7, and 92.5 ± 7.3 mg/100 g of gallic acid, respectively. The M malabathricum leaves possessed potential antiproliferative and antioxidant activities that could be attributed to its high content of phenolic compounds.
    Matched MeSH terms: Phenols/pharmacology
  10. Ho WY, Yeap S, Liang WS, Beh BK, Mohamad N, Alitheen NB
    Pak J Pharm Sci, 2015 Jan;28(1):15-22.
    PMID: 25553678
    Vernonia amygdalina is a strong natural antioxidant that possessed various medicinal properties. In this study, the spray-dried water extract of V. amygdalina was evaluated for its in vitro antioxidant capacity and in vivo hepatoprotective effect against alcoholic-mediated liver damage. Total phenolic and flavonoid content of spray-dried V. amygdalina water extract were determined. Liver enzyme profiles, liver antioxidant level and nitric oxide level were evaluated in alcohol-induced liver injured mice or co-supplement with spray-dried V. amydalina. Water extract of spray-dried V. amygalina that contained phenolic content of 24.8±1.5 mg/g gallic acid equivalent and total flavonoid content of 25.7±1.3 mg/g catechin equivalent was able to inhibit 50% of xanthine and tyrosinase oxidation at 170 μg/ml and 2 mg/mL, respectively. On the other hand, extracts at both 10 and 50 mg/kg body weight were able to reduce the levels of Alanine transaminase (ALT), Alkaline phosphatase (ALP), Aspartate transaminase (AST), triglyceride and total bilirubin content inthe alcohol-mediated liver injury in mice. Furthermore, it also helped to increase levels of Superoxide dismutase (SOD), Ferric reducing ability of plasma (FRAP) and reduce the levels of Nitric oxide (NO) and Malondialdehyde (MDA) in the liver of the treated mice. These resultssuggestedthat water extract of spray-dried V. amygdalina exhibited liver protective effect, which could be contributed by its antioxidant properties.
    Matched MeSH terms: Phenols/pharmacology
  11. Rukayadi Y, Hwang JK
    Phytother Res, 2013 Jul;27(7):1061-6.
    PMID: 22969012 DOI: 10.1002/ptr.4834
    The purpose of this study was to investigate the activity of xanthorrhizol isolated from Curcuma xanthorrhiza Roxb. on Candida albicans biofilms at adherent, intermediate, and mature phase of growth. C. albicans biofilms were formed in flat-bottom 96-well microtiter plates. The biofilms of C. albicans at different phases of development were exposed to xanthorrhizol at different concentrations (0.5 µg/mL-256 µg/mL) for 24 h. The metabolic activity of cells within the biofilms was quantified using the XTT reduction assay. Sessile minimum inhibitory concentrations (SMICs) were determined at 50% and 80% reduction in the biofilm OD₄₉₀ compared to the control wells. The SMIC₅₀ and SMIC₈₀ of xanthorrhizol against 18 C. albicans biofilms were 4--16 µg/mL and 8--32 µg/mL, respectively. The results demonstrated that the activity of xanthorrhizol in reducing C. albicans biofilms OD₄₉₀ was dependent on the concentration and the phase of growth of biofilm. Xanthorrhizol at concentration of 8 µg/mL completely reduced in biofilm referring to XTT-colorimetric readings at adherent phase, whereas 32 µg/mL of xanthorrhizol reduced 87.95% and 67.48 % of biofilm referring to XTT-colorimetric readings at intermediate and mature phases, respectively. Xanthorrhizol displayed potent activity against C. albicans biofilms in vitro and therefore might have potential therapeutic implication for biofilm-associated candidal infections.
    Matched MeSH terms: Phenols/pharmacology*
  12. Murthy S, Hazli UHAM, Kong KW, Mai CW, Leong CO, Rahman NA, et al.
    Curr Org Synth, 2019;16(8):1166-1173.
    PMID: 31984923 DOI: 10.2174/1570179416666191003095253
    BACKGROUND: Sesamol is a widely used antioxidant for the food and pharmaceutical industries. The oxidation products of this compound may be accumulated in foods or ingested. Little is known about its effect on human health.

    OBJECTIVE: It is of great interest to identify the oxidation products of sesamol that may be beneficial to humans. This study was undertaken to identify the oxidation products of sesamol and investigate their antioxidant and cytotoxic activities.

    MATERIALS AND METHODS: Using the ferricyanide oxidation approach, four oxidation products of sesamol (2, 3, 20 & 21) have been identified. Structural elucidation of these compounds was established on the basis of their detailed NMR spectroscopic analysis, mass spectrometry and x-ray crystallography. Additionally, a formation mechanism of compound 20 was proposed based on high-resolution mass spectrometry-fragmentation method. The antioxidant activities of these compounds were determined by the DPPH, FRAP, and ABTS assays. The in vitro antiproliferative activity of these compounds was evaluated against a panel of human cancer cell lines as well as non-cancerous cells.

    RESULTS: Two oxidation products of sesamol were found to contain an unusual methylenedioxy ring-opening skeleton, as evidenced by spectroscopic and x-ray crystallographic data. Among all compounds, 20 displayed impressive antiproliferative activities against a panel of human cancer cell lines yet remained non-toxic to noncancerous cells. The antioxidant activities of compound 20 are significantly weaker than sesamol as determined by the DPPH, FRAP, and ABTS assays.

    CONCLUSION: The oxidation products of sesamol could be a valuable source of bioactive molecules. Compound 20 may be used as a potential lead molecule for cancer studies.

    Matched MeSH terms: Phenols/pharmacology
  13. Hassan FA, Ismail A, Abdulhamid A, Azlan A
    J Agric Food Chem, 2011 Sep 14;59(17):9102-11.
    PMID: 21800901 DOI: 10.1021/jf201270n
    Phenolic compounds and antioxidant capacity of acidified methanolic extract prepared from fully ripe bambangan (Mangifera pajang K.) peel cultivated in Sarawak, Malaysia, were analyzed. The total phenolic content (98.3 mg GAE/g) of bambangan peel powder (BPP) was determined by the Folin-Ciocalteu method. BPP showed a strong potency of antioxidant activity and was consistent with that of BHT and vitamin C as confirmed by the DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging activity and FRAP (ferric-reducing antioxidant power) assays. Gallic acid, p-coumaric acid, ellagic acid, protocatechuic acid, and mangiferin were the major compounds among the 16 phenolics that have been identified and quantified in M. pajang peels with 20.9, 12.7, 7.3, 5.4, and 4.8 mg/g BPP, respectively. Peak identities were confirmed by comparing their retention times, UV-vis absorption spectra, and mass spectra with authentic standards. The 16 phenolic compounds identified in M. pajang K. using HPLC-DAD and TSQ-ESI-MS are reported here for the first time.
    Matched MeSH terms: Phenols/pharmacology
  14. Karimi E, Mehrabanjoubani P, Keshavarzian M, Oskoueian E, Jaafar HZ, Abdolzadeh A
    J Sci Food Agric, 2014 Aug;94(11):2324-30.
    PMID: 24415452 DOI: 10.1002/jsfa.6567
    Plant foods are rich sources of bioactive compounds that can act as antioxidants to prevent heart disease, reduce inflammation, reduce the incidence of cancers and diabetes. This study aimed to determine the phenolics and flavonoids profiling in three varieties of rice straw and five varieties of the seed husk of Iranian rice using high-performance liquid chromatography (HPLC). Furthermore, the antioxidant activities of the extracts were evaluated by using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical and nitric oxide assays.
    Matched MeSH terms: Phenols/pharmacology*
  15. Jamila N, Khan N, Khan AA, Khan I, Khan SN, Zakaria ZA, et al.
    PMID: 28573253 DOI: 10.21010/ajtcam.v14i2.38
    BACKGROUND: Garcinia hombroniana, known as "manggis hutan" (jungle mangosteen) in Malaysia, is distributed in tropical Asia, Borneo, Thailand, Andaman, Nicobar Islands, Vietnam and India. In Malaysia, its ripened crimson sour fruit rind is used as a seasoning agent in curries and culinary dishes. Its roots and leaves decoction is used against skin infections and after child birth. This study aimed to evaluate in vivo hepatoprotective and in vitro cytotoxic activities of 20% methanolic ethyl acetate (MEA) G. hombroniana bark extract.

    MATERIALS AND METHODS: In hepatoprotective activity, liver damage was induced by treating rats with 1.0 mL carbon tetrachloride (CCl4)/kg and MEA extract was administered at a dose of 50, 250 and 500 mg/kg 24 h before intoxication with CCl4. Cytotoxicity study was performed on MCF-7 (human breast cancer), DBTRG (human glioblastoma), PC-3 (human prostate cancer) and U2OS (human osteosarcoma) cell lines. 1H, 13C-NMR (nuclear magnetic resonance), and IR (infrared) spectral analyses were also conducted for MEA extract.

    RESULTS: In hepatoprotective activity evaluation, MEA extract at a higher dose level of 500 mg/kg showed significant (p<0.05) potency. In cytotoxicity study, MEA extract was more toxic towards MCF-7 and DBTRG cell lines causing 78.7% and 64.3% cell death, respectively. MEA extract in 1H, 13C-NMR, and IR spectra exhibited bands, signals and J (coupling constant) values representing aromatic/phenolic constituents.

    CONCLUSIONS: From the results, it could be concluded that MEA extract has potency to inhibit hepatotoxicity and MCF-7 and DBTRG cancer cell lines which might be due to the phenolic compounds depicted from NMR and IR spectra.

    Matched MeSH terms: Phenols/pharmacology
  16. Oon SF, Nallappan M, Kassim NK, Shohaimi S, Sa'ariwijaya MS, Tee TT, et al.
    Biochem Biophys Res Commun, 2016 09 23;478(3):1403-8.
    PMID: 27576204 DOI: 10.1016/j.bbrc.2016.08.136
    Hyperlipidemia is defined as the presence of either hypertriglyceridemia or hypercholesterolemia, which could cause atherosclerosis. Although hyperlipidemia can be treated by hypolipidemic drugs, they are limited due to lack of effectiveness and safety. Previous studies demonstrated that xanthorrhizol (XNT) isolated from Curcuma xanthorrhizza Roxb. reduced the levels of free fatty acid and triglyceride in vivo. However, its ability to inhibit cholesterol uptake in HT29 colon cells and adipogenesis in 3T3-L1 cells are yet to be reported. In this study, XNT purified from centrifugal TLC demonstrated 98.3% purity, indicating it could be an alternative purification method. The IC50 values of XNT were 30.81 ± 0.78 μg/mL in HT29 cells and 35.07 ± 0.24 μg/mL in 3T3-L1 adipocytes, respectively. Cholesterol uptake inhibition study using HT29 colon cells showed that XNT (15 μg/mL) significantly inhibited the fluorescent cholesterol analogue NBD uptake by up to 27 ± 3.1% relative to control. On the other hand, higher concentration of XNT (50 μg/mL) significantly suppressed the growth of 3T3-L1 adipocytes (5.9 ± 0.58%) compared to 3T3-L1 preadipocytes (81.31 ± 0.55%). XNT was found to impede adipogenesis of 3T3-L1 adipocytes in a dose-dependent manner from 3.125 to 12.5 μg/mL, where 12.5 μg/mL significantly suppressed 36.13 ± 2.1% of lipid accumulation. We postulate that inhibition of cholesterol uptake, adipogenesis, preadipocyte and adipocyte number may be utilized as treatment modalities to reduce the prevalence of lipidemia. To conclude, XNT could be a potential hypolipidemic agent to improve cardiovascular health in the future.
    Matched MeSH terms: Phenols/pharmacology*
  17. Phan CW, Lee GS, Hong SL, Wong YT, Brkljača R, Urban S, et al.
    Food Funct, 2014 Dec;5(12):3160-9.
    PMID: 25288148 DOI: 10.1039/c4fo00452c
    Hericium erinaceus (Bull.: Fr.) Pers. is an edible and medicinal mushroom used traditionally to improve memory. In this study, we investigated the neuritogenic effects of hericenones isolated from H. erinaceus and the mechanisms of action involved. H. erinaceus was cultivated and the secondary metabolites were elucidated by high performance liquid chromatography (HPLC), liquid chromatography-mass spectrometry (LC-MS), and nuclear magnetic resonance (NMR). The secondary metabolites were tested for neurite outgrowth activity (if any). Rat pheochromocytoma (PC12) cells were employed and the nerve growth factor (NGF) level was also determined. The signaling pathways involved in the mushroom-induced neuritogenesis were investigated using several pharmacological inhibitors. Hericenones B-E (1-4), erinacerin A (5) and isohericerin (6) were isolated from the basidiocarps of H. erinaceus. The hericenones did not promote neurite outgrowth but when induced with a low concentration of NGF (5 ng mL(-1)), the neuritogenic activity was comparable to that of the positive control (50 ng mL(-1) of NGF). Hericenone E was able to stimulate NGF secretion which was two-fold higher than that of the positive control. The neuritogenesis process was partially blocked by the tyrosine kinase receptor (Trk) inhibitor, K252a, suggesting that the neuritogenic effect was not solely due to NGF. Hericenone E also increased the phosphorylation of extracellular-signal regulated kinases (ERKs) and protein kinase B (Akt). Taken together, this study suggests that hericenone E potentiated NGF-induced neuritogenesis in PC12 cells via the MEK/ERK and PI3K/Akt pathways.
    Matched MeSH terms: Phenols/pharmacology*
  18. Romero Rocamora C, Ramasamy K, Meng Lim S, Majeed ABA, Agatonovic-Kustrin S
    J Pharm Biomed Anal, 2020 Jan 30;178:112909.
    PMID: 31618702 DOI: 10.1016/j.jpba.2019.112909
    A high-performance thin-layer chromatography (HPTLC) method combined with effect-directed-analysis (EDA) was developed to screen the antioxidant, neuroprotective and antidiabetic effects in essential oils derived from lavender flower, lemon myrtle, oregano, peppermint, sage, and rosemary leaves (Lamiaceae family). HPTLC hyphenated with microchemical (DPPH•, p-anisaldehyde, and ferric chloride) derivatizations, was used to evaluate antioxidant activity, presence of phytosterols and terpenoids, and polyphenolic content, while the combination with biochemical (α-amylase and acetylcholine esterase (AChE) enzymatic) derivatizations was used to asses α-amylase and AChE inhibitory activities. The superior antioxidant activity of oregano leaf extract is attributed to the presence of high levels of aromatic compounds, like polyphenolic acids. The strongest α-amylase inhibition was observed in lemon myrtle and rosemary plus extracts due to the presence of monoterpenes. Rosemary and sage extracts exhibit the highest AChE inhibition activity, with 1 μL essential oils being more potent than the recommended daily dose of donepezil. This superior neuroprotection was attributed to the presences of di- and triterpenes that displayed strong AChE inhibition and antioxidant potential in DPPH• free radical assay. Antioxidant activity was related to phenolic content (R = 0.49), while α-amylase inhibitory activity was positively related to antioxidant activity (R = 0.20) and terpenoid/sterol content (R = 0.31). AChE inhibitory activity was correlated (R = 0.80) to the combined effect of phenolics and terpenoids. Thus, the superior AChE inhibitory and neuroprotection potential of rosemary and sage essential oils could be attributed to joint effects of main phenolic and terpene constituents. The hyphenated HPTLC method provided rapid bioanalytical profiling of highly complex essential oil samples.
    Matched MeSH terms: Phenols/pharmacology
  19. Vafaei A, Bin Mohamad J, Karimi E
    Nat Prod Res, 2019 Sep;33(17):2531-2535.
    PMID: 29527930 DOI: 10.1080/14786419.2018.1448810
    In this study the antioxidant and cytotoxicity activity of the Adonidia merrillii fruits were investigated using different solvent polarities (methanol, ethyl acetate and water). The results showed that the total phenolic and flavonoid contents of the methanolic extract was higher compare with other extract with respective values of 17.80 ± 0.45 mg gallic acid equivalents/g dry weight (DW) and 5.43 ± 0.33 mg rutin equivalents/g DW. Beside that The RP-HPLC analyses indicated the presence of gallic acid, pyrogallol, caffeic acid, vanillic acid, syringic acid, naringin and rutin. In the DPPH, NO2 and ABTS scavenging assays, the methanolic extract exhibited higher antioxidant activity as compared to the ethyl acetate and water extracts. The extracts exhibited moderate to weak cytotoxic activity in the assays using human hepatocytes (Chang liver cells) and NIH/3T3 (fibroblasts cell) cell lines. The findings showed the Adonidia merrillii fruit extracts to possess considerable antioxidant and cytotoxicity properties. The fruit, therefore, is a potential candidate for further work to discover antioxidant and cytotoxic drugs from natural sources.
    Matched MeSH terms: Phenols/pharmacology
  20. Ong CE, Ahmad R, Goh YK, Azizan KA, Baharum SN, Goh KJ
    PLoS One, 2021;16(12):e0262029.
    PMID: 34972183 DOI: 10.1371/journal.pone.0262029
    Various phenolic compounds have been screened against Ganoderma boninense, the fungal pathogen causing basal stem rot in oil palms. In this study, we focused on the effects of salicylic acid (SA) on the growth of three G. boninense isolates with different levels of aggressiveness. In addition, study on untargeted metabolite profiling was conducted to investigate the metabolomic responses of G. boninense towards salicylic acid. The inhibitory effects of salicylic acid were both concentration- (P < 0.001) and isolate-dependent (P < 0.001). Also, growth-promoting effect was observed in one of the isolates at low concentrations of salicylic acid where it could have been utilized by G. boninense as a source of carbon and energy. Besides, adaptation towards salicylic acid treatment was evident in this study for all isolates, particularly at high concentrations. In other words, inhibitory effect of salicylic acid treatment on the fungal growth declined over time. In terms of metabolomics response to salicylic acid treatment, G. boninense produced several metabolites such as coumarin and azatyrosine, which suggests that salicylic acid modulates the developmental switch in G. boninense towards the defense mode for its survival. Furthermore, the liquid chromatography time-of-flight mass spectrometry (LC-TOF-MS) analysis showed that the growth of G. boninense on potato dextrose agar involved at least four metabolic pathways: amino acid metabolism, lipid pathway, tryptophan pathway and phenylalanine pathway. Overall, there were 17 metabolites that contributed to treatment separation, each with P<0.005. The release of several antimicrobial metabolites such as eudistomin I may enhance G. boninense's competitiveness against other microorganisms during colonisation. Our findings demonstrated the metabolic versatility of G. boninense towards changes in carbon sources and stress factors. G. boninense was shown to be capable of responding to salicylic acid treatment by switching its developmental stage.
    Matched MeSH terms: Phenols/pharmacology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links