Displaying publications 41 - 60 of 100 in total

Abstract:
Sort:
  1. Lim, Siau Peng, Fazal Reza, Zaihan Ariffin
    MyJurnal
    The purpose of this study was to evaluate hardness (indicator for polymerization) and thickness of two types of resin cement at coronal, middle and apical level of tooth root canal. Ten extracted maxillary incisors were instrumented and post space was prepared for cementation of titanium post. Samples were divided into two groups and each group was cemented either of the two types of resin cements; Panavia F [dual-cured (PF)] and Rely X Luting 2 [self-cured (RL)]. The teeth were longitudinally sectioned; hardness and thickness was measured using Vickers hardness tester and a microscope (Leica DMLM). SEM observations along the cement line at the 3 different root levels were performed. Statistical analysis was performed to test significance of differences in hardness and thickness of the two types of cement (t-test; p= 0.05) and at different levels of the same type (one-way ANOVA followed by multiple comparison; p= 0.05). Significant difference of hardness was found at the apical level between the two groups and between the coronal and apical level of PF (p0.05). Moreover, voids were more obvious within the dual-cured group of cement. Dual-cured resin cement was found to be less polymerized than self-cured type at apical level. Increased thicknesses of resin cements in comparison to post space size were observed in both groups. Use of metallic post with resin cements needs further evaluation.
    Matched MeSH terms: Polymerization
  2. Siti Nurul Ain Md. Jamil, Rusil Daik, Ishak Ahmad
    MyJurnal
    Redox polymerization of acrylonitrile (AN) with ethyl acrylate (EA) and fumaronitrile (FN), as comonomer and termonomer respectively, were carried out using sodium bisulfite (SBS) and potassium persulphate (KPS) as initiators at 40°C. The actual composition of monomers in copolymers and terpolymers has been characterized by gas chromatography (GC). The effects of EA and FN on the glass transition temperature (Tg) and stabilization temperature have been studied by Differential Scanning Calorimetry (DSC). The degradation behaviour and char yield were obtained by thermogravimetric analysis. Meanwhile, incorporation of 10 mol% of EA in homoPAN system was found to greatly reduce Tg to 66°C as compared to that of the homoPAN (Tg=105°C). The initial cyclization temperature (Ti) was found to be higher (264°C) in comparison to that of homoPAN (246°C). In addition, the incorporation of EA was also shown to reduce the char yield of copolymer to 40%. When FN was incorporated as termonomer, the char yield of poly(AN/EA/ FN) 90/4/6 increased up to 44% after the heat treatment with the lowest Ti (241°C).
    Matched MeSH terms: Polymerization
  3. Ahmed A. Ahmed Al-Dulaimi, Shahrir Hashim, Mohammed Ilyas Khan
    MyJurnal
    Polyaniline (PANI) and polyaniline composites with aluminium oxide (Al2O3) were prepared using the in situ polymerization method. The composites were then blended with acrylic paint and applied to carbon steel panels. The coated steel panels were evaluated for corrosion using the immersion test technique. The results revealed that the steel panels coated with polyaniline composites and with Al2O3 containing coatings had small corrosion as compared to the bare sample and the samples coated with polyaniline and paint alone. The samples were characterized by Fourier transform infrared (FTIR) and X-ray diffraction(XRD). In addition, the morphology of the finished samples was observed using the scanning electron microscopy (SEM). This novel composite was used as a paint pigment for enhancing the barrier properties and the paint protectable against aggressive ions. Meanwhile, corrosion was evaluated through visual monitoring using a digital camera after 60 days of fully immersion test in 5% NaCl. The weight loss method was also used to evaluate corrosion.
    Matched MeSH terms: Polymerization
  4. Anis SNS, Mohamad Annuar MS, Simarani K
    Prep Biochem Biotechnol, 2017 Sep 14;47(8):824-834.
    PMID: 28635367 DOI: 10.1080/10826068.2017.1342266
    In vivo and in vitro depolymerizations of intracellular medium-chain-length poly-3-hydroxyalkanoates (mcl-PHA) in Pseudomonas putida Bet001 grown on lauric acid was studied. Both processes were studied under optimum conditions for mcl-PHA depolymerization viz. 0.2 M Tris-HCl buffer, pH 9, ionic strength (I) = 0.2 M at 30°C. For in vitro depolymerization studies, cell-free system was obtained from lysing bacterial cells suspension by ultrasonication at optimum conditions (frequency 37 kHz, 30% of power output, <25°C for 120 min). The comparison between in vivo and in vitro depolymerizations of intracellular mcl-PHA was made. In vitro depolymerization showed lower depolymerization rate but higher yield compared to in vivo depolymerization. The monomer liberation rate reflected the mol% distribution of the initial polymer subunit composition, and the resulting direct individual products of depolymerization were identical for both in vivo and in vitro processes. It points to exo-type reaction for both processes, and potential biological route to chiral molecules.
    Matched MeSH terms: Polymerization
  5. Rahman MR, Hamdan S, Lai JCH, Jawaid M, Yusof FABM
    Heliyon, 2017 Jul;3(7):e00342.
    PMID: 28725868 DOI: 10.1016/j.heliyon.2017.e00342
    In this study, the physical, morphological, mechanical and thermal properties of furfuryl alcohol/2-ethylhexyl methacrylate/halloysite nanoclay wood polymer nanocomposites (FA-co-EHMA-HNC WPNCs) were investigated. FA-co-EHMA-HNC WPNCs were prepared via an impregnation method and the properties of the nanocomposites were characterized through the weight percent gain, Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), three-point flexural test, dynamic mechanical thermal analysis (DMTA), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) analysis and moisture absorption test. The weight percent gain in the 50:50 FA-co-EHMA-HNC WPNC was the highest compared with the raw wood (RW) and other WPNCs. The FT-IR results confirmed that polymerization took place in the nanocomposites, especially 50:50 FA-co-EHMA-HNC WPNC, which had a reduced amount of hydroxyl groups. The SEM results revealed that the 50:50 FA-co-EHMA-HNC WPNC had the smoothest and most uniform surface among all of the nanocomposites. The 50:50 FA-co-EHMA-HNC WPNC showed the highest flexural strength and modulus of elasticity. The results revealed that the storage modulus and loss modulus of the FA-co-EHMA-HNC WPNCs were higher and the tan δ of FA-co-EHMA-HNC WNPCs was lower compared with the RW. The FA-co-EHMA-HNC WPNCs exhibited the higher thermal stability in the TGA and DSC analysis. The 50:50 FA-co-EHMA-HNC WPNC exhibited remarkably lower moisture absorption compared with the RW. Overall, this study proved that the ratio 50:50 FA-co-EHMA ratio was the most suitable for introduction in the in the RW.
    Matched MeSH terms: Polymerization
  6. Chan SY, Chan BQY, Liu Z, Parikh BH, Zhang K, Lin Q, et al.
    ACS Omega, 2017 Dec 31;2(12):8959-8968.
    PMID: 30023596 DOI: 10.1021/acsomega.7b01604
    Natural polysaccharide pectin has for the first time been grafted with polyhydroxybutyrate (PHB) via ring-opening polymerization of β-butyrolactone. This copolymer, pectin-polyhydroxybutyrate (pec-PHB), was blended with PHB in various proportions and electrospun to produce nanofibers that exhibited uniform and bead-free nanostructures, suggesting the miscibility of PHB and pec-PHB. These nanofiber blends exhibited reduced fiber diameters from 499 to 336-426 nm and water contact angles from 123.8 to 88.2° on incorporation of pec-PHB. They also displayed 39-335% enhancement of elongation at break relative to pristine PHB nanofibers. pec-PHB nanofibers were found to be noncytotoxic and biocompatible. Human retinal pigmented epithelium (ARPE-19) cells were seeded onto pristine PHB and pec-PHB nanofibers as scaffold and showed good proliferation. Higher proportions of pec-PHB (pec-PHB10 and pec-PHB20) yielded higher densities of cells with similar characteristics to normal RPE cells. We propose, therefore, that nanofibers of pec-PHB have significant potential as retinal tissue engineering scaffold materials.
    Matched MeSH terms: Polymerization
  7. Teh AH, Chiam NC, Furusawa G, Sudesh K
    Int J Biol Macromol, 2018 Nov;119:438-445.
    PMID: 30048726 DOI: 10.1016/j.ijbiomac.2018.07.147
    Polyhydroxyalkanoate (PHA) synthase, PhaC, is a key enzyme in the biosynthesis of PHA, a type of bioplastics with huge potential to replace petroleum-based plastics. While two structures have been determined, the exact mechanism remains unclear partly due to the absence of a tunnel for product passage. A model of the class I PhaC from Aquitalea sp. USM4, characterised with Km of 394 μM and kcat of 476 s-1 on 3-(R)-hydroxybutyryl-CoA, revealed a three-branched channel at the dimeric interface. Two of them are opened to the solvent and are expected to serve as the putative routes for substrate entrance and product exit, while the third is elongated in the class II PhaC1 model from Pseudomonas aeruginosa, indicating a role in accommodating the hydroxyalkanoate (HA) moiety of a HA-CoA substrate. Docking of the two tetrahedral intermediates, formed during the transfer of the growing PHA chain from the catalytic Cys to a new molecule of substrate and back to Cys, suggests a common elongation mechanism requiring the HA moiety of the ligand to rotate ~180°. Substrate specificity is determined in part by a bulky Phe/Tyr/Trp residue in the third branch in class I, which is conserved as Ala in class II to create room for longer substrates.
    Matched MeSH terms: Polymerization
  8. Abdi MM, Md Tahir P, Liyana R, Javahershenas R
    Molecules, 2018 Sep 26;23(10).
    PMID: 30261640 DOI: 10.3390/molecules23102470
    In this study a cationic surfactant, cetyltrimethylammonium bromide (CTAB), was used as a soft template for in situ chemical polymerization of aniline on the surface of microcrystalline cellulose (MCC). The morphology of the wire-like and porous nanostructure of the resulting composite was highly dependent on the MCC and CTAB concentrations. The effect of the MCC and CTAB concentrations on the electrochemical and morphological properties of the polyaniline (PAni) nanocomposite was studied. Cyclic voltammograms of modified PAni/MCC/CTAB electrode displayed a high current response and the effect of scan rate on the current response confirmed a diffusion controlled process on the surface of the electrode that makes it suitable for sensor applications. The overlapping characteristic peaks of pure PAni and MCC caused peak broadening at 3263 cm-1 in the IR spectra of PAni/MCC/CTAB nanocomposite that revealed the interaction between NH of PAni and OH group of MCC via electrostatic interactions. The addition of MCC to PAni through chemical polymerization decreased the thermal stability of composite compared to pure PAni. Lower crystallinity was observed in the XRD diffractogram, with 2 theta values of 22.8, 16.5, and 34.6 for PAni/MCC, confirming the formation of PAni on the MCC surface.
    Matched MeSH terms: Polymerization
  9. Mehamod, F.S., Kadir, M.A., Jusoh, N., Yusof, N.F., Suah, F.B.
    ASM Science Journal, 2018;11(101):114-123.
    MyJurnal
    The development of new adsorbent has rapidly increased in order to overcome the problem
    of waste water treatment from heavy metal pollution. The ability of nickel (II)-ion imprinted
    polymer (Ni-IIP) as an alternative adsorbent for the removal of nickel ion from aqueous has
    been investigated. The Ni-IIP was prepared via bulk polymerization by using functional
    monomers; methylacrylic acid (MAA) with picolinic acid as a co-monomer. Nickel ion was
    used as template, AIBN as initiator and EGDMA as cross-linking agent. Non-imprinted control
    polymer (NIP) was prepared in the same manner as Ni-IIP but in the absence of nickel
    ion. The resultant of Ni-IIP and NIP were characterized by using Fourier Transform Infrared
    (FTIR) spectroscopy and Scanning Electron Microscope (SEM). Result showed that, the adsorption
    of nickel ion onto Ni-IIP increased as the adsorbent dosage increased and contact
    time is prolonged. The adsorption isotherm model for Ni-IIP and NIP were fitted well with
    Freundlich and Langmuir, respectively. Kinetic study for both Ni-IIP and NIP were followed
    the pseudo-second order, indicates that the rate-limiting step is the surface adsorption that
    involves chemisorption. Selectivity studies showed that the distribution coefficient of Ni2+
    was higher compared to Zn2+, Mg2+ and Pb2+. The present work has successfully synthesized
    Ni-IIP particles with good potential in recognition of Ni2+ ions in an aqueous medium.
    Matched MeSH terms: Polymerization
  10. Sand Chee S, Jawaid M
    Polymers (Basel), 2019 Dec 04;11(12).
    PMID: 31817284 DOI: 10.3390/polym11122012
    In this work, the optimum filler loading to prepare epoxy/organoclay nanocomposites by the in-situ polymerization method was studied. Bi-functionalized montmorillonite at different filler loading (0.5, 1.0, 2.0, 4.0 wt %) was dispersed in epoxy resin by using a high shear speed homogenizer. The effect on morphology, thermal, dynamic mechanical, and tensile properties of the epoxy/organoclay nanocomposites were studied in this work. Wide-angle X-ray scattering (WAXS) and field emission scanning electron microscope (FESEM) studies revealed that possible intercalated structures were obtained in epoxy/organoclay nanocomposites. Thermogravimetric analysis (TGA) shows that epoxy/organoclay nanocomposites exhibit higher thermal stability at the maximum and final decomposition temperature, as well as higher char content, compared to pristine epoxy. The dynamic mechanical analysis (DMA) indicate that storage modulus (E'), loss modulus (E″), cross-link density and glass transition temperature (Tg) of the nanocomposites were improved with organoclay loading up to 1 wt %. Beyond this loading limit, the deterioration of properties was observed. A similar trend was also observed on tensile strength and modulus. We concluded from this study that organoclay loading up to 1 wt % is suitable for further study to fabricate hybrid nanocomposites for various applications.
    Matched MeSH terms: Polymerization
  11. Khoo KS, Nur Farhana Amari, Tan CY, Shahidan Radiman, Redzuwan Yahaya, Muhamad Samudi Yasir
    Sains Malaysiana, 2013;42:167-173.
    Combination of magnetic and biocompatible materials to form core-shell nanomaterials has been widely used in medical fields. These core-shell magnetic biomaterials have a great potential for magnetic fluid hyperthermia (MFH) treatment to remedy cancer. The aims of this study were to investigate the production of core-shell cobalt ferrite/polycaprolactone (CoFe2O4/PCL) nanomaterials with different ratios of cobalt ferrite to caprolactone, to study the effects of using polymer in reducing the agglomerations between particles and to determine the structure, morphology, thermal and magnetic properties of these core-shell nanomaterials. The core-shell nanomaterials were produced by in situ polymerization method. The formation of the CoFe2O4/PCL was investigated by means of Fourier transform infrared spectroscopy (FTIR), x-ray diffractometer (XRD) and transmission electron microscopy (TEM). Its thermal properties were determined by using thermogravimetric analyzer (TGA). The vibrating sample magnetometer (VSM) was used to reveal the magnetic properties. The results for the XRD and FTIR spectra demonstrated the formation of cobalt ferrite and polycaprolactone in core-shell nanomaterials. From the TEM results, it was seen that the core-shell CoFe2O4/PCL nanomaterials were best formed at a ratio of CoFe2O4 to monomer caprolactone mixtures of 1:4.
    Matched MeSH terms: Polymerization
  12. Al-Dulaimi AA, Shahrir Hashim, Khan M
    Sains Malaysiana, 2011;40:1179-1186.
    Two inorganic pigments (TiO2 and SiO2) were used to prepare composites with polyaniline (PANI) by situ polymerization method. PANI and PANI composites with SiO2 and TiO2 were characterized using Fourier transform infrared spectroscopy and X-ray diffraction. The morphology of the synthesized pigments (PANI , PANI-SiO2 and PANI-TiO2) was examined using scanning electron microscopy. Samples were then used as pigments through blending them with acrylic paint and applied on the surface of carbon steel panels. Corrosion was evaluated for coating of carbon steel panels through full immersion test up to standard ASTMG 31. Mass loss was calculated after they have been exposed in acidic media. A digital camera was also used for monitoring corrosion visually on the surface of carbon steel specimens. The results revealed that acrylic paint pigmented by PANI-SiO2 composite was more efficient in corrosion protection for carbon steel compared with the other synthesized pigments.
    Matched MeSH terms: Polymerization
  13. Wong JC, Xiang L, Ngoi KH, Chia CH, Jin KS, Ree M
    Polymers (Basel), 2020 Feb 19;12(2).
    PMID: 32093008 DOI: 10.3390/polym12020477
    A series of polystyrene nanoparticles (PS-1, PS-2, PS-3, and PS-4) in aqueous solutions were investigated in terms of morphological structure, size, and size distribution. Synchrotron small-angle X-ray scattering analysis (SAXS) was carried out, providing morphology details, size and size distribution on the particles. PS-1, PS-2, and PS-3 were confirmed to behave two-phase (core and shell) spherical shapes, whereas PS-4 exhibited a single-phase spherical shape. They all revealed very narrow unimodal size distributions. The structural parameter details including radial density profile were determined. In addition, the presence of surfactant molecules and their assemblies were detected for all particle solutions, which could originate from their surfactant-assisted emulsion polymerizations. In addition, dynamic light scattering (DLS) analysis was performed, finding only meaningful hydrodynamic size and intensity-weighted mean size information on the individual PS solutions because of the particles' spherical nature. In contrast, the size distributions were extracted unrealistically too broad, and the volume- and number-weighted mean sizes were too small, therefore inappropriate to describe the particle systems. Furthermore, the DLS analysis could not detect completely the surfactant and their assemblies present in the particle solutions. Overall, the quantitative SAXS analysis confirmed that the individual PS particle systems were successfully prepared with spherical shape in a very narrow unimodal size distribution.
    Matched MeSH terms: Polymerization
  14. Rosli NA, Ahmad I, Anuar FH, Abdullah I
    Carbohydr Polym, 2019 Jun 01;213:50-58.
    PMID: 30879689 DOI: 10.1016/j.carbpol.2019.02.074
    In this study, modified agave cellulose fibre combined by graft copolymerisation with methylmethacrylate was tested as a potential reinforcement for polylactic acid (PLA)-natural rubber/liquid natural rubber blends. Mechanical, morphological, thermal, wetting, and biodegradation characterisations were performed to assess the influence of cellulose-graft-polymethylmethacrylate (cell-g-PMMA) content on the properties of biocomposites. The addition of cell-g-PMMA improved the mechanical properties of the composites because of the chemical interaction between PLA and PMMA. Thermal stability decreased slightly upon cell-g-PMMA addition because of the low thermal stability of PMMA. A soil burial test revealed that the degradation of composites decreased with an increase in the cell-g-PMMA content. However, the weight loss after burial, which directly affected the water absorption capacity, was still higher for the cell-g-PMMA composites than for the polymer alone.
    Matched MeSH terms: Polymerization
  15. Nizar SA, Kobayashi T, Mohd Suah FB
    Luminescence, 2020 Dec;35(8):1286-1295.
    PMID: 32525612 DOI: 10.1002/bio.3890
    This paper describes the synthesis of poly(1-aminonaphthalene) and its application as a chemosensor for detection of Fe3+ using the naked eye and a fluorimetric method. The conjugated polymer was synthesized by chemical oxidative polymerization using FeCl3 as a catalyst. The response of the polymer towards various metal ions was investigated using colorimetric detection, and ultraviolet-visible and fluorescence spectroscopies. The polymer displayed high selectivity and sensitivity towards Fe3+ compared with other metal ions. A significant colour change from purple to yellow was observed upon addition of Fe3+ by the naked eye. The polymer also showed a high selectivity and sensitivity 'turn-off' fluorescence response towards Fe3+ ions. A good linear response was obtained for Fe3+ concentrations in the range 10-50 mg L-1 with a detection limit of 1.04 mg L-1 . The proposed chemosensor was applied for determination of Fe3+ content in water samples and satisfactory results were obtained.
    Matched MeSH terms: Polymerization
  16. Silakhori M, Naghavi MS, Metselaar HSC, Mahlia TMI, Fauzi H, Mehrali M
    Materials (Basel), 2013 Apr 29;6(5):1608-1620.
    PMID: 28809232 DOI: 10.3390/ma6051608
    Microencapsulated paraffin wax/polyaniline was prepared using a simple in situ polymerization technique, and its performance characteristics were investigated. Weight losses of samples were determined by Thermal Gravimetry Analysis (TGA). The microencapsulated samples with 23% and 49% paraffin showed less decomposition after 330 °C than with higher percentage of paraffin. These samples were then subjected to a thermal cycling test. Thermal properties of microencapsulated paraffin wax were evaluated by Differential Scanning Calorimeter (DSC). Structure stability and compatibility of core and coating materials were also tested by Fourier transform infrared spectrophotometer (FTIR), and the surface morphology of the samples are shown by Field Emission Scanning Electron Microscopy (FESEM). It has been found that the microencapsulated paraffin waxes show little change in the latent heat of fusion and melting temperature after one thousand thermal recycles. Besides, the chemical characteristics and structural profile remained constant after one thousand thermal cycling tests. Therefore, microencapsulated paraffin wax/polyaniline is a stable material that can be used for thermal energy storage systems.
    Matched MeSH terms: Polymerization
  17. Deng E, Nguyen NT, Hild F, Hamilton IE, Dimitrakis G, Kingman SW, et al.
    Molecules, 2015 Nov 09;20(11):20131-45.
    PMID: 26569198 DOI: 10.3390/molecules201119681
    Macromolecules that possess three-dimensional, branched molecular structures are of great interest because they exhibit significantly differentiated application performance compared to conventional linear (straight chain) polymers. This paper reports the synthesis of 3- and 4-arm star branched polymers via ring opening polymerisation (ROP) utilising multi-functional hydroxyl initiators and Sn(Oct)2 as precatalyst. The structures produced include mono-functional hydrophobic and multi-functional amphiphilic core corona stars. The characteristics of the synthetic process were shown to be principally dependent upon the physical/dielectric properties of the initiators used. ROP's using initiators that were more available to become directly involved with the Sn(Oct)₂ in the "in-situ" formation of the true catalytic species were observed to require shorter reaction times. Use of microwave heating (MWH) in homopolymer star synthesis reduced reaction times compared to conventional heating (CH) equivalents, this was attributed to an increased rate of "in-situ" catalyst formation. However, in amphiphilic core corona star formation, the MWH polymerisations exhibited slower propagation rates than CH equivalents. This was attributed to macro-structuring within the reaction medium, which reduced the potential for reaction. It was concluded that CH experiments were less affected by this macro-structuring because it was disrupted by the thermal currents/gradients caused by the conductive/convective heating mechanisms. These gradients are much reduced/absent with MWH because it selectively heats specific species simultaneously throughout the entire volume of the reaction medium. These partitioning problems were overcome by introducing additional quantities of the species that had been determined to selectively heat.
    Matched MeSH terms: Polymerization
  18. Ramli RA, Hashim S, Laftah WA
    J Colloid Interface Sci, 2013 Feb 1;391:86-94.
    PMID: 23123033 DOI: 10.1016/j.jcis.2012.09.047
    A novel microgels were polymerized using styrene (St), methyl methacrylate (MMA), acrylamide (AAm), and acrylic acid (AAc) monomers in the presence of N,N'-methylenebisacrylamide (MBA) cross-linker. Pre-emulsified monomer was first prepared followed by polymerizing monomers using semi-batch emulsion polymerization. Fourier Transform Infrared Spectroscopy (FTIR) and (1)H Nuclear Magnetic Resonance (NMR) were used to determine the chemical structure and to indentify the related functional group. Grafting and cross-linking of poly(acrylamide-co-acrilic acid)-grafted-poly(styrene-co-methyl methacrylate) [poly(AAm-co-AAc)-g-poly(St-co-MMA)] microgels are approved by the disappearance of band at 1300 cm(-1), 1200 cm(-1) and 1163 cm(-1) of FTIR spectrum and the appearance of CH peaks at 5.5-5.7 ppm in (1)H NMR spectrum. Scanning Electron Microscope (SEM) images indicated that poly(St-co-MMA) particle was lobed morphology coated by cross-linked poly(AAm-co-AAc) shell. Furthermore, SEM results revealed that poly(AAm-co-AAc)-g-poly(St-co-MMA) is composite particle that consist of "raspberry"-shape like structure core. Internal structures of the microgels showed homogeneous network of pores, an extensive interconnection among pores, thicker pore walls, and open network structures. Water absorbency test indicated that the sample with particle size 0.43 μm had lower equilibrium water content, % than the sample with particle size 7.39 μm.
    Matched MeSH terms: Polymerization*
  19. Ahmad MB, Gharayebi Y, Salit MS, Hussein MZ, Shameli K
    Int J Mol Sci, 2011;12(9):6040-50.
    PMID: 22016643 DOI: 10.3390/ijms12096040
    In this paper, Polyimide/Montmorillonite Nanocomposites (PI/MMT NCs), based on aromatic diamine (4-Aminophenyl sulfone) (APS) and aromatic dianhydride (3,3',4,4'-benzophenonetetracarboxylic dianhydride) (BTDA) were prepared using in situ polymerization and solution-dispersion techniques. The prepared PI/MMT NCs films were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM) and thermogravimetric analysis (TGA). The XRD results showed that at the content of 1.0 wt % Organo Montmorillonite (OMMT) for two techniques and 3.0 wt % OMMT for the in situ polymerization technique, the OMMT was well-intercalated, exfoliated and dispersed into polyimide matrix. The OMMT agglomerated when its amount exceeded 10 wt % and 3.0 wt % for solution-dispersion and in situ polymerization techniques respectively. These results were confirmed by the TEM images of the prepared PI/MMT NCs. The TGA thermograms indicated that thermal stability of prepared PI/MMT NCs were increased with the increase of loading that, the effect is higher for the samples prepared by in situ polymerization technique.
    Matched MeSH terms: Polymerization*
  20. Md Rasib SZ, Md Akil H, Khan A, Abdul Hamid ZA
    Int J Biol Macromol, 2019 May 01;128:531-536.
    PMID: 30708001 DOI: 10.1016/j.ijbiomac.2019.01.190
    An earlier study showed that the behaviour of chitosan-poly(methacrylic acid‑co‑N‑isopropylacrylamide) [chitosan‑p(MAA‑co‑NIPAM)] hydrogels synthesized at different reaction times are affected with regard to their pH and temperature sensitivities. The study was continued in this paper to identify the effects of different reaction times on the degradation, efficiency of rifampicin (Rif) loading and the Rif release profile under two different pH conditions (acidic and basic). The results that were obtained showed that the hydrogel had a faster degradation rate in the acidic condition than in the basic condition, where there was a loss of approximately 50% and 20%, respectively in its original weight within two weeks. The Rif loading efficiency was within 50% and the drug release was controlled by characteristics that were developed beyond the polymerization stages of the synthesis. Therefore, the reaction time for the synthesis of the hydrogel can be considered as a way to control the behaviour of the hydrogel as well as to modify the drug release profile in the chitosan‑p(MAA‑co‑NIPAM) hydrogel.
    Matched MeSH terms: Polymerization*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links