Displaying publications 41 - 60 of 248 in total

Abstract:
Sort:
  1. Haque MA, Jantan I, Harikrishnan H, Ghazalee S
    Phytomedicine, 2019 Feb 15;54:195-205.
    PMID: 30668369 DOI: 10.1016/j.phymed.2018.09.183
    BACKGROUND: Zingiber zerumbet rhizome has been used as spices and in traditional medicine to heal various immune-inflammatory related ailments. Although the plant was reported to have potent anti-inflammatory and immunosuppressive properties by several studies, the molecular mechanisms underlying the effects have not been well justified.

    PURPOSE: The study was carried out to investigate the molecular mechanisms underlying the anti-inflammatory properties of the standardized 80% ethanol extract of Z. zerumbet through its effect on mitogen-activated protein kinase (MyD88)-dependent nuclear factor-kappa B (NF-кB), mitogen activated protein kinase (MAPK) and phosphatidylinositol 3-kinase/Akt (PI3K-Akt) signaling pathways in lipopolysaccharide (LPS)-induced U937 human macrophages.

    METHODS: Standardization of the 80% ethanol extract of Z. zerumbet was performed by using a validated reversed-phase HPLC method, while LC-MS/MS was used to profile the secondary metabolites. The release of pro-inflammatory markers, tumor necrosis factor (TNF)-α, interleukin (IL)-1β and prostaglandin E2 (PGE2) was evaluated by enzyme-linked immunosorbent assay (ELISA), while the Western blot technique was executed to elucidate the expression of mediators linked to MyD88-dependent respective signaling pathways. Real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) assay was carried out to quantify the relative gene expression of cyclooxygenase (COX)-2 and pro-inflammatory mediators at the transcriptional level.

    RESULTS: The quantitative and qualitative analyses of Z. zerumbet extract showed the presence of several compounds including the major chemical marker zerumbone. Z. zerumbet extract suppressed the release of pro-inflammatory mediators, COX-2 protein expression and downregulated the mRNA expression of pro-inflammatory markers. Z. zerumbet-treatment also blocked NF-κB activation by preventing the phosphorylation of IKKα/β and NF-κB (p65) as well as the phosphorylation and degradation of IκBα. Z. zerumbet extract concentration-dependently inhibited the phosphorylation of respective MAPKs (JNK, ERK, and p38) as well as Akt. Correspondingly, Z. zerumbet extract suppressed the upstream signaling adaptor molecules, TLR4 and MyD88 prerequisite for the NF-κB, MAPKs, and PI3K-Akt activation.

    CONCLUSION: The findings suggest that Z. zerumbet has impressive role in suppressing inflammation and related immune disorders by inhibition of various pro-inflammatory markers through the imperative MyD88-dependent NF-κB, MAPKs, and PI3K-Akt activation.

    Matched MeSH terms: Signal Transduction/drug effects
  2. Herr DR, Reolo MJ, Peh YX, Wang W, Lee CW, Rivera R, et al.
    Sci Rep, 2016 Apr 15;6:24541.
    PMID: 27080739 DOI: 10.1038/srep24541
    Ototoxic drugs, such as platinum-based chemotherapeutics, often lead to permanent hearing loss through apoptosis of neuroepithelial hair cells and afferent neurons of the cochlea. There is no approved therapy for preventing or reversing this process. Our previous studies identified a G protein-coupled receptor (GPCR), S1P2, as a potential mediator of otoprotection. We therefore sought to identify a pharmacological approach to prevent cochlear degeneration via activation of S1P2. The cochleae of S1pr2(-/-) knockout mice were evaluated for accumulation of reactive oxygen species (ROS) with a nitro blue tetrazolium (NBT) assay. This showed that loss of S1P2 results in accumulation of ROS that precedes progressive cochlear degeneration as previously reported. These findings were supported by in vitro cell-based assays to evaluate cell viability, induction of apoptosis, and accumulation of ROS following activation of S1P2 in the presence of cisplatin. We show for the first time, that activation of S1P2 with a selective receptor agonist increases cell viability and reduces cisplatin-mediated cell death by reducing ROS. Cumulatively, these results suggest that S1P2 may serve as a therapeutic target for attenuating cisplatin-mediated ototoxicity.
    Matched MeSH terms: Signal Transduction/drug effects
  3. Maniam S, Maniam S
    Int J Mol Sci, 2021 Sep 08;22(18).
    PMID: 34575883 DOI: 10.3390/ijms22189722
    Targeted chemotherapy has become the forefront for cancer treatment in recent years. The selective and specific features allow more effective treatment with reduced side effects. Most targeted therapies, which include small molecules, act on specific molecular targets that are altered in tumour cells, mainly in cancers such as breast, lung, colorectal, lymphoma and leukaemia. With the recent exponential progress in drug development, programmed cell death, which includes apoptosis and autophagy, has become a promising therapeutic target. The research in identifying effective small molecules that target compensatory mechanisms in tumour cells alleviates the emergence of drug resistance. Due to the heterogenous nature of breast cancer, various attempts were made to overcome chemoresistance. Amongst breast cancers, triple negative breast cancer (TNBC) is of particular interest due to its heterogeneous nature in response to chemotherapy. TNBC represents approximately 15% of all breast tumours, however, and still has a poor prognosis. Unlike other breast tumours, signature targets lack for TNBCs, causing high morbidity and mortality. This review highlights several small molecules with promising preclinical data that target autophagy and apoptosis to induce cell death in TNBC cells.
    Matched MeSH terms: Signal Transduction/drug effects
  4. Ong LC, Tan YF, Tan BS, Chung FF, Cheong SK, Leong CO
    Toxicol Appl Pharmacol, 2017 08 15;329:347-357.
    PMID: 28673683 DOI: 10.1016/j.taap.2017.06.024
    Single-walled carbon nanotubes (SWCNTs) are carbon-based nanomaterials that possess immense industrial potential. Despite accumulating evidence that exposure to SWCNTs might be toxic to humans, our understanding of the mechanisms for cellular toxicity of SWCNTs remain limited. Here, we demonstrated that acute exposure of short (1-3μm) and regular-length (5-30μm) pristine, carboxylated or hydroxylated SWCNTs inhibited cell proliferation in human somatic and human stem cells in a cell type-dependent manner. The toxicity of regular-length pristine SWCNT was most evidenced in NP69>CYT00086>MCF-10A>MRC-5>HaCaT > HEK-293T>HepG2. In contrast, the short pristine SWCNTs were relatively less toxic in most of the cells being tested, except for NP69 which is more sensitive to short pristine SWCNTs as compared to regular-length pristine SWCNTs. Interestingly, carboxylation and hydroxylation of regular-length SWCNTs, but not the short SWCNTs, significantly reduced the cytotoxicity. Exposure of SWCNTs also induced caspase 3 and 9 activities, mitochondrial membrane depolarization, and significant apoptosis and necrosis in MRC-5 embryonic lung fibroblasts. In contrast, SWCNTs inhibited the proliferation of HaCaT human keratinocytes without inducing cell death. Further analyses by gene expression profiling and Connectivity Map analysis showed that SWCNTs induced a gene expression signature characteristic of heat shock protein 90 (HSP90) inhibition in MRC-5 cells, suggesting that SWCNTs may inhibit the HSP90 signaling pathway. Indeed, exposure of MRC-5 cells to SWCNTs results in a dose-dependent decrease in HSP90 client proteins (AKT, CDK4 and BCL2) and a concomitant increase in HSP70 expression. In addition, SWCNTs also significantly inhibited HSP90-dependent protein refolding. Finally, we showed that ectopic expression of HSP90, but not HSP40 or HSP70, completely abrogated the cytotoxic effects of SWCNTs, suggesting that SWCNT-induced cellular toxicity is HSP90 dependent. In summary, our findings suggest that the toxic effects of SWCNTs are mediated through inhibition of HSP90 in human lung fibroblasts and keratinocytes.
    Matched MeSH terms: Signal Transduction/drug effects*
  5. Barkat HA, Das SS, Barkat MA, Beg S, Hadi HA
    Future Oncol, 2020 Dec;16(35):2959-2979.
    PMID: 32805124 DOI: 10.2217/fon-2020-0198
    Cancer is one of the leading causes of death worldwide. Regardless of advances in understanding the molecular mechanics of cancer, its treatment is still lacking and the death rates for many forms of the disease remain the same as six decades ago. Although a variety of therapeutic agents and strategies have been reported, these therapies often failed to provide efficient therapy to patients as a consequence of the inability to deliver right and adequate chemotherapeutic agents to the right place. However, the situation has started to revolutionize substantially with the advent of novel 'targeted' nanocarrier-based cancer therapies. Such therapies hold great potential in cancer management as they are biocompatible, tailored to specific needs, tolerated and deliver enough drugs at the targeted site. Their use also enhances the delivery of chemotherapeutics by improving biodistribution, lowering toxicity, inhibiting degradation and increasing cellular uptake. However, in some instances, nonselective targeting is not enough and the inclusion of a ligand moiety is required to achieve tumor targeting and enhanced drug accumulation at the tumor site. This contemporary review outlines the targeting potential of nanocarriers, highlighting the essentiality of nanoparticles, tumor-associated molecular signaling pathways, and various biological and pathophysiological barriers.
    Matched MeSH terms: Signal Transduction/drug effects
  6. Tabana YM, Hassan LE, Ahamed MB, Dahham SS, Iqbal MA, Saeed MA, et al.
    Microvasc Res, 2016 09;107:17-33.
    PMID: 27133199 DOI: 10.1016/j.mvr.2016.04.009
    We recently reported the antineovascularization effect of scopoletin on rat aorta and identified its potential anti-angiogenic activity. Scopoletin could be useful as a systemic chemotherapeutic agent against angiogenesis-dependent malignancies if its antitumorigenic activity is investigated and scientifically proven using a suitable human tumor xenograft model. In the present study, bioassay-guided (anti-angiogenesis) phytochemical investigation was conducted on Nicotiana glauca extract which led to the isolation of scopoletin. Further, anti-angiogenic activity of scopoletin was characterized using ex vivo, in vivo and in silico angiogenesis models. Finally, the antitumorigenic efficacy of scopoletin was studied in human colorectal tumor xenograft model using athymic nude mice. For the first time, an in vivo anticancer activity of scopoletin was reported and characterized using xenograft models. Scopoletin caused significant suppression of sprouting of microvessels in rat aortic explants with IC50 (median inhibitory concentration) 0.06μM. Scopoletin (100 and 200mg/kg) strongly inhibited (59.72 and 89.4%, respectively) vascularization in matrigel plugs implanted in nude mice. In the tumor xenograft model, scopoletin showed remarkable inhibition on tumor growth (34.2 and 94.7% at 100 and 200mg/kg, respectively). Tumor histology revealed drastic reduction of the extent of vascularization. Further, immunostaining of CD31 and NG2 receptors in the histological sections confirmed the antivascular effect of scopoletin in tumor vasculature. In computer modeling, scopoletin showed strong ligand affinity and binding energies toward the following angiogenic factors: protein kinase (ERK1), vascular endothelial growth factor A (VEGF-A), and fibroblast growth factor 2 (FGF-2). These results suggest that the antitumor activity of scopoletin may be due to its strong anti-angiogenic effect, which may be mediated by its effective inhibition of ERK1, VEGF-A, and FGF-2.
    Matched MeSH terms: Signal Transduction/drug effects
  7. Yao S, Lu H, Zhou T, Jiang Q, Jiang C, Hu W, et al.
    Food Funct, 2024 Apr 22;15(8):4490-4502.
    PMID: 38566566 DOI: 10.1039/d3fo04527g
    High-fat diet (HFD) has been associated with certain negative bone-related outcomes, such as bone metabolism disruption and bone loss. Sciadonic acid (SC), one of the main nutritional and functional components of Torreya grandis seed oil, is a unique Δ5-unsaturated-polymethylene-interrupted fatty acid (Δ5-UPIFA) that has been claimed to counteract such disorders owing to some of its physiological effects. However, the role of SC in ameliorating bone metabolism disorders due to HFD remains unclear. In the present investigation, we observed that SC modulates the OPG/RANKL/RANK signaling pathway by modifying the lipid metabolic state and decreasing inflammation in mice. In turn, it could balance bone resorption and formation as well as calcium and phosphorus levels, enhance bone strength and bone mineral density (BMD), and improve its microstructure. In addition, SC could inhibit fat vacuoles in bone, reverse the phenomenon of reduced numbers and poor continuity of bone trabeculae, and promote orderly arrangement of collagen fibers and cartilage repair. This study provides some theoretical basis for SC as a dietary intervention agent to enhance bone nutrition.
    Matched MeSH terms: Signal Transduction/drug effects
  8. Dehghan F, Hajiaghaalipour F, Yusof A, Muniandy S, Hosseini SA, Heydari S, et al.
    Sci Rep, 2016 Apr 28;6:25139.
    PMID: 27122001 DOI: 10.1038/srep25139
    Saffron is consumed as food and medicine to treat several illnesses. This study elucidates the saffron effectiveness on diabetic parameters in-vitro and combined with resistance exercise in-vivo. The antioxidant properties of saffron was examined. Insulin secretion and glucose uptake were examined by cultured RIN-5F and L6 myotubes cells. The expressions of GLUT2, GLUT4, and AMPKα were determined by Western blot. Diabetic and non-diabetic male rats were divided into: control, training, extract treatment, training + extract treatment and metformin. The exercise and 40 mg/kg/day saffron treatments were carried out for six weeks. The antioxidant capacity of saffron was higher compare to positive control (P  0.05). Serum glucose, cholesterol, triglyceride, low-density lipoprotein, very low-density lipoprotein, insulin resistance, and glycated hemoglobin levels decreased in treated rats compared to untreated (p  0.05). The findings suggest that saffron consuming alongside exercise could improve diabetic parameters through redox-mediated mechanisms and GLUT4/AMPK pathway to entrap glucose uptake.
    Matched MeSH terms: Signal Transduction/drug effects*
  9. Lim JC, Jeyaraj EJ, Sagineedu SR, Wong WS, Stanslas J
    Pharmacology, 2015;95(1-2):70-7.
    PMID: 25613753 DOI: 10.1159/000370313
    Andrographolide has been reported with anticancer and anti-inflammatory properties through the inhibition of the activity of signaling molecules such as v-Src, nuclear factor-κB (NF-κB), STAT3, and PI3K. NF-κB has been proven to promote cancer cell survival, and targeting this pathway will halt the growth of cancer cells. Efforts have been made to produce semisynthetic derivatives of andrographolide with improved anticancer potency and selectivity. Subsequently, the effect of a selected derivative, 3,14,19-tripropionylandrographolide (SRS06), was tested for its action against NF-κB.
    Matched MeSH terms: Signal Transduction/drug effects
  10. Zakaria MA, Rajab NF, Chua EW, Selvarajah GT, Masre SF
    Int J Oncol, 2021 02;58(2):185-198.
    PMID: 33491756 DOI: 10.3892/ijo.2020.5164
    Lung cancer is one of the most lethal forms of cancer known to man, affecting millions of individuals worldwide. Despite advancements being made in lung cancer treatments, the prognosis of patients with the disease remains poor, particularly among patients with late‑stage lung cancer. The elucidation of the signaling pathways involved in lung cancer is a critical approach for the treatment of the disease. Over the past decades, accumulating evidence has revealed that Rho‑associated kinase (ROCK) is overexpressed in lung cancer and is associated with tumor growth. The present review discusses recent findings of ROCK signaling in the pathogenesis of lung cancer that were conducted in pre‑clinical studies. The significant role of ROCK in cancer cell apoptosis, proliferation, migration, invasion and angiogenesis is discussed. The present review also suggests the use of ROCK as a potential target for the development of lung cancer therapies, as ROCK inhibition can reduce multiple hallmarks of cancer, particularly by decreasing cancer cell migration, which is an initial step of metastasis.
    Matched MeSH terms: Signal Transduction/drug effects
  11. Arulselvan P, Fard MT, Tan WS, Gothai S, Fakurazi S, Norhaizan ME, et al.
    Oxid Med Cell Longev, 2016;2016:5276130.
    PMID: 27803762
    Inflammation is a comprehensive array of physiological response to a foreign organism, including human pathogens, dust particles, and viruses. Inflammations are mainly divided into acute and chronic inflammation depending on various inflammatory processes and cellular mechanisms. Recent investigations have clarified that inflammation is a major factor for the progression of various chronic diseases/disorders, including diabetes, cancer, cardiovascular diseases, eye disorders, arthritis, obesity, autoimmune diseases, and inflammatory bowel disease. Free radical productions from different biological and environmental sources are due to an imbalance of natural antioxidants which further leads to various inflammatory associated diseases. In this review article, we have outlined the inflammatory process and its cellular mechanisms involved in the progression of various chronic modern human diseases. In addition, we have discussed the role of free radicals-induced tissue damage, antioxidant defence, and molecular mechanisms in chronic inflammatory diseases/disorders. The systematic knowledge regarding the role of inflammation and its associated adverse effects can provide a clear understanding in the development of innovative therapeutic targets from natural sources that are intended for suppression of various chronic inflammations associated diseases.
    Matched MeSH terms: Signal Transduction/drug effects
  12. Alam J, Jantan I, Bukhari SNA
    Biomed Pharmacother, 2017 Aug;92:615-633.
    PMID: 28582758 DOI: 10.1016/j.biopha.2017.05.055
    An autoimmune disease is defined as a clinical syndrome resulted from an instigation of both T cell and B cell or individually, in the absence of any present infection or any sort of distinguishable cause. Clonal deletion of auto reactive cells remains the central canon of immunology for decades, keeping the role of T cell and B cell aside, which are actually the guards to recognize the entry of foreign body. According to NIH, 23.5 million Americans are all together affected by these diseases. They are rare, but with the exception of RA. Rheumatoid arthritis is chronic and systemic autoimmune response to the multiple joints with unknown ethology, progressive disability, systemic complications, early death and high socioeconomic costs. Its ancient disease with an old history found in North American tribes since 1500 BCE, but its etiology is yet to be explored. Current conventional and biological therapies used for RA are not fulfilling the need of the patients but give only partial responses. There is a lack of consistent and liable biomarkers of prognosis therapeutic response, and toxicity. Rheumatoid arthritis is characterized by hyperplasic synovium, production of cytokines, chemokines, autoantibodies like rheumatoid factor (RF) and anticitrullinated protein antibody (ACPA), osteoclastogensis, angiogenesis and systemic consequences like cardiovascular, pulmonary, psychological, and skeletal disorders. Cytokines, a diverse group of polypeptides, play critical role in the pathogenesis of RA. Their involvement in autoimmune diseases is a rapidly growing area of biological and clinical research. Among the proinflammatory cytokines, IL-1α/β and TNF-α trigger the intracellular molecular signalling pathway responsible for the pathogenesis of RA that leads to the activation of mesenchymal cell, recruitment of innate and adaptive immune system cells, activation of synoviocytes which in term activates various mediators including tumour necrosis factor-alpha (TNF-α), interleukin-1 (IL-1), interleukin-6 (IL-6) and interleukin-8 (IL-8), resulting in inflamed synovium, increase angiogenesis and decrease lymphangiogensis. Their current pharmacotherapy should focus on their three phases of progression i.e. prearthritis phase, transition phase and clinical phase. In this way we will be able to find a way to keep the balance between the pro and anti-inflammatory cytokines that is believe to be the dogma of pathogenesis of RA. For this we need to explore new agents, whether from synthetic or natural source to find the answers for unresolved etiology of autoimmune diseases and to provide a quality of life to the patients suffering from these diseases specifically RA.
    Matched MeSH terms: Signal Transduction/drug effects
  13. Yap WY, Hwang JS
    Molecules, 2018 Oct 04;23(10).
    PMID: 30287801 DOI: 10.3390/molecules23102537
    A group of stable, water-soluble and membrane-bound proteins constitute the pore forming toxins (PFTs) in cnidarians. They interact with membranes to physically alter the membrane structure and permeability, resulting in the formation of pores. These lesions on the plasma membrane causes an imbalance of cellular ionic gradients, resulting in swelling of the cell and eventually its rupture. Of all cnidarian PFTs, actinoporins are by far the best studied subgroup with established knowledge of their molecular structure and their mode of pore-forming action. However, the current view of necrotic action by actinoporins may not be the only mechanism that induces cell death since there is increasing evidence showing that pore-forming toxins can induce either necrosis or apoptosis in a cell-type, receptor and dose-dependent manner. In this review, we focus on the response of the cellular immune system to the cnidarian pore-forming toxins and the signaling pathways that might be involved in these cellular responses. Since PFTs represent potential candidates for targeted toxin therapy for the treatment of numerous cancers, we also address the challenge to overcoming the immunogenicity of these toxins when used as therapeutics.
    Matched MeSH terms: Signal Transduction/drug effects
  14. Handayani T, Sakinah S, Nallappan M, Pihie AH
    Anticancer Res, 2007 Mar-Apr;27(2):965-71.
    PMID: 17465228
    Xanthorrhizol is a sesquiterpenoid compound extracted from the rhizome of Curcuma xanthorrhiza. This study investigated the antiproliferative effect and the mechanism of action of xanthorrhizol on human hepatoma cells, HepG2, and the mode of cell death. An antiproliferative assay using methylene blue staining revealed that xanthorrhizol inhibited the proliferation of the HepG2 cells with a 50% inhibition of cell growth (IC50) value of 4.17 +/- 0.053 microg/ml. The antiproliferative activity of xanthorrhizol was due to apoptosis induced in the HepG2 cells and not necrosis, which was confirmed by the Tdt-mediated dUTP nick end labeling (TUNEL) assay. The xanthorrhizol-treated HepG2 cells showed typical apoptotic morphology such as DNA fragmentation, cell shrinkage and elongated lamellipodia. The apoptosis mediated by xanthorrhizol in the HepG2 cells was associated with the activation of tumor suppressor p53 and down-regulation of antiapoptotic Bcl-2 protein expression, but not Bax. The levels of Bcl-2 protein expression decreased 24-h after treatment with xanthorrhizol and remained lower than controls throughout the experiment, resulting in a shift in the Bax to Bcl-2 ratio thus favouring apoptosis. The processing of the initiator procaspase-9 was detected. Caspase-3 was also found to be activated, but not caspase-7. Xanthorrhizol exerts antiproliferative effects on HepG2 cells by inducing apoptosis via the mitochondrial pathway.
    Matched MeSH terms: Signal Transduction/drug effects
  15. Lim WK, Kanelakis KC, Neubig RR
    Cell Signal, 2013 Feb;25(2):389-96.
    PMID: 23153586 DOI: 10.1016/j.cellsig.2012.11.002
    G protein-coupled receptors (GPCRs) transduce extracellular signals to the interior of the cell by activating membrane-bound guanine nucleotide-binding regulatory proteins (G proteins). An increasing number of proteins have been reported to bind to and regulate GPCRs. We report a novel regulation of the alpha(2A) adrenergic receptor (α(2A)-R) by the ubiquitous stress-inducible 70kDa heat shock protein, hsp70. Hsp70, but not hsp90, attenuated G protein-dependent high affinity agonist binding to the α(2A)-R in Sf9 membranes. Antagonist binding was unchanged, suggesting that hsp70 uncouples G proteins from the receptor. As hsp70 did not bind G proteins but complexed with the α(2A)-R in intact cells, a direct interaction with the receptor seems likely. In the presence of hsp70, α(2A)-R-catalyzed [(35)S]GTPγS binding was reduced by approximately 70%. In contrast, approximately 50-fold higher concentrations of hsp70 were required to reduce agonist binding to the stress-inducible 5-hydroxytryptamine(1A) receptor (5-HT(1A)-R). In heat-stressed CHO cells, the α(2A)-R was significantly uncoupled from G proteins, coincident with an increased localization of hsp70 at the membrane. The contrasting effect of hsp70 on the α(2A)-R compared to the 5-HT(1A)-R suggests that during stress, upregulation of hsp70 may attenuate signaling from specific GPCRs as part of the stress response to foster survival.
    Matched MeSH terms: Signal Transduction/drug effects*
  16. Abbaspour Babaei M, Kamalidehghan B, Saleem M, Huri HZ, Ahmadipour F
    Drug Des Devel Ther, 2016;10:2443-59.
    PMID: 27536065 DOI: 10.2147/DDDT.S89114
    c-Kit, a receptor tyrosine kinase, is involved in intracellular signaling, and the mutated form of c-Kit plays a crucial role in occurrence of some cancers. The function of c-Kit has led to the concept that inhibiting c-Kit kinase activity can be a target for cancer therapy. The promising results of inhibition of c-Kit for treatment of cancers have been observed in some cancers such as gastrointestinal stromal tumor, acute myeloid leukemia, melanoma, and other tumors, and these results have encouraged attempts toward improvement of using c-Kit as a capable target for cancer therapy. This paper presents the findings of previous studies regarding c-Kit as a receptor tyrosine kinase and an oncogene, as well as its gene targets and signaling pathways in normal and cancer cells. The c-Kit gene location, protein structure, and the role of c-Kit in normal cell have been discussed. Comprehending the molecular mechanism underlying c-Kit-mediated tumorogenesis is consequently essential and may lead to the identification of future novel drug targets. The potential mechanisms by which c-Kit induces cellular transformation have been described. This study aims to elucidate the function of c-Kit for future cancer therapy. In addition, it has c-Kit inhibitor drug properties and their functions have been listed in tables and demonstrated in schematic pictures. This review also has collected previous studies that targeted c-Kit as a novel strategy for cancer therapy. This paper further emphasizes the advantages of this approach, as well as the limitations that must be addressed in the future. Finally, although c-Kit is an attractive target for cancer therapy, based on the outcomes of treatment of patients with c-Kit inhibitors, it is unlikely that Kit inhibitors alone can lead to cure. It seems that c-Kit mutations alone are not sufficient for tumorogenesis, but do play a crucial role in cancer occurrence.
    Matched MeSH terms: Signal Transduction/drug effects*
  17. Al-Astani Tengku Din TA, Shamsuddin SH, Idris FM, Ariffin Wan Mansor WN, Abdul Jalal MI, Jaafar H
    Asian Pac J Cancer Prev, 2014;15(9):3939-44.
    PMID: 24935577
    BACKGROUND: To elucidate the role of rapamycin and PF4 on apoptosis regulation via Bax (pro-apoptosis), Bcl-2 (anti-apoptosis) and survivin activation on the growth in the 1-methyl-1-nitrosourea -induced invasive breast carcinoma model.

    MATERIALS AND METHODS: Thirty five female Sprague Dawley rats at age 21-day old were divided into 4 groups; Group 1 (control, n=10), Group 2 (PF4, n=5), Group 3 (rapamycin, n=10) and Group 4 (rapamycin+PF4, n=10). MNU was administered intraperitionally, dosed at 70 mg/kg body weight. The rats were treated when the tumors reached the size of 14.5 ± 0.5 mm and subsequently sacrificed after 5 days. Rapamycin and PF4 were administered as focal intralesional injections at the dose of 20 μg/lesion. The tumor tissue was then subjected to histopathological examinations for morphological appraisal and immunohistochemical assessment of the pro-apoptotic marker, Bax and anti-apoptotic markers, Bcl-2 and survivin.

    RESULTS: The histopathological pattern of the untreated control cohort showed that the severity of the malignancy augments with mammary tumor growth. Tumors developing in untreated groups were more aggressive whilst those in treated groups demonstrated a transformation to a less aggressive subtype. Combined treatment resulted in a significant reduction of tumor size without phenotypic changes. Bax, the pro-apoptotic marker, was significantly expressed at higher levels in the rapamycin-treated and rapamycin+PF4-treated groups compared to controls (p<0.05). Consequently, survivin was also significantly downregulated in the rapamycin-treated and rapamycin+PF4-treated group and this was significantly different when compared to controls (p).

    CONCLUSIONS: In our rat model, it could be clearly shown that rapamycin specifically affects Bax and survivin signaling pathways in activation of apoptosis. We conclude that rapamycin plays a critical role in the induction of apoptosis in MNU-induced mammary carcinoma.

    Matched MeSH terms: Signal Transduction/drug effects
  18. Zhang X, Tan Z, Jia K, Zhang W, Dang M
    Artif Cells Nanomed Biotechnol, 2019 Dec;47(1):2171-2178.
    PMID: 31159596 DOI: 10.1080/21691401.2019.1620249
    Nanomedicine is a rapidly emerging field and is reported to be a promising tool for treating various diseases. Green synthesized nanoparticles are documented to possess a potent anticancer effect. Rabdosia rubescens is a Chinese plant which is also one of the components of PC-SPES and used to treat prostate cancer. In the present study, we synthesized the gold nanoparticles from R. rubescens (RR-AuNP) and analyzed its anticancer activity against the lung carcinoma A549 cell lines. Since lung cancer is reported to be with increased morbidity and decreased survival rate. The biosynthesized RR-AuNP were confirmed using UV-Visible spectrophotometer, size and shape of RR-AuNP were assessed by DLS, TEM and EDX. The biomolecules present in RR-AuNP and its topographical structure were detected using FTIR, SAED and AFM analysis. MTT assay was performed to detect the IC50 dose of RR-AuNP and its apoptotic effect was assessed by detecting the caspases activation, ROS generation. The anticancer effect of RR-AuNP was confirmed by DAPI staining, TUNEL assay and its molecular mechanism were confirmed by assessing the apoptotic signalling molecules protein expression. Our results illustrate that RR-AuNP showed a strong absorption peak at 550 nm and the RRAuNP were polydispersed nanospheres with size of 130 nm. RR-AuNP IC50 dose against A549 lung carcinoma cell line was detected to be at 25 µg/ml. The results of DAPI staining, TUNEL and immunoblotting analysis confirms both the 25 µg/ml and 50 µg/ml of RR-AuNP possess potent anticancer and apoptotic effect, suggesting that RR-AuNP that it may be a persuasive molecule to treat lung cancer.
    Matched MeSH terms: Signal Transduction/drug effects
  19. Jiang L, Hindmarch CC, Rogers M, Campbell C, Waterfall C, Coghill J, et al.
    Sci Rep, 2016 10 24;6:35671.
    PMID: 27774996 DOI: 10.1038/srep35671
    Glucocorticoids are steroids that reduce inflammation and are used as immunosuppressive drugs for many diseases. They are also the mainstay for the treatment of minimal change nephropathy (MCN), which is characterised by an absence of inflammation. Their mechanisms of action remain elusive. Evidence suggests that immunomodulatory drugs can directly act on glomerular epithelial cells or 'podocytes', the cell type which is the main target of injury in MCN. To understand the nature of glucocorticoid effects on non-immune cell functions, we generated RNA sequencing data from human podocyte cell lines and identified the genes that are significantly regulated in dexamethasone-treated podocytes compared to vehicle-treated cells. The upregulated genes are of functional relevance to cytoskeleton-related processes, whereas the downregulated genes mostly encode pro-inflammatory cytokines and growth factors. We observed a tendency for dexamethasone-upregulated genes to be downregulated in MCN patients. Integrative analysis revealed gene networks composed of critical signaling pathways that are likely targeted by dexamethasone in podocytes.
    Matched MeSH terms: Signal Transduction/drug effects
  20. Phang CW, Gandah NA, Abd Malek SN, Karsani SA
    Eur J Pharmacol, 2019 Jun 15;853:388-399.
    PMID: 31014923 DOI: 10.1016/j.ejphar.2019.04.032
    Flavokawain C (FKC), a naturally occurring chalcone, has previously been shown to inhibit the growth of colon carcinoma HCT 116 cells through induction of apoptosis and cell cycle arrest. However, the possible underlying mechanisms of cell death as a response to FKC treatment remains unclear. In this study, we performed proteomic analysis of HCT 116 cells treated with FKC to identify proteins that change in abundance. This was followed by bioinformatic analysis to predict possible associated molecular targets or pathways involved in the observed effects of FKC. A total of 35 proteins that changed in abundance (17 increased and 18 decreased) were identified through two-dimensional gel electrophoresis followed by matrix-assisted laser desorption ionisation time-of-flight mass spectrometry (MALDI-TOF/TOF MS). Using the Ingenuity Pathway Analysis (IPA), these proteins were predicted to be involved in cell death and survival, cell cycle, cellular growth and proliferation, protein synthesis, post-translational modification and amino acid metabolism by. Further analysis of the transcript levels of selected proteins using qPCR showed that some of the genes exhibited similar change of profile to that of the proteins'. Our results have provided novel insights into the potential molecular mechanisms underlying FKC-induced apoptosis or cell death in colon cancer cells.
    Matched MeSH terms: Signal Transduction/drug effects
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links