Displaying publications 41 - 60 of 173 in total

Abstract:
Sort:
  1. Sayyed RZ, Wani SJ, Alarfaj AA, Syed A, El-Enshasy HA
    PLoS One, 2020;15(1):e0220095.
    PMID: 31910206 DOI: 10.1371/journal.pone.0220095
    There are numerous reports on poly-β-hydroxybutyrate (PHB) depolymerases produced by various microorganisms isolated from various habitats, however, reports on PHB depolymerase production by an isolate from plastic rich sites scares. Although PHB has attracted commercial significance, the inefficient production and recovery methods, inefficient purification of PHB depolymerase and lack of ample knowledge on PHB degradation by PHB depolymerase have hampered its large scale commercialization. Therefore, to ensure the biodegradability of biopolymers, it becomes imperative to study the purification of the biodegrading enzyme system. We report the production, purification, and characterization of extracellular PHB depolymerase from Stenotrophomonas sp. RZS7 isolated from a dumping yard rich in plastic waste. The isolate produced extracellular PHB depolymerase in the mineral salt medium (MSM) at 30°C during 4 days of incubation under shaking. The enzyme was purified by three methods namely ammonium salt precipitation, column chromatography, and solvent purification. Among these purification methods, the enzyme was best purified by column chromatography on the Octyl-Sepharose CL-4B column giving optimum yield (0.7993 Umg-1mL-1). The molecular weight of purified PHB depolymerase was 40 kDa. Studies on the assessment of biodegradation of PHB in liquid culture medium and under natural soil conditions confirmed PHB biodegradation potential of Stenotrophomonas sp. RZS7. The results obtained in Fourier-Transform Infrared (FTIR) analysis, High-Performance Liquid Chromatography (HPLC) study and Gas Chromatography Mass-Spectrometry (GC-MS) analysis confirmed the biodegradation of PHB in liquid medium by Stenotrophomonas sp. RZS7. Changes in surface morphology of PHB film in soil burial as observed in Field Emission Scanning Electron Microscopy (FESEM) analysis confirmed the biodegradation of PHB under natural soil environment. The isolate was capable of degrading PHB and it resulted in 87.74% biodegradation. A higher rate of degradation under the natural soil condition is the result of the activity of soil microbes that complemented the biodegradation of PHB by Stenotrophomonas sp. RZS7.
    Matched MeSH terms: Soil/chemistry
  2. Saleh MA, Ramli AT, bin Hamzah K, Alajerami Y, Moharib M, Saeed I
    J Environ Radioact, 2015 Oct;148:111-22.
    PMID: 26142818 DOI: 10.1016/j.jenvrad.2015.05.019
    This study aims to predict and estimate unmeasured terrestrial gamma dose rate (TGDR) using statistical analysis methods to derive a model from the actual measurement based on geological formation and soil type. The measurements of TGDR were conducted in the state of Johor with a total of 3873 measured points which covered all geological formations, soil types and districts. The measurements were taken 1 m above the soil surface using NaI [Ti] detector. The measured gamma dose rates ranged from 9 nGy h(-1) to 1237 nGy h(-1) with a mean value of 151 nGy h(-1). The data have been normalized to fit a normal distribution. Tests of significance were conducted among all geological formations and soil types, using the unbalanced one way ANOVA. The results indicated strong significant differences due to the different geological formations and soil types present in Johor State. Pearson Correlation was used to measure the relations between gamma dose rate based on geological formation and soil type (D(G,S)) with the gamma dose rate based on geological formation (D(G)) or soil type (D(s)). A very good correlation was found between D(G,S) and D(G) or D(G,S) and D(s). A total of 118 pairs of geological formations and soil types were used to derive the statistical contribution of geological formations and soil types to gamma dose rates. The contribution of the gamma dose rate from geological formation and soil type were found to be 0.594 and 0.399, respectively. The null hypotheses were accepted for 83% of examined data, therefore, the model could be used to predict gamma dose rates based on geological formation and soil type information.
    Matched MeSH terms: Soil/chemistry*
  3. Maznah Z, Halimah M, Shitan M, Kumar Karmokar P, Najwa S
    PLoS One, 2017;12(1):e0166203.
    PMID: 28060816 DOI: 10.1371/journal.pone.0166203
    Ganoderma boninense is a fungus that can affect oil palm trees and cause a serious disease called the basal stem root (BSR). This disease causes the death of more than 80% of oil palm trees midway through their economic life and hexaconazole is one of the particular fungicides that can control this fungus. Hexaconazole can be applied by the soil drenching method and it will be of interest to know the concentration of the residue in the soil after treatment with respect to time. Hence, a field study was conducted in order to determine the actual concentration of hexaconazole in soil. In the present paper, a new approach that can be used to predict the concentration of pesticides in the soil is proposed. The statistical analysis revealed that the Exploratory Data Analysis (EDA) techniques would be appropriate in this study. The EDA techniques were used to fit a robust resistant model and predict the concentration of the residue in the topmost layer of the soil.
    Matched MeSH terms: Soil/chemistry*
  4. Hasanuzzaman M, Nahar K, Alam MM, Bhowmik PC, Hossain MA, Rahman MM, et al.
    Biomed Res Int, 2014;2014:589341.
    PMID: 25110683 DOI: 10.1155/2014/589341
    Salinity is one of the rising problems causing tremendous yield losses in many regions of the world especially in arid and semiarid regions. To maximize crop productivity, these areas should be brought under utilization where there are options for removing salinity or using the salt-tolerant crops. Use of salt-tolerant crops does not remove the salt and hence halophytes that have capacity to accumulate and exclude the salt can be an effective way. Methods for salt removal include agronomic practices or phytoremediation. The first is cost- and labor-intensive and needs some developmental strategies for implication; on the contrary, the phytoremediation by halophyte is more suitable as it can be executed very easily without those problems. Several halophyte species including grasses, shrubs, and trees can remove the salt from different kinds of salt-affected problematic soils through salt excluding, excreting, or accumulating by their morphological, anatomical, physiological adaptation in their organelle level and cellular level. Exploiting halophytes for reducing salinity can be good sources for meeting the basic needs of people in salt-affected areas as well. This review focuses on the special adaptive features of halophytic plants under saline condition and the possible ways to utilize these plants to remediate salinity.
    Matched MeSH terms: Soil/chemistry*
  5. Tay CC, Liew HH, Redzwan G, Yong SK, Surif S, Abdul-Talib S
    Water Sci Technol, 2011;64(12):2425-32.
    PMID: 22170837 DOI: 10.2166/wst.2011.805
    The potential of Pleurotus ostreatus spent mushroom compost (PSMC) as a green biosorbent for nickel (II) biosorption was investigated in this study. A novel approach of using the half-saturation concentration of biosorbent to rapidly determine the uptake, kinetics and mechanism of biosorption was employed together with cost per unit uptake analysis to determine the potential of this biosorbent. Fifty per cent nickel (II) biosorption was obtained at a half-saturation constant of 0.7 g biosorbent concentration, initial pH in the range of 4-8, 10 min contact time, 50 mL 50 mg/L nickel (II) initial concentration. The experimental data were well fitted with the Langmuir isotherm model and the maximum nickel (II) biosorption was 3.04 mg/g. The results corresponded well to a second pseudo order kinetic model with the coefficient of determination value of 0.9999. Based on FTIR analysis, the general alkyl, hydroxyl or amino, aliphatic alcohol and carbonyl functional groups of biosorbent were involved in the biosorption process. Therefore, biosorption of nickel (II) must involve several mechanisms simultaneously such as physical adsorption, chemisorption and ion exchange. Cost comparison for PSMC with Amberlite IRC-86 ion exchange resin indicates that the biosorbent has the potential to be developed into a cost effective and environmentally friendly treatment system.
    Matched MeSH terms: Soil/chemistry*
  6. Firdaus MS, Husni MH
    ScientificWorldJournal, 2012;2012:405084.
    PMID: 22545018 DOI: 10.1100/2012/405084
    A study was carried out to assess carbon emission and carbon loss caused from land use change (LUC) of converting a wasteland into a Jatropha curcas plantation. The study was conducted for 12 months at a newly established Jatropha curcas plantation in Port Dickson, Malaysia. Assessments of soil carbon dioxide (CO(2)) flux, changes of soil total carbon and plant biomass loss and growth were made on the wasteland and on the established plantation to determine the effects of land preparation (i.e., tilling) and removal of the wasteland's native vegetation. Overall soil CO(2) flux showed no significant difference (P < 0.05) between the two plots while no significant changes (P < 0.05) on soil total carbon at both plots were detected. It took 1.5 years for the growth of Jatropha curcas to recover the biomass carbon stock lost during land conversion. As far as the present study is concerned, converting wasteland to Jatropha curcas showed no adverse effects on the loss of carbon from soil and biomass and did not exacerbate soil respiration.
    Matched MeSH terms: Soil/chemistry
  7. Thakur S, Singh L, Wahid ZA, Siddiqui MF, Atnaw SM, Din MF
    Environ Monit Assess, 2016 Apr;188(4):206.
    PMID: 26940329 DOI: 10.1007/s10661-016-5211-9
    Increasing heavy metal (HM) concentrations in the soil have become a significant problem in the modern industrialized world due to several anthropogenic activities. Heavy metals (HMs) are non-biodegradable and have long biological half lives; thus, once entered in food chain, their concentrations keep on increasing through biomagnification. The increased concentrations of heavy metals ultimately pose threat on human life also. The one captivating solution for this problem is to use green plants for HM removal from soil and render it harmless and reusable. Although this green technology called phytoremediation has many advantages over conventional methods of HM removal from soils, there are also many challenges that need to be addressed before making this technique practically feasible and useful on a large scale. In this review, we discuss the mechanisms of HM uptake, transport, and plant tolerance mechanisms to cope with increased HM concentrations. This review article also comprehensively discusses the advantages, major challenges, and future perspectives of phytoremediation of heavy metals from the soil.
    Matched MeSH terms: Soil/chemistry*
  8. Bhat IU, Mauris EN, Khanam Z
    Int J Phytoremediation, 2016 Sep;18(9):918-23.
    PMID: 26940261 DOI: 10.1080/15226514.2016.1156637
    The accumulation and removal efficiency of Fe by Centella asiatica was carried out at various Fe concentrations in soil treatments (0, 50, 100, 150 and 200 mg Fe/kg soil). Iron accumulation in different parts of C. asiatica (leaf, stem and root) was analyzed by atomic absorption spectrophotometer (AAS). Factorial experiment with a completely randomized design and Duncan's test were used for data analyses. The results revealed that C. asiatica have the ability to uptake and accumulate Fe significantly (p soil treatments had significant effect on the total Fe accumulations in C. asiatica (p soil has been evaluated by bioconcentration factor and translocation factor, found to be >1 and <1, respectively, further supporting its metal hyperaccumulator properties.
    Matched MeSH terms: Soil/chemistry
  9. Al-Mansoory AF, Idris M, Abdullah SRS, Anuar N
    Environ Sci Pollut Res Int, 2017 May;24(13):11998-12008.
    PMID: 26330312 DOI: 10.1007/s11356-015-5261-5
    Greenhouse experiments were carried out to determine the phytotoxic effects on the plant Ludwigia octovalvis in order to assess its applicability for phytoremediation gasoline-contaminated soils. Using plants to degrade hydrocarbons is a challenging task. In this study, different spiked concentrations of hydrocarbons in soil (1, 2, and 3 g/kg) were tested. The results showed that the mean efficiency of total petroleum hydrocarbon (TPH) removal over a 72-day culture period was rather high. The maximum removal of 79.8 % occurred for the 2 g/kg concentration, while the removal rate by the corresponding unplanted controls was only (48.6 %). The impact of gasoline on plants included visual symptoms of stress, yellowing, growth reduction, and perturbations in the developmental parameters. The dry weight and wet weight of the plant slightly increased upon exposure to gasoline until day 42. Scanning electron microscopy (SEM) indicated change to the root and stem structure in plant tissue due to the direct attachment with gasoline contaminated compared to the control sample. The population of living microorganisms in the contaminated soil was found to be able to adapt to different gasoline concentrations. The results showed that L. octovalvis and rhizobacteria in gasoline-contaminated soil have the potential to degrade organic pollutants.
    Matched MeSH terms: Soil/chemistry
  10. Li G, Yan L, Chen X, Lam SS, Rinklebe J, Yu Q, et al.
    Chemosphere, 2023 Apr;320:138058.
    PMID: 36746249 DOI: 10.1016/j.chemosphere.2023.138058
    Potentially toxic elements (PTEs) pose a great threat to ecosystems and long-term exposure causes adverse effects to wildlife and humans. Cadmium induces a variety of diseases including cancer, kidney dysfunction, bone lesions, anemia and hypertension. Here we review the ability of plants to accumulate cadmium from soil, air and water under different environmental conditions, focusing on absorption mechanisms and factors affecting these. Cadmium possess various transport mechanisms and pathways roughly divided into symplast and apoplast pathway. Excessive cadmium concentrations in the environment affects soil properties, pH and microorganism composition and function and thereby plant uptake. At the same time, plants resist cadmium toxicity by antioxidant reaction. The differences in cadmium absorption capacity of plants need more exploration to determine whether it is beneficial for crop breeding or genetic modification. Identify whether plants have the potential to become hyperaccumulator and avoid excessive cadmium uptake by edible plants. The use of activators such as wood vinegar, GLDA (Glutamic acid diacetic acid), or the placement of earthworms and fungi can speed up phytoremediation of plants, thereby reducing uptake of crop varieties and reducing human exposure, thus accelerating food safety and the health of the planet.
    Matched MeSH terms: Soil/chemistry
  11. Lim LY, Bong CP, Chua LS, Lee CT
    Environ Sci Pollut Res Int, 2015 Dec;22(24):19814-22.
    PMID: 26286798 DOI: 10.1007/s11356-015-5156-5
    This study was carried out to investigate the physicochemical properties of compost from oil palm empty fruit bunches (EFB) inoculated with effective microorganisms (EM∙1™). The duration of microbial-assisted composting was shorter (∼7 days) than control samples (2 months) in a laboratory scale (2 kg) experiment. The temperature profile of EFB compost fluctuated between 26 and 52 °C without the presence of consistent thermophilic phase. The pH of compost changed from weak acidic (pH ∼5) to mild alkaline (pH ∼8) because of the formation of nitrogenous ions such as ammonium (NH4 (+)), nitrite (NO2 (-)), and nitrate (NO3 (-)) from organic substances during mineralization. The pH of the microbial-treated compost was less than 8.5 which is important to prevent the loss of nitrogen as ammonia gas in a strong alkaline condition. Similarly, carbon mineralization could be determined by measuring CO2 emission. The microbial-treated compost could maintain longer period (∼13 days) of high CO2 emission resulted from high microbial activity and reached the threshold value (120 mg CO2-C kg(-1) day(-1)) for compost maturity earlier (7 days). Microbial-treated compost slightly improved the content of minerals such as Mg, K, Ca, and B, as well as key metabolite, 5-aminolevulinic acid for plant growth at the maturity stage of compost. Graphical Abstract Microbial-assisted composting on empty fruit bunches.
    Matched MeSH terms: Soil/chemistry*
  12. Baldeck CA, Kembel SW, Harms KE, Yavitt JB, John R, Turner BL, et al.
    Oecologia, 2016 10;182(2):547-57.
    PMID: 27337965 DOI: 10.1007/s00442-016-3686-2
    While the importance of local-scale habitat niches in shaping tree species turnover along environmental gradients in tropical forests is well appreciated, relatively little is known about the influence of phylogenetic signal in species' habitat niches in shaping local community structure. We used detailed maps of the soil resource and topographic variation within eight 24-50 ha tropical forest plots combined with species phylogenies created from the APG III phylogeny to examine how phylogenetic beta diversity (indicating the degree of phylogenetic similarity of two communities) was related to environmental gradients within tropical tree communities. Using distance-based redundancy analysis we found that phylogenetic beta diversity, expressed as either nearest neighbor distance or mean pairwise distance, was significantly related to both soil and topographic variation in all study sites. In general, more phylogenetic beta diversity within a forest plot was explained by environmental variables this was expressed as nearest neighbor distance versus mean pairwise distance (3.0-10.3 % and 0.4-8.8 % of variation explained among plots, respectively), and more variation was explained by soil resource variables than topographic variables using either phylogenetic beta diversity metric. We also found that patterns of phylogenetic beta diversity expressed as nearest neighbor distance were consistent with previously observed patterns of niche similarity among congeneric species pairs in these plots. These results indicate the importance of phylogenetic signal in local habitat niches in shaping the phylogenetic structure of tropical tree communities, especially at the level of close phylogenetic neighbors, where similarity in habitat niches is most strongly preserved.
    Matched MeSH terms: Soil/chemistry
  13. Lee-Yin C, Ismaill BS, Salmijah S, Halimah M
    J Environ Biol, 2013 Sep;34(5):957-61.
    PMID: 24558812
    The influence of temperature, moisture and organic matter on the persistence of cyfluthrin was determined using three types of Malaysian soils, namely clay, clay loam and sandy clay loam obtained from a tomato farm in Cameron Highlands, Pahang. The persistence of cyfluthrin was observed in the laboratory at two temperature levels of 25 and 35 degreeC and field water capacity of 30 and 80%. Treated soil samples were incubated in a growth chamber for 1, 2, 3, 5, 7, 10, 14, 21 and 28 days. The results from the incubation studies showed that temperature and organic matter content significantly reduced the half-life (t1/2) values of cyfluthrin in the three soil types, but moisture content had very little effect. It was observed that cyfluthrin persisted longer at lower temperature and moisture content and higher organic matter content in all the three soil types. The present study demonstrated that under the tropical conditions of Malaysia, cyfluthrin dissipated rapidly in soils compared to its dissipation in soils of temperate regions, evidently due to high temperature.
    Matched MeSH terms: Soil/chemistry*
  14. Mukhlisin M, Saputra A
    ScientificWorldJournal, 2013;2013:421762.
    PMID: 24282382 DOI: 10.1155/2013/421762
    In recent years many models have been proposed for measuring soil water content (θ) based on the permittivity (ε) value. Permittivity is one of the properties used to determine θ in measurements using the electromagnetic method. This method is widely used due to quite substantial differences in values of ε for air, soil, and water, as it allows the θ value to be measured accurately. The performance of six proposed models with one parameter (i.e., permittivity) and five proposed models with two or more parameters (i.e., permittivity, porosity, and dry bulk density of soil) is discussed and evaluated. Secondary data obtained from previous studies are used for comparison to calibrate and evaluate the models. The results show that the models with one parameter proposed by Roth et al. (1992) and Topp et al. (1980) have the greatest R² data errors, while for the model with two parameters, the model proposed by Malicki et al. (1996) agrees very well with the data compared with other models.
    Matched MeSH terms: Soil/chemistry*
  15. Matlan SJ, Mukhlisin M, Taha MR
    ScientificWorldJournal, 2014;2014:569851.
    PMID: 24971384 DOI: 10.1155/2014/569851
    Soil-water characteristic curves (SWCCs) are important in terms of groundwater recharge, agriculture, and soil chemistry. These relationships are also of considerable value in geotechnical and geoenvironmental engineering. Their measurement, however, is difficult, expensive, and time-consuming. Many empirical models have been developed to describe the SWCC. Statistical assessment of soil-water characteristic curve models found that exponential-based model equations were the most difficult to fit and generally provided the poorest fit to the soil-water characteristic data. In this paper, an exponential-based model is devised to describe the SWCC. The modified equation is similar to those previously reported by Gardner (1956) but includes exponential variable. Verification was performed with 24 independent data sets for a wide range of soil textures. Prediction results were compared with the most widely used models to assess the model's performance. It was proven that the exponential-based equation of the modified model provided greater flexibility and a better fit to data on various types of soil.
    Matched MeSH terms: Soil/chemistry*
  16. Lim Kim Choo LN, Ahmed OH
    ScientificWorldJournal, 2014;2014:906021.
    PMID: 25215335 DOI: 10.1155/2014/906021
    Pineapples (Ananas comosus (L.) Merr.) cultivation on drained peats could affect the release of carbon dioxide (CO2) into the atmosphere and also the leaching of dissolved organic carbon (DOC). Carbon dioxide emission needs to be partitioned before deciding on whether cultivated peat is net sink or net source of carbon. Partitioning of CO2 emission into root respiration, microbial respiration, and oxidative peat decomposition was achieved using a lysimeter experiment with three treatments: peat soil cultivated with pineapple, bare peat soil, and bare peat soil fumigated with chloroform. Drainage water leached from cultivated peat and bare peat soil was also analyzed for DOC. On a yearly basis, CO2 emissions were higher under bare peat (218.8 t CO2 ha/yr) than under bare peat treated with chloroform (205 t CO2 ha/yr), and they were the lowest (179.6 t CO2 ha/yr) under cultivated peat. Decreasing CO2 emissions under pineapple were attributed to the positive effects of photosynthesis and soil autotrophic activities. An average 235.7 mg/L loss of DOC under bare peat suggests rapid decline of peat organic carbon through heterotrophic respiration and peat decomposition. Soil CO2 emission depended on moderate temperature fluctuations, but it was not affected by soil moisture.
    Matched MeSH terms: Soil/chemistry*
  17. Zhao X, Zhu M, Guo X, Wang H, Sui B, Zhao L
    Environ Sci Pollut Res Int, 2019 May;26(14):13746-13754.
    PMID: 30008165 DOI: 10.1007/s11356-018-2270-1
    The soil organic carbon accumulation in soda saline-alkaline soil and the humus composition changes with application of aluminum sulfate and rice straw were investigated by the controlled simulative experiments in laboratory. For evaluating the amelioration effect, organic carbon content and humus composition in soda saline-alkaline soil were investigated with different application amounts of rice straw and aluminum sulfate. Potassium dichromate oxidation titration (exogenous heat) method and Kumada method were used to analyze the contents of organic carbon and humus composition, respectively. The transformation of soil organic matter in the saline-alkali soil during the amelioration has been clarified in this paper. The results demonstrated that the contents of soil organic carbon were significantly increased (13-92%) with different application amounts of rice straw and aluminum sulfate. The contents of free fraction and combined fraction of humus and their compositions (humic acid and fulvic acid) were increased with different application amounts of rice straw. The free fraction of humus was increased more dramatically. Due to aluminum sulfate application, free fraction of humus and humic acid (HA) was transformed to combined fraction partially. Free HA was changed to be P type with rice straw application. With aluminum sulfate application, free form of HA was changed from type P to type Rp. For rice straw application, combined HA only was transferred within the area of type A. Aluminum sulfate addition had no significant effect on the type of combined form of HA. With the same amount of rice straw application, the contents of soil organic carbon were increased by increasing the amount of aluminum sulfate application. Both rice straw and aluminum sulfate applications could reduce the humification degree of free and combined fraction of HA. According to the types of HA, it could be concluded that humus became younger and renewed due to the application of rice straw and aluminum sulfate.
    Matched MeSH terms: Soil/chemistry*
  18. Ho YB, Zakaria MP, Latif PA, Saari N
    Sci Total Environ, 2014 Aug 1;488-489:261-7.
    PMID: 24836135 DOI: 10.1016/j.scitotenv.2014.04.109
    Repeated applications of animal manure as fertilizer are normal agricultural practices that may release veterinary antibiotics and hormones into the environment from treated animals. Broiler manure samples and their respective manure-amended agricultural soil samples were collected in selected locations in the states of Selangor, Negeri Sembilan and Melaka in Malaysia to identify and quantify veterinary antibiotic and hormone residues in the environment. The samples were analyzed using ultrasonic extraction followed by solid phase extraction (SPE) and liquid chromatography-tandem mass spectrometry (LC-MS/MS). The broiler manure samples were found to be contaminated with at least six target analytes, namely, doxycycline, enrofloxacin, flumequine, norfloxacin, trimethoprim and tylosin. These analytes were detected in broiler manure samples with maximum concentrations reaching up to 78,516 μg kg(-1) dry weight (DW) (doxycycline). For manure-amended agricultural soil samples, doxycycline and enrofloxacin residues were detected in every soil sample. The maximum concentration of antibiotic detected in soil was 1331 μg kg(-1) DW (flumequine). The occurrence of antibiotics and hormones in animal manure at high concentration poses a risk of contaminating agricultural soil via fertilization with animal manure. Some physico-chemical parameters such as pH, total organic carbon (TOC) and metal content played a considerable role in the fate of the target veterinary antibiotics and progesterone in the environment. It was suggested that these parameters can affect the adsorption of pharmaceuticals to solid environmental matrices.
    Matched MeSH terms: Soil/chemistry*
  19. Wahi R, Bidin ER, Mohamed Asif NM, Nor Hamizat NA, Ngaini Z, Omar R, et al.
    Environ Sci Pollut Res Int, 2019 Aug;26(22):22246-22253.
    PMID: 31152421 DOI: 10.1007/s11356-019-05548-6
    Sago bark (SB) and empty fruit bunch (EFB) are available abundantly as agricultural waste in Sarawak. This study was conducted to investigate the physicochemical characteristics of SB and EFB as composting materials and used as a plant growth medium. The SB and EFB composts were prepared in a separate container by mixing chicken manure as compost accelerator and wood chips as a bulking agent in dry weight equivalent ratio (1:1:1). The maturity and stability of compost in 60-day composting periods were evaluated via physicochemical characterization of the composts in terms of pH, elemental content, total ash content, moisture content and nutrient analyses. The effect of the compost usage as growth medium was assessed towards water spinach and green mustard via seed germination and pot study. After 2 months, the colour of both composts was dark brown with an earthy smell. The acidic pH of the initial composting stage has changed into alkaline pH after 60 days of composting. Total NPK present in the SB and EFB composts were 0.96% and 1.21%, respectively. The germination index (GI) for the studied vegetables was above 100%, while the pot study showed that vegetables in compost media has higher growth compared to the control, after 14 days. SB and EFB are renewable waste which can be used as an excellent compost and able to improve the quality of the soil.
    Matched MeSH terms: Soil/chemistry*
  20. Nurulhuda K, Gaydon DS, Jing Q, Zakaria MP, Struik PC, Keesman KJ
    J Sci Food Agric, 2018 Feb;98(3):865-871.
    PMID: 28940491 DOI: 10.1002/jsfa.8683
    Extensive modelling studies on nitrogen (N) dynamics in flooded soil systems have been published. Consequently, many N dynamics models are available for users to select from. With the current research trend, inclined towards multidisciplinary research, and with substantial progress in understanding of N dynamics in flooded soil systems, the objective of this paper is to provide an overview of the modelling concepts and performance of 14 models developed to simulate N dynamics in flooded soil systems. This overview provides breadth of knowledge on the models, and, therefore, is valuable as a first step in the selection of an appropriate model for a specific application. © 2017 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
    Matched MeSH terms: Soil/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links