Displaying publications 41 - 60 of 606 in total

Abstract:
Sort:
  1. Audah KA, Ettin J, Darmadi J, Azizah NN, Anisa AS, Hermawan TDF, et al.
    Molecules, 2022 Nov 30;27(23).
    PMID: 36500458 DOI: 10.3390/molecules27238369
    Methicillin-resistant Staphylococcus aureus (MRSA) is an S. aureus strain that has developed resistance against ß-lactam antibiotics, resulting in a scarcity of a potent cure for treating Staphylococcus infections. In this study, the anti-MRSA and antioxidant activity of the Indonesian mangrove species Sonneratia caseolaris, Avicennia marina, Rhizophora mucronata, and Rhizophora apiculata were studied. Disk diffusion, DPPH, a brine shrimp lethality test, and total phenolic and flavonoid assays were conducted. Results showed that among the tested mangroves, ethanol solvent-based S. caseolaris leaves extract had the highest antioxidant and anti-MRSA activities. An antioxidant activity assay showed comparable activity when compared to ascorbic acid, with an IC50 value of 4.2499 ± 3.0506 ppm and 5.2456 ± 0.5937 ppm, respectively, classifying the extract as a super-antioxidant. Moreover, S. caseolaris leaves extract showed the highest content of strongly associated antioxidative and antibacterial polyphenols, with 12.4% consisting of nontoxic flavonoids with the minimum inhibitory concentration of the ethanol-based S. caseolaris leaves extract being approximately 5000 ppm. LC-MS/MS results showed that phenolic compounds such as azelaic acid and aspirin were found, as well as flavonoid glucosides such as isovitexin and quercitrin. This strongly suggested that these compounds greatly contributed to antibacterial and antioxidant activity. Further research is needed to elucidate the interaction of the main compounds in S. caseolaris leaves extract in order to confirm their potential either as single or two or more compounds that synergistically function as a nontoxic antioxidant and antibacterial against MRSA.
    Matched MeSH terms: Staphylococcus aureus; Methicillin-Resistant Staphylococcus aureus*
  2. Abdallah EM, Modwi A, Al-Mijalli SH, Mohammed AE, Idriss H, Omar AS, et al.
    Molecules, 2022 Nov 28;27(23).
    PMID: 36500402 DOI: 10.3390/molecules27238309
    In this work, ZnO, CrZnO, RuZnO, and BaZnO nanomaterials were synthesized and characterized in order to study their antibacterial activity. The agar well diffusion, minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC) assays were used to determine the antibacterial activity of the fabricated nanomaterials against Staphylococcus aureus ATCC 29213, Escherichia coli ATCC35218, Klebsiella pneumoniae ATCC 7000603, and Pseudomonas aeruginosa ATCC 278533. The well-diffusion test revealed significant antibacterial activity against all investigated bacteria when compared to vancomycin at a concentration of 1 mg/mL. The most susceptible bacteria to BaZnO, RuZnO, and CrZnO were Staphylococcus aureus (15.5 ± 0.5 mm), Pseudomonas aeruginosa (19.2 ± 0.5 mm), and Pseudomonas aeruginosa (19.7 ± 0.5), respectively. The MIC values indicated that they were in the range of 0.02 to 0.2 mg/mL. The MBC values showed that the tested bacteria's growth could be inhibited at concentrations ranging from 0.2 to 2.0 mg/mL. According to the MBC/MIC ratio, BaZnO, RuZnO, and CrZnO exhibit bacteriostatic effects and may target bacterial protein synthesis based on the results of the tolerance test. This study shows the efficacy of the above-mentioned nanoparticles on bacterial growth. Further biotechnological and toxicological studies on the nanoparticles fabricated here are recommended to benefit from these findings.
    Matched MeSH terms: Staphylococcus aureus*
  3. Alli YA, Ejeromedoghene O, Oladipo A, Adewuyi S, Amolegbe SA, Anuar H, et al.
    ACS Appl Bio Mater, 2022 Nov 21;5(11):5240-5254.
    PMID: 36270024 DOI: 10.1021/acsabm.2c00670
    Quaternary Trimethyl Chitosan (QTMC) and QTMC-Silver Nanoparticles (QTMC-AgNPs) have been synthesized, characterized, and tested as antibacterial agents against Staphylococcus aureus, Escherichia coli, and two plant fungi (Sclerotium rolfsil and Fusarium oxysporum). The as-prepared water-soluble QTMC was in situ reacted with silver nitrate in the presence of clean compressed hydrogen gas (3 bar) as a reducing agent to produce QTMC-AgNPs. UV-vis, ATR-FTIR, HR-TEM/SEM, XPS, DLS, XRD, and TGA/DTG were employed to assess the optical response, morphology/size, surface chemistry, particle size distribution, crystal nature, and thermal stability of the synthesized QTMC-AgNPs, respectively. The as-prepared QTMC-AgNPs were quasi-spherical in shape with an average particle size of 12.5 nm, as determined by ImageJ software utilizing HR-TEM images and further validated by DLS analysis. The development of crystalline nanoparticles was confirmed by the presence of distinct and consistent lattice fringes with an approximate interplanar d-spacing of 2.04 nm in QTMC-AgNPs. The QTMC-AgNPs exhibited significant antibacterial activity with a clear zone of inhibition of 30 mm and 26 mm around the disks against E. coli and S. aureus, respectively. In addition, QTMC-AgNPs showed highly efficient antifungal activity with 100% and 76.67% growth inhibition against two plant pathogens, S. rolfsii and F. oxysporum, respectively, whereas QTMC revealed no impact. Overall, QTMC-AgNPs showed a promising therapeutic potential and,thus, can be considered for drug design rationale.
    Matched MeSH terms: Staphylococcus aureus
  4. Alhajj M, Aziz MSA, Huyop F, Salim AA, Sharma S, Ghoshal SK
    Biomater Adv, 2022 Nov;142:213136.
    PMID: 36206587 DOI: 10.1016/j.bioadv.2022.213136
    This paper reports the characterization and antibacterial performance evaluation of some spherical and stable crystalline silver (Ag)/copper (Cu) nanocomposites (Ag-CuNCs) prepared in deionized water (DIW) using pulse laser ablation in liquid (PLAL) method. The influence of various laser fluences (LFs) on the structural, morphological, optical and antibacterial properties of these NCs were determined. The UV-Vis absorbance of these NCs at 403 nm and 595 nm was gradually increased accompanied by a blue shift. XRD patterns disclosed the nucleation of highly crystalline Ag-CuNCs with their face centered cubic lattice structure. TEM images showed the existence of spherical NCs with size range of 3-20 nm and lattice fringe spacing of approximately 0.145 nm. EDX profiles of Ag-CuNCs indicated their high purity. The antibacterial effectiveness of the Ag-CuNCs was evaluated by the inhibition zone diameter (IZD) and optical density (OD600) tests against Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria. The proposed NCs revealed the IZD values in the range of 22-26 mm and 20-25 mm when tested against E. coli and S. aureus bacteria, respectively. The Ag-CuNCs prepared at LF of 14.15 J/cm2 revealed the best bactericidal activity. It is established that by controlling the laser fluence the bactericidal effectiveness of the Ag-CuNCs can be tuned.
    Matched MeSH terms: Staphylococcus aureus
  5. Chong WX, Lai YX, Choudhury M, Amalraj FD
    J Prosthet Dent, 2022 Nov;128(5):1114-1120.
    PMID: 33685653 DOI: 10.1016/j.prosdent.2021.01.010
    STATEMENT OF PROBLEM: The presence of biofilms on maxillofacial silicone increases the risk of infections and reduces durability. Whether silver nanoparticles (AgNPs) with potent antimicrobial effects help reduce biofilm formation is unclear.

    PURPOSE: The purpose of this in vitro study was to assess the antimicrobial effect of sub 10-nm AgNPs in maxillofacial silicone against Staphylococcus aureus, Candida albicans, and mixed species biofilms containing both and to test the effectiveness of different AgNP concentrations against all 3 biofilms in vitro.

    MATERIAL AND METHODS: Silicone disks (M511; Technovent Ltd) containing 0.0% (control), 0.1%, and 0.5% AgNPs were fabricated and treated with S. aureus, C. albicans, and mixed species strains of both in 24-well culture plates containing appropriate media. Each well received a 0.1-mL aliquot of the standardized suspension of microorganisms. The plates were incubated for 21 consecutive days, and colony-forming units per milliliter (CFU/mL) were measured on the first, third, fifth, seventh, fifteenth, and twenty-first day with the Miles and Misra method. Data were analyzed by 2-way ANOVA and the paired t test to evaluate the relationship between AgNP concentration, microbial strain, and time (α=.05). Mean CFU/mL differences for each time and for each biofilm category were assessed by repeated measure ANOVA.

    RESULTS: AgNPs decreased the mean CFU/mL in both concentrations compared with the control. The 0.1% concentration showed sustained efficacy throughout the test, while the 0.5% concentration had high efficacy initially with a gradual decrease. However, the results were inconsistent for the mixed biofilm. The paired sample t test at day 3 and 15 and day 3 and 21 showed statistically significantly different results (P

    Matched MeSH terms: Staphylococcus aureus
  6. Sulistyani N, Nurkhasanah -, Angelita L, Ridwan Rais I, Amiruddin Zakaria Z
    Pak J Pharm Sci, 2022 Nov;35(6(Special)):1805-1811.
    PMID: 36861247
    This study aimed to determine the ability of Persea americana (Mill.) or avocado peels ethanolic extract and its fractions to cause bacterial cell leakage in Staphylococcus aureus. The interaction of antibacterial compound with bacterial cells induces several changes leading to the damage of membrane permeability, followed by intracellular bacterial cell leakage. The experiment started with the determination of minimum inhibitory concentration and minimum bactericidal concentration by micro dilution method. Following the determination of MIC and MBC values, the samples, at the concentrations of 1xMIC and 2xMIC, were tested and analyzed by UV-Vis spectrophotometer at 260 and 280 nm to determine the leakage of bacteria cells. The value of K+ ion leakage was determined using atomic absorption spectrophotometry while the value of electrical conductivity was measured by conducto meter to determine the leakage of the cell membrane. The recorded MIC and MBC values of samples were 10% w/v. At the concentrations of 10% and 20% w/v, the samples caused an increase in nucleic acid, protein and DNA levels as well as an increase in extra cellular electrical conductivity. Prolonged exposure of the extract increased the leakage of bacterial cell contents and the electrical conductivity, indicating the damage of bacterial cell membrane.
    Matched MeSH terms: Staphylococcus aureus
  7. Mohd Ramli SS, Mat Baki M
    BMJ Case Rep, 2022 Feb 28;15(2).
    PMID: 35228218 DOI: 10.1136/bcr-2021-245840
    Systemic lupus erythematous (SLE) is an autoimmune disease commonly treated with steroid which leads to immunosuppression and increased susceptibility to infection. Chronic laryngitis with whitish lesion on the true vocal fold in SLE may be caused by opportunistic organisms, such as tuberculous, fungal and Staphylococcus aureus infections. Videolaryngostroboscopy may be helpful in leading to the diagnosis and optimum treatment of glottic S. aureus A woman in her 40s with SLE presented with progressively worsening hoarseness for 2 months, accompanied by sore throat and odynophagia. Videoendoscopy showed erythematous and oedematous bilateral vocal fold with whitish lesion seen at the edge of middle one-third while the videolaryngostroboscopic evaluation showed there was severe asymmetry of the bilateral vocal folds, with severely reduced amplitude during phonation where the vocal cords were not vibrating, aperiodic vibratory cycles and 'always open', incomplete closure of vocal cord pattern. Later, endolaryngeal microsurgery and biopsy of the lesion confirmed of glottic S. aureus Her symptoms and followed up videolaryngostroboscopy showed resolution to normal findings after 6 weeks of cloxacillin. S. aureus infection of the glottis is a differential diagnosis in a chronic laryngitis with leucoplakic lesion in an immunosuppressive patient. Videolaryngostroboscopy has an important role in diagnosis, evaluation and treatment decision.
    Matched MeSH terms: Staphylococcus aureus
  8. Li Y, Ouyang Y, Wu H, Wang P, Huang Y, Li X, et al.
    Eur J Med Chem, 2022 Jan 15;228:113979.
    PMID: 34802838 DOI: 10.1016/j.ejmech.2021.113979
    The shortage of new antibiotics makes infections caused by gram-negative (G-) bacteria a significant clinical problem. The key enzymes involved in folate biosynthesis represent important targets for drug discovery, and new antifolates with novel mechanisms are urgently needed. By targeting to dihydrofolate reductase (DHFR), a series of 1,3-diamino-7H-pyrrol[3,2-f]quinazoline (PQZ) compounds were designed, and exhibited potent antibacterial activities in vitro, especially against multi-drug resistant G- strains. Multiple experiments indicated that PQZ compounds contain a different molecular mechanism against the typical DHFR inhibitor, trimethoprim (TMP), and the thymidylate synthase (TS) was identified as another potential but a relatively weak target. A significant synergism between the representative compound, OYYF-175, and sulfamethoxazole (SMZ) was observed with a strong cumulative and significantly bactericidal effect at extremely low concentrations (2 μg/mL for SMZ and 0.03 pg/mL for OYYF-175), which could be resulted from the simultaneous inhibition of dihydropteroate synthase (DHPS), DHFR and TS. PQZ compounds exhibited therapeutic effects in a mouse model of intraperitoneal infections caused by Escherichia coli (E. coli). The co-crystal structure of OYYF-175-DHFR was solved and the detailed interactions were provided. The inhibitors reported represent innovative chemical structures with novel molecular mechanism of action, which will benefit the generation of new, efficacious bactericidal compounds.
    Matched MeSH terms: Methicillin-Resistant Staphylococcus aureus/drug effects
  9. Ahmad P, Khandaker MU, Khan A, Rehman F, Din SU, Ali H, et al.
    Biomed Res Int, 2022;2022:3605054.
    PMID: 36420094 DOI: 10.1155/2022/3605054
    A simple process based on the dual roles of both magnesium oxide (MgO) and iron oxide (FeO) with boron (B) as precursors and catalysts has been developed for the synthesis of borate composites of magnesium and iron (Mg2B2O5-Fe3BO6) at 1200°C. The as-synthesized composites can be a single material with the improved and collective properties of both iron borates (Fe3BO6) and magnesium borates (Mg2B2O5). At higher temperatures, the synthesized Mg2B2O5-Fe3BO6 composite is found thermally more stable than the single borates of both magnesium and iron. Similarly, the synthesized composites are found to prevent the growth of both gram-positive (Staphylococcus aureus) and gram-negative (Escherichia coli) pathogenic bacteria on all the tested concentrations. Moreover, the inhibitory effect of the synthesized composite increases with an increase in concentration and is more pronounced against S. aureus as compared to E. coli.
    Matched MeSH terms: Staphylococcus aureus
  10. Chandran C, Tham HY, Abdul Rahim R, Lim SHE, Yusoff K, Song AA
    PeerJ, 2022;10:e12648.
    PMID: 35251775 DOI: 10.7717/peerj.12648
    BACKGROUND: Staphylococcus aureus is an opportunistic Gram-positive bacterium that can form biofilm and become resistant to many types of antibiotics. The treatment of multi-drug resistant Staphylococcus aureus (MDRSA) infection is difficult since it possesses multiple antibiotic-resistant mechanisms. Endolysin and virion-associated peptidoglycan hydrolases (VAPGH) enzymes from bacteriophage have been identified as potential alternative antimicrobial agents. This study aimed to assess the ability of Lactococcus lactis NZ9000 secreting endolysin and VAPGH from S. aureus bacteriophage 88 to inhibit the growth of S. aureus PS 88, a MDRSA.

    METHOD: Endolysin and VAPGH genes were cloned and expressed in L. lactis NZ9000 after fusion with the SPK1 signal peptide for secretion. The recombinant proteins were expressed and purified, then analyzed for antimicrobial activity using plate assay and turbidity reduction assay. In addition, the spent media of the recombinant lactococcal culture was analyzed for its ability to inhibit the growth of the S. aureus PS 88.

    RESULTS: Extracellular recombinant endolysin (Endo88) and VAPGH (VAH88) was successfully expressed and secreted from L. lactis which was able to inhibit S. aureus PS 88, as shown by halozone formation on plate assays as well as inhibition of growth in the turbidity reduction assay. Moreover, it was observed that the spent media from L. lactis NZ9000 expressing Endo88 and VAH88 reduced the viability of PS 88 by up to 3.5-log reduction with Endo88 being more efficacious than VAH88. In addition, Endo88 was able to lyse all MRSA strains tested and Staphylococcus epidermidis but not the other bacteria while VAH88 could only lyse S. aureus PS 88.

    CONCLUSION: Recombinant L. lactisNZ9000 expressing phage 88 endolysin may be potentially developed into a new antimicrobial agent for the treatment of MDRSA infection.

    Matched MeSH terms: Staphylococcus aureus
  11. Shamsi S, Abdul Ghafor AAH, Norjoshukrudin NH, Ng IMJ, Abdullah SNS, Sarchio SNE, et al.
    Int J Nanomedicine, 2022;17:5781-5807.
    PMID: 36474524 DOI: 10.2147/IJN.S369373
    BACKGROUND: The impetuous usage of antibiotics has led to the perpetual rise of methicillin-resistant Staphylococcus aureus (MRSA), which has garnered the interest of potential drug alternatives, including nanomaterials.

    PURPOSE: The present study investigates the stability, toxicity, and antibacterial potential of gallic acid-loaded graphene oxide (GAGO) on several MRSA strains.

    METHODS: The stability of a synthesized and characterized GAGO was monitored in different physiological media. The toxicity profile of GAGO was evaluated in 3T3 murine fibroblast cells and the embryonic zebrafish model. The antibacterial activity of GAGO against MRSA, methicillin-susceptible S. aureus (MSSA), and community-acquired MRSA; with or without Panton-valentine leucocidin gene (MRSA-pvl+ and MRSA-pvl-) was investigated through disk diffusion, CFU counting method, time-kill experiment, and high-resolution transmission electron microscopy (HRTEM) observation.

    RESULTS: A stable GAGO nanocomposite has shown an improved toxicity profile in 3T3 murine fibroblast cells and zebrafish embryos, besides exhibiting normal ROS levels than graphene oxide (GO) and GA (gallic acid). The nanocomposite inhibited the growth of all bacterial strains employed. The effectiveness of the GAGO nanocomposite was comparable to cefoxitin (CFX), at ≥150 µg/mL in MRSA and MSSA. GAGO exhibited a significantly delayed response towards MRSA-pvl+ and MRSA-pvl-, with increased inhibition following 8 to 24 h of exposure, while comparable activity to native GA was only achieved at 24 h. Meanwhile, for MRSA and MSSA, GAGO had a comparable activity with native GA and GO as early as 2 h of exposure. HRTEM observation further reveals that GAGO-exposed cells were membrane compromised.

    CONCLUSION: In summary, the present study indicates the antibacterial potential of GAGO against MRSA strains, but further study is warranted to understand the mechanism of action of GAGO and its resistance in MRSA strains.

    Matched MeSH terms: Staphylococcus aureus; Methicillin-Resistant Staphylococcus aureus*
  12. Bo ZM, Tan WK, Chong CSC, Lye MS, Parmasivam S, Pang ST, et al.
    PLoS One, 2022;17(11):e0277802.
    PMID: 36395327 DOI: 10.1371/journal.pone.0277802
    Acute pharyngitis (AP) is a common reason for private primary care consultations, thus providing an avenue for widespread antibiotic intake among the community. However, there is limited data on the antibiotic prescription appropriateness and resistance information in the Malaysian private primary care setting, therefore, this study aimed to investigate the prevalence of isolated viruses and bacteria, antibiotic resistance patterns, antibiotic prescription patterns and appropriateness by general practitioners (GPs) and factors affecting antibiotic resistance and antibiotic prescription patterns. To investigate, a cross-sectional study was conducted among 205 patients presenting with AP symptoms at private primary care clinics in central Malaysia from 3rd January 2016 to 30th November 2016. Throat swabs were collected from 205 AP patients for two purposes: (i) the detection of four common respiratory viruses associated with AP via reverse-transcription real-time PCR (qRT-PCR); and (ii) bacterial identification using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS). Bacterial isolates were then subjected to antibiotic susceptibility screening and McIsaac scoring was calculated post-prescription based on GP selection of criteria. Generalized estimating equations analysis with multiple logistic regression was conducted to identify factors associated with presence of virus and antibiotic prescription. The results showed that 95.1% (195/205) of patients had at least one of the four viruses, with rhinovirus (88.5%) being the most prevalent, followed by adenovirus (74.9%), influenza A virus (4.6%) and enterovirus (2.1%). A total of 862 non-repetitive colonies were isolated from the culture of throat swabs from 205 patients who were positive for bacteria. From a total of 22 genera, Streptococcus constitutes the most prevalent bacteria genus (40.9%), followed by Neisseria (20%), Rothia (13.0%), Staphylococcus (11%) and Klebsiella (4.9%). Only 5 patients carried group A beta-hemolytic streptococci (GABHS). We also report the presence of vancomycin-resistant S. aureus or VRSA (n = 9, 10.1%) among which one isolate is a multidrug-resistant methicillin-resistant S. aureus (MDR-MRSA), while 54.1% (n = 111) were found to carry at least one antibiotic-resistant bacteria species. Application of the McIsaac scoring system indicated that 87.8% (n = 180) of patients should not be prescribed antibiotics as the majority of AP patients in this study had viral pharyngitis. The antibiotic prescription appropriateness by applying post-prescription McIsaac scoring was able to rule out GABHS pharyngitis in this sample with a GABHS culture-positive sensitivity of 40% (n = 2/5) and specificity of 90% (180/200). In conclusion, antibiotic-resistant throat isolates and over-prescription of antibiotics were observed and McIsaac scoring system is effective in guiding GPs to determine occurrences of viral pharyngitis to reduce unnecessary antibiotic prescription.
    Matched MeSH terms: Methicillin-Resistant Staphylococcus aureus*
  13. Azmi NN, Mahyudin NA, Wan Omar WH, Mahmud Ab Rashid NK, Ishak CF, Abdullah AH, et al.
    Molecules, 2021 Dec 28;27(1).
    PMID: 35011396 DOI: 10.3390/molecules27010170
    Natural clays have recently been proven to possess antibacterial properties. Effective natural antimicrobial agents are needed to combat bacterial contamination on food contact surfaces, which are increasingly more prevalent in the food chain. This study sought to determine the antibacterial activity of clays against the food-borne pathogens Salmonella typhimurium ATCC 14028 and Staphylococcus aureus ATCC 13565. Soils were processed to yield leachates and suspensions from untreated and treated clays. Soil particle size, pH, cation-exchange capacity, metal composition and mineralogy were characterized. Antibacterial screening was performed on six Malaysian soils via the disc diffusion method. In addition, a time-kill assay was conducted on selected antibacterial clays after 6 h of exposure. The screening revealed that Munchong and Carey clays significantly inhibit Salmonella typhimurium (11.00 ± 0.71 mm) and S. aureus (7.63 ± 0.48 mm), respectively. Treated Carey clay leachate and suspension completely kill Salmonella typhimurium, while S. aureus viability is reduced (2 to 3 log10). The untreated Carey and all Munchong clays proved ineffective as antibacterials. XRD analysis confirmed the presence of pyrite and magnetite. Treated Carey clays had a higher soluble metal content compared to Munchong; namely Al (92.63 ± 2.18 mg/L), Fe (65.69 ± 3.09 mg/L) and Mg (88.48 ± 2.29 mg/L). Our results suggest that metal ion toxicity is responsible for the antibacterial activity of these clays.
    Matched MeSH terms: Staphylococcus aureus/drug effects*
  14. Anita Lett J, Sagadevan S, Léonard E, Fatimah I, Motalib Hossain MA, Mohammad F, et al.
    Artif Organs, 2021 Dec;45(12):1501-1512.
    PMID: 34309044 DOI: 10.1111/aor.14045
    The primary role of bone tissue engineering is to reconcile the damaged bones and facilitate the speedy recovery of the injured bones. However, some of the investigated metallic implants suffer from stress-shielding, palpability, biocompatibility, etc. Consequently, the biodegradable scaffolds fabricated from polymers have gathered much attention from researchers and thus helped the tissue engineering sector by providing many alternative materials whose functionality is similar to that of natural bones. Herein, we present the fabrication and testing of a novel composite, magnesium (Mg)-doped hydroxyapatite (HAp) glazed onto polylactic acid (PLA) scaffolds where polyvinyl alcohol (PVA) used as a binder. For the composite formation, Creality Ender-3 pro High Precision 3D Printer with Shape tool 3D Technology on an FSD machine operated by Catia design software was employed. The composite has been characterized for the crystallinity (XRD), surface functionality (FTIR), morphology (FESEM), biocompatibility (hemolytic and protein absorption), and mechanical properties (stress-strain and maximum compressive strength). The powder XRD analysis confirmed the semicrystalline nature and intact structure of HAp even after doping with Mg, while FTIR studies for the successful formation of Mg-HAp/PVA@PLA composite. The FESEM provided analysis indicated for the 3D porous architecture and well-defined morphology to efficiently transport the nutrients, and the biocompatibility studies are supporting that the composite for blood compatible with the surface being suitable enough for the protein absorption. Finally, the composite's antibacterial activity (against Staphylococcus aureus and Escherichia coli) and the test of mechanical properties supported for the enhanced inhibition of active growth of microorganisms and maximum compressive strength, respectively. Based on the research outcomes of biocompatibility, antibacterial activity, and mechanical resistance, the fabricated Mg-HAp/PVA@PLA composite suits well as a promising biomaterial platform for orthopedic applications by functioning towards the open reduction internal fixation of bone fractures and internal repairs.
    Matched MeSH terms: Staphylococcus aureus/drug effects
  15. Lahiri D, Nag M, Dutta B, Dey A, Sarkar T, Pati S, et al.
    Int J Mol Sci, 2021 Nov 30;22(23).
    PMID: 34884787 DOI: 10.3390/ijms222312984
    Bacterial cellulose (BC) is recognized as a multifaceted, versatile biomaterial with abundant applications. Groups of microorganisms such as bacteria are accountable for BC synthesis through static or agitated fermentation processes in the presence of competent media. In comparison to static cultivation, agitated cultivation provides the maximum yield of the BC. A pure cellulose BC can positively interact with hydrophilic or hydrophobic biopolymers while being used in the biomedical domain. From the last two decades, the reinforcement of biopolymer-based biocomposites and its applicability with BC have increased in the research field. The harmony of hydrophobic biopolymers can be reduced due to the high moisture content of BC in comparison to hydrophilic biopolymers. Mechanical properties are the important parameters not only in producing green composite but also in dealing with tissue engineering, medical implants, and biofilm. The wide requisition of BC in medical as well as industrial fields has warranted the scaling up of the production of BC with added economy. This review provides a detailed overview of the production and properties of BC and several parameters affecting the production of BC and its biocomposites, elucidating their antimicrobial and antibiofilm efficacy with an insight to highlight their therapeutic potential.
    Matched MeSH terms: Staphylococcus aureus/drug effects
  16. Lai D, Zhou A, Tan BK, Tang Y, Sarah Hamzah S, Zhang Z, et al.
    Food Chem, 2021 Nov 01;361:130117.
    PMID: 34058659 DOI: 10.1016/j.foodchem.2021.130117
    To overcome the poor water solubility of curcumin, a curcumin-β-cyclodextrin (Cur-β-CD) complex was prepared as a novel photosensitizer. Fourier-transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), and X-ray diffraction (XRD) were used to verify the formation of Cur-β-CD. Furthermore, the ROS generation capacity and photodynamic bactericidal effect were measured to confirm this Cur-β-CD complex kept photodynamic activity of curcumin. The result showed Cur-β-CD could effectively generate ROS upon blue-light irradiation. The plate count assay demonstrated Cur-β-CD complex possess desirable photodynamic antibacterial effect against food-borne pathogens including Staphylococcus aureus, Listeria monocytogenes and Escherichia coli. The cell morphology determined by scanning electron microscope (SEM) and transmission electron microscope (TEM) showed Cur-β-CD could cause cell deformation, surface collapse and cell structure damage of the bacteria, resulting in the leakage of cytoplasmic; while agarose gel electrophoresis and SDS-PAGE further illustrated the inactivation mechanisms by Cur-β-CD involve bacterial DNA damage and protein degradation.
    Matched MeSH terms: Staphylococcus aureus/drug effects
  17. Lee WH, Rohanizadeh R, Loo CY
    Colloids Surf B Biointerfaces, 2021 Oct;206:111938.
    PMID: 34198233 DOI: 10.1016/j.colsurfb.2021.111938
    This study developed a novel bioactive bone substitute (hydroxyapatite, HA) with improved anti-biofilm activity by functionalizing with curcumin (anti-biofilm compound) which provide sufficient flux of curcumin concentration for 14 days. The released curcumin acts to inhibit biofilm formation and control the number of viable planktonic cells simultaneously. To prepare curcumin-functionalized HA, different concentrations of curcumin (up to 3% w/v) were added simultaneously during the precipitation process of HA. The highest loading (50 mg/g HA) of curcumin onto HA was achieved with 2% w/v of curcumin. Physicochemical characterizations of curcumin-functionalized HA composites revealed that curcumin was successfully incorporated onto HA. Curcumin was sustainably released over 14 days, while higher curcumin release was observed in acidic condition (pH 4.4) compared to physiological (pH 7.4). The cytotoxicity assays revealed that no significant difference on bone cells growth on curcumin-functionalized HA and non-functionalized HA. Curcumin-functionalized HA was effective to inhibit bacterial cell attachment and subsequent biofilm maturation stages. The anti-biofilm effect was stronger against Staphylococcus aureus compared to Pseudomonas aeruginosa. The curcumin-functionalized HA composite significantly delayed the maturation of S. aureus compared to non-functionalized HA in which microcolonies of cells only begin to appear at 96 h. Up to 3.0 log reduction in colony forming unit (CFU)/mL of planktonic cells was noted at 24 h of incubation for both microorganisms. Thus, in this study we have suggested that curcumin loaded HA could be an alternative antimicrobial agent to control the risk of infections in post-surgical implants.
    Matched MeSH terms: Staphylococcus aureus*
  18. Singh S, Numan A, Somaily HH, Gorain B, Ranjan S, Rilla K, et al.
    Mater Sci Eng C Mater Biol Appl, 2021 Oct;129:112384.
    PMID: 34579903 DOI: 10.1016/j.msec.2021.112384
    The emergence of methicillin-resistant Staphylococcus aureus (MRSA) has become a threat to global health because of limited treatments. MRSA infections are difficult to treat due to increasingly developing resistance in combination with protective biofilms of Staphylococcus aureus (S. aureus). Nanotechnology-based research revealed that effective MRSA treatments could be achieved through targeted nanoparticles (NPs) that withstand biological films and drug resistance. Thus, the principal aim towards improving MRSA treatment is to advance drug delivery tools, which successfully address the delivery-related problems. These potential delivery tools would also carry drugs to the desired sites of therapeutic action to overcome the adverse effects. This review focused on different types of nano-engineered carriers system for antimicrobial agents with improved therapeutic efficacy of entrapped drugs. The structural characteristics that play an essential role in the effectiveness of delivery systems have also been addressed with a description of recent scientific advances in antimicrobial treatment, emphasizing challenges in MRSA treatments. Consequently, existing gaps in the literature are highlighted, and reported contradictions are identified, allowing for the development of roadmaps for future research.
    Matched MeSH terms: Staphylococcus aureus; Methicillin-Resistant Staphylococcus aureus*
  19. Ikram M, Hayat S, Imran M, Haider A, Naz S, Ul-Hamid A, et al.
    Carbohydr Polym, 2021 Oct 01;269:118346.
    PMID: 34294353 DOI: 10.1016/j.carbpol.2021.118346
    In the present study, the novel Ag/cellulose nanocrystal (CNC)-doped CeO2 quantum dots (QDs) with highly efficient catalytic performance were synthesized using one pot co-precipitation technique, which were then applied in the degradation of methylene blue and ciprofloxacin (MBCF) in wastewater. Catalytic activity against MBCF dye was significantly reduced (99.3%) for (4%) Ag dopant concentration in acidic medium. For Ag/CNC-doped CeO2 vast inhibition domain of G-ve was significantly confirmed as (5.25-11.70 mm) and (7.15-13.60 mm), while medium- to high-concentration of CNC levels were calculated for G + ve (0.95 nm, 1.65 mm), respectively. Overall, (4%) Ag/CNC-doped CeO2 revealed significant antimicrobial activity against G-ve relative to G + ve at both concentrations, respectively. Furthermore, in silico molecular docking studies were performed against selected enzyme targets dihydrofolate reductase (DHFR), dihydropteroate synthase (DHPS), and DNA gyrase belonging to folate and nucleic acid biosynthetic pathway, respectively to rationalize possible mechanism behind bactericidal potential of CNC-CeO2 and Ag/CNC-CeO2.
    Matched MeSH terms: Staphylococcus aureus/drug effects
  20. Chung PY, Khoo REY, Liew HS, Low ML
    Ann Clin Microbiol Antimicrob, 2021 Sep 24;20(1):67.
    PMID: 34560892 DOI: 10.1186/s12941-021-00473-4
    BACKGROUND: Methicillin-resistance S. aureus (MRSA) possesses the ability to resist multiple antibiotics and form biofilm. Currently, vancomycin remains the last drug of choice for treatment of MRSA infection. The emergence of vancomycin-resistant S. aureus (VRSA) has necessitated the development of new therapeutic agents against MRSA. In this study, the antimicrobial and antibiofilm activities of two copper-complexes derived from Schiff base (SBDs) were tested individually, and in combination with oxacillin (OXA) and vancomycin (VAN) against reference strains methicillin-susceptible and methicillin-resistant Staphylococcus aureus. The toxicity of the SBDs was also evaluated on a non-cancerous mammalian cell line.

    METHODS: The antimicrobial activity was tested against the planktonic S. aureus cells using the microdilution broth assay, while the antibiofilm activity were evaluated using the crystal violet and resazurin assays. The cytotoxicity of the SBDs was assessed on MRC5 (normal lung tissue), using the MTT assay.

    RESULTS: The individual SBDs showed significant reduction of biomass and metabolic activity in both S. aureus strains. Combinations of the SBDs with OXA and VAN were mainly additive against the planktonic cells and cells in the biofilm. Both the compounds showed moderate toxicity against the MRC5 cell line. The selectivity index suggested that the compounds were more cytotoxic to S. aureus than the normal cells.

    CONCLUSION: Both the SBD compounds demonstrated promising antimicrobial and antibiofilm activities and have the potential to be further developed as an antimicrobial agent against infections caused by MRSA.

    Matched MeSH terms: Staphylococcus aureus; Methicillin-Resistant Staphylococcus aureus/drug effects*; Methicillin-Resistant Staphylococcus aureus/isolation & purification
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links