Displaying publications 41 - 60 of 210 in total

Abstract:
Sort:
  1. Makpol S, Yeoh TW, Ruslam FA, Arifin KT, Yusof YA
    PMID: 23948056 DOI: 10.1186/1472-6882-13-210
    Human diploid fibroblasts (HDFs) undergo a limited number of cellular divisions in culture and progressively reach a state of irreversible growth arrest, a process termed cellular ageing. Even though beneficial effects of Piper betle, Chlorella vulgaris and tocotrienol-rich fraction (TRF) have been reported, ongoing studies in relation to ageing is of interest to determine possible protective effects that may reverse the effect of ageing. The aim of this study was to evaluate the effect of P. betle, C. vulgaris and TRF in preventing cellular ageing of HDFs by determining the activity of antioxidant enzymes viz.; catalase, superoxide dismutase (SOD) and glutathione peroxidase.
    Matched MeSH terms: Tocotrienols/pharmacology*; Tocotrienols/chemistry
  2. Nafeeza MI, Fauzee AM, Kamsiah J, Gapor MT
    Asia Pac J Clin Nutr, 2002;11(4):309-13.
    PMID: 12495264
    This study examined the effects of a tocotrienol-rich fraction (TRF) obtained from palm oil on the healing of aspirin-induced gastric mucosal lesions. Thirty-six male Sprague-Dawley rats (200-250 g) were randomly divided into three groups. Group I was fed a vitamin E-deficient diet (control), Group II was fed a vitamin E-deficient diet supplemented with tocopherol (300 mg/kg food) and Group III was fed a vitamin E-deficient diet supplemented with TRF (300 mg/kg food). After eight weeks, the control and treated groups received a single intragastric dose of 400 mg/kg body weight aspirin. The rats were killed 24 h after exposure to aspirin. Assessment of gastric lesions showed a lower gastric lesion index in the TRF (P = 0.0005) and tocopherol groups (P = 0.0008) compared to the control. The gastric malondialdehyde (MDA) content was also lower in the TRF (P = 0.025) and tocopherol groups (P = 0.025) compared to control. There were, however, no significant differences in the gastric lesion index and gastric MDA content between the TRF and tocopherol-fed groups. There were no significant differences in the adherent gastric mucous concentration and gastric acid concentration among all groups. We conclude that the TRF and tocopherol are equally effective in preventing aspirin-induced gastric lesions. The most probable mechanism is through their ability to limit lipid peroxidation, which is involved in aspirin-induced gastric lesions.
    Matched MeSH terms: Tocotrienols/administration & dosage*; Tocotrienols/pharmacology
  3. Makpol S, Jam FA, Khor SC, Ismail Z, Mohd Yusof YA, Ngah WZ
    Oxid Med Cell Longev, 2013;2013:298574.
    PMID: 24396567 DOI: 10.1155/2013/298574
    Biodynes, tocotrienol-rich fraction (TRF), and tocopherol have shown antiaging properties. However, the combined effects of these compounds on skin aging are yet to be investigated. This study aimed to elucidate the skin aging effects of biodynes, TRF, and tocopherol on stress-induced premature senescence (SIPS) model of human diploid fibroblasts (HDFs) by determining the expression of collagen and MMPs at gene and protein levels. Primary HDFs were treated with biodynes, TRF, and tocopherol prior to hydrogen peroxide (H2O2) exposure. The expression of COL1A1, COL3A1, MMP1, MMP2, MMP3, and MMP9 genes was determined by qRT-PCR. Type I and type III procollagen proteins were measured by Western blotting while the activities of MMPs were quantified by fluorometric Sensolyte MMP Kit. Our results showed that biodynes, TRF, and tocopherol upregulated collagen genes and downregulated MMP genes (P < 0.05). Type I procollagen and type III procollagen protein levels were significantly increased in response to biodynes, TRF, and tocopherol treatment (P < 0.05) with reduction in MMP-1, MMP-2, MMP-3, and MMP-9 activities (P < 0.05). These findings indicated that biodynes, TRF, and tocopherol effectively enhanced collagen synthesis and inhibited collagen degradation and therefore may protect the skin from aging.
    Matched MeSH terms: Tocotrienols/pharmacology*
  4. Goon JA, Nor Azman NHE, Abdul Ghani SM, Hamid Z, Wan Ngah WZ
    Clin Nutr ESPEN, 2017 10;21:1-12.
    PMID: 30014863 DOI: 10.1016/j.clnesp.2017.07.004
    Vitamin E is a fat-soluble compound and powerful antioxidant that have been shown to protect the cell membranes against damage caused by free radicals. Human vitamin E supplementation studies are usually limited to α-tocopherol but currently tocotrienols are also available. This study aims to compare the effects of tocotrienol rich fraction (TRF) with α-tocopherol (α-TF) supplementation on oxidative stress in healthy male and female older adults aged 50-55 years old. A total of 71 subjects both male and female aged between 50 and 55 years were divided into groups receiving placebo (n = 23), α-TF (n = 24) and TRF (n = 24) for six months. Blood was taken at baseline (month 0), 3 months and 6 months osf supplementation for determination of plasma malondialdehyde (MDA), protein carbonyl, total DNA damage, vitamin D concentration and vitamin E isomers. α-TF supplementation reduced plasma MDA and protein carbonyl in female subjects after 3 and 6 months. TRF supplementation reduced MDA levels in both males and females as early as 3 months while DNA damage was reduced in females only at 6 months. Supplementation with α-TF and TRF increased plasma vitamin D concentration in both males and females after 6 months, but vitamin D concentration in male subjects were significantly higher compared to female subjects in TRF group. Vitamin E isomer determination showed α-TF, α-tocotrienol and γ-tocotrienol were increased in both male and female subjects. In conclusion, TRF supplementation effects were different from α-TF in reducing oxidative stress markers and vitamin D levels with a more pronounced effect in female subjects.
    Matched MeSH terms: Tocotrienols/administration & dosage*; Tocotrienols/blood
  5. Ghani SMA, Goon JA, Azman NHEN, Zakaria SNA, Hamid Z, Ngah WZW
    Clinics (Sao Paulo), 2019 03 07;74:e688.
    PMID: 30864639 DOI: 10.6061/clinics/2019/e688
    OBJECTIVES: This study aims to compare the differential gene expression resulting from tocotrienol-rich fraction and α-tocopherol supplementation in healthy older adults.

    METHODS: A total of 71 eligible subjects aged 50 to 55 years from Gombak and Kuala Lumpur, Malaysia, were divided into three groups and supplemented with placebo (n=23), α-tocopherol (n=24) or tocotrienol-rich fraction (n=24). Blood samples were collected at baseline and at 3 and 6 months of supplementation for microarray analysis.

    RESULTS: The number of genes altered by α-tocopherol was higher after 6 months (1,410) than after 3 months (273) of supplementation. α-Tocopherol altered the expression of more genes in males (952) than in females (731). Similarly, tocotrienol-rich fraction modulated the expression of more genes after 6 months (1,084) than after 3 months (596) and affected more genes in males (899) than in females (781). α-Tocopherol supplementation modulated pathways involving the response to stress and stimuli, the immune response, the response to hypoxia and bacteria, the metabolism of toxins and xenobiotics, mitosis, and synaptic transmission as well as activated the mitogen-activated protein kinase and complement pathways after 6 months. However, tocotrienol-rich fraction supplementation affected pathways such as the signal transduction, apoptosis, nuclear factor kappa B kinase, cascade extracellular signal-regulated kinase-1 and extracellular signal-regulated kinase-2, immune response, response to drug, cell adhesion, multicellular organismal development and G protein signaling pathways.

    CONCLUSION: Supplementation with either α-tocopherol or tocotrienol-rich fraction affected the immune and drug response and the cell adhesion and signal transduction pathways but modulated other pathways differently after 6 months of supplementation, with sex-specific responses.

    Matched MeSH terms: Tocotrienols/pharmacology*
  6. Nur Azlina MF, Qodriyah HMS, Chua KH, Kamisah Y
    World J Gastroenterol, 2017 Aug 28;23(32):5887-5894.
    PMID: 28932080 DOI: 10.3748/wjg.v23.i32.5887
    AIM: To investigate and compare the effects of tocotrienol and omeprazole on gastric growth factors in rats exposed to water-immersion restraint stress (WIRS).

    METHODS: Twenty-eight male Wistar rats were randomly assigned to four groups of seven rats. The two control groups were administered vitamin-free palm oil (vehicle) and the two treatment groups were given omeprazole (20 mg/kg) or tocotrienol (60 mg/kg) by oral gavage. After 28 d of treatment, rats from one control group and both treated groups were subjected to WIRS one time for 3.5 h. Gastric lesions were measured and gastric tissues were obtained to measure vascular endothelial growth factor (VEGF), epidermal growth factor (EGF), basic fibroblast growth factor (bFGF), and transforming growth factor-alpha (TGF-α) mRNA expression.

    RESULTS: Rats exposed to WIRS for 3.5 h demonstrated the presence of considerable ulcers in the form of gastric erosion. The lesion index in the stressed control (S) group was increased (P < 0.001) compared to the tocotrienol treated and omeprazole treated groups. Stress led to a decrease in gastric VEGF (P < 0.001), bFGF (P < 0.001) and TGF-α (P < 0.001) mRNA levels and caused an increase in EGF mRNA (P < 0.001) that was statistically significant compared to the non-stressed control group. Although both treatment agents exerted similar ulcer reducing ability, only treatment with tocotrienol led to increased expression of VEGF (P = 0.008), bFGF (P = 0.001) and TGF-α (P = 0.002) mRNA.

    CONCLUSION: Tocotrienol provides gastroprotective effects in WIRS-induced ulcers. Compared to omeprazole, tocotrienol exerts a similar protective effect, albeit through multiple mechanisms of protection, particularly through up-regulation of growth factors that assist in repair of gastric tissue injuries.

    Matched MeSH terms: Tocotrienols/pharmacology*; Tocotrienols/therapeutic use
  7. Malekbala MR, Soltani SM, Hosseini S, Eghbali Babadi F, Malekbala R
    Crit Rev Food Sci Nutr, 2017 Sep 22;57(14):2935-2942.
    PMID: 26207585 DOI: 10.1080/10408398.2015.1020532
    During the past few years the scientific and medical community has been confronted with a continual interest in vitamin E with the interest prompted by new discoveries. Tocopherols and tocotrienols, commonly known as vitamin E, are extremely invaluable compounds and have various nutritional functionalities and benefits to human health. Great deals of research projects have been launched in order to develop effective methods for the extraction of vitamin E. By and large, three distinct extractive methods are usually employed: supercritical fluid extraction (SFE), molecular distillation, and adsorption methods. These methods are sensitive to different experimental conditions, such as pressure, temperature, and flow rate with noticeable effects on the efficiency of the extraction and enrichment of vitamin E. This review has covered the most commonly adapted extraction methods and has probed into the extraction yields under variable operational parameters.
    Matched MeSH terms: Tocotrienols/analysis*; Tocotrienols/isolation & purification
  8. Rati Selvaraju T, Khaza'ai H, Vidyadaran S, Sokhini Abd Mutalib M, Ramachandran V, Hamdan Y
    Int J Vitam Nutr Res, 2014;84(3-4):140-51.
    PMID: 26098478 DOI: 10.1024/0300-9831/a000201
    Glutamate is the major mediator of excitatory signals in the mammalian central nervous system. Extreme amounts of glutamate in the extracellular spaces can lead to numerous neurodegenerative diseases. We aimed to clarify the potential of the following vitamin E isomers, tocotrienol-rich fraction (TRF) and α-tocopherol (α-TCP), as potent neuroprotective agents against glutamate-induced injury in neuronal SK-N-SH cells. Cells were treated before and after glutamate injury (pre- and post-treatment, respectively) with 100-300 ng/ml TRF/α-TCP. Exposure to 120 mM glutamate significantly reduced cell viability to 76% and 79% in the pre- and post-treatment studies, respectively; however, pre- and post-treatment with TRF/α-TCP attenuated the cytotoxic effect of glutamate. Compared to the positive control (glutamate-injured cells not treated with TRF/α-TCP), pre-treatment with 100, 200, and 300 ng/ml TRF significantly improved cell viability following glutamate injury to 95.2%, 95.0%, and 95.6%, respectively (p<0.05).The isomers not only conferred neuroprotection by enhancing mitochondrial activity and depleting free radical production, but also increased cell viability and recovery upon glutamate insult. Our results suggest that vitamin E has potent antioxidant potential for protecting against glutamate injury and recovering glutamate-injured neuronal cells. Our findings also indicate that both TRF and α-TCP could play key roles as anti-apoptotic agents with neuroprotective properties.
    Matched MeSH terms: Tocotrienols/administration & dosage*
  9. Lim SW, Loh HS, Ting KN, Bradshaw TD, Zeenathul NA
    PMID: 25480449 DOI: 10.1186/1472-6882-14-469
    Tocotrienols, especially the gamma isomer was discovered to possess cytotoxic effects associated with the induction of apoptosis in numerous cancers. Individual tocotrienol isomers are believed to induce dissimilar apoptotic mechanisms in different cancer types. This study was aimed to compare the cytotoxic potency of alpha-, gamma- and delta-tocotrienols, and to explore their resultant apoptotic mechanisms in human lung adenocarcinoma A549 and glioblastoma U87MG cells which are scarcely researched.
    Matched MeSH terms: Tocotrienols/pharmacology; Tocotrienols/therapeutic use*
  10. Radhakrishnan AK, Lee AL, Wong PF, Kaur J, Aung H, Nesaretnam K
    Br J Nutr, 2009 Mar;101(6):810-5.
    PMID: 18702848 DOI: 10.1017/S0007114508039998
    Vitamin E is divided into two subgroups; tocopherols and tocotrienols. Both have protective roles in biological systems. The present study was conducted to compare the effect of short-term supplementation at 200 mg/d of either alpha-tocopherol or a tocotrienol-rich fraction (TRF) from palm oil on immune modulation and plasma vitamin E levels in normal healthy Asian volunteers. In a randomised, double-blind placebo-controlled trial conducted, fifty-three healthy volunteers aged 20-50 years were recruited based on the study's inclusion and exclusion criteria. They were randomly assigned into three groups, i.e. two experimental groups that received daily supplementation at 200 mg of either alpha-tocopherol or the TRF, and the control group that received a placebo. Blood was drawn on days 0, 28 and 56 for several laboratory analyses. Differences in the production of IL-4 or interferon-gamma by concanavalin A-stimulated lymphocytes isolated from these volunteers were not significant (P>0.05). There were no significant differences observed in immune parameters between the healthy volunteers who received daily supplementation with either alpha-tocopherol or the TRF. As these observations were made in the absence of any immunogenic challenge, we feel it would be of benefit to study if there would be any differences observed when an immunogenic challenge such as vaccination were introduced.
    Matched MeSH terms: Tocotrienols/administration & dosage*; Tocotrienols/blood
  11. Lee KS, Yuen KH, Ng WK
    Fish Physiol Biochem, 2013 Dec;39(6):1457-71.
    PMID: 23604920 DOI: 10.1007/s10695-013-9799-1
    Vitamin E, a potent antioxidant consisting of four isomers each (α, β, γ, δ) of tocopherol (T) and tocotrienol (T3), is found naturally in plant oils at different concentrations. In this study, four semi-purified isonitrogenous and isolipidic (10 %) diets containing canola oil, cold-pressed soybean oil, wheat germ oil, or palm fatty acid distillates (PFAD) as the sole vitamin E source were fed to triplicate groups of red hybrid tilapia (Oreochromis sp.) fingerlings (14.82 ± 0.05 g) for 45 days. Vitamin E concentrations and composition were measured in the muscle, liver, skin, and adipose tissue. Deposition of α-T (53.4-93.1 % of total vitamin E) predominated over deposition of other isomers, except in the liver of fish fed the SBO diet, where α-T and γ-T deposition was in the ratio 40:60. T3 deposition (2.6-29.4 %) was only detected in tissues of fish fed the PFAD diet; adipose tissue was the major storage depot. Fish fed the SBO diet contained significantly more (P 
    Matched MeSH terms: Tocotrienols/metabolism*
  12. Rasool AH, Yuen KH, Yusoff K, Wong AR, Rahman AR
    J Nutr Sci Vitaminol (Tokyo), 2006 Dec;52(6):473-8.
    PMID: 17330512
    Tocotrienols are a class of vitamin E reported to be potent antioxidants, besides having the ability to inhibit the HMG-CoA reductase enzyme. This study assessed the effects of 3 doses of tocotrienol-rich vitamin E (TRE) on plasma tocotrienol isomer concentration, arterial compliance, plasma total antioxidant status (TAS), aortic systolic blood pressure (ASBP), serum total cholesterol (TC) and low density lipoprotein cholesterol (LDL-C) in healthy males.

    METHODOLOGY: This randomised, blinded end-point, placebo-controlled clinical trial with a parallel design involved 36 healthy male subjects who took either an oral placebo or TRE at doses of 80, 160 or 320 mg daily for 2 mo. Baseline and end-of-treatment measurements of vitamin E concentration, arterial compliance [assessed by aortic femoral pulse wave velocity (PWV) and augmentation index (AI)], ASBP, plasma TAS, serum TC and LDL-C were taken.

    RESULTS: Baseline tocotrienol isomer concentrations were low and not detectable in some subjects. Upon supplementation, all TRE-treated groups showed significant difference from placebo for their change in alpha, gamma and delta tocotrienol concentrations from baseline to end of treatment. There was a linear dose and blood level relationship for all the isomers. There was no significant difference between groups for their change in PWV, AI, plasma TAS, ASBP, TC or LDL-C from baseline to end of treatment. Groups 160 mg (p = 0.024) and 320 mg (p = 0.049) showed significant reductions in their ASBP. Group 320 mg showed a significant 9.2% improvement in TAS.

    CONCLUSION: TRE at doses up to 320 mg daily were well tolerated. Treatment significantly increased alpha, delta, and gamma tocotrienol concentrations but did not significantly affect arterial compliance, plasma TAS, serum TC or LDL-C levels in normal subjects.

    Matched MeSH terms: Tocotrienols/blood*
  13. Khor, Hun Teik, Ng, Theng Theng, Rajendran, Raajeswari
    Malays J Nutr, 2002;8(2):157-166.
    MyJurnal
    Tocotrienols and tocopherols are isoforms of vitamin E. Vitamin E may exhibit antioxidant, prooxidant and non-antioxidant activities depending upon circumstances. In this study, the effect of tocotrienols and α-tocopherol on the activities of HMG CoA reductase and cholesterol 7 α-hydroxylase was investigated. Pure tocotrienols were isolated from palm fatty acid distillate and pure α-tocopherol was obtained commercially. Guinea pigs were treated with different dosages of tocotrienols and α-tocopherol. After the treatment period, animals were sacrificed and liver microsomes were prepared. HMG CoA reductase and cholesterol 7α-hydroxylase were assayed using tracer techniques. Our results showed that the effects of tocotrienols and α-tocopherol on the activities of both the enzymes were dose-dependent. At low dosages, both tocotrienols and α-tocopherol exhibited an inhibitory effect on both the enzymes. Moreover, tocotrienols were a much stronger inhibitors than α-tocopherol. At high dosages, on the other hand, tocotrienols and α-tocopherol showed opposite effects on the enzymes. While tocotrienols continued to exhibit an inhibitory effect, α-tocopherol actually exhibited a stimulatory effect on both the enzymes. A possible explanation for this observation is suggested.
    Matched MeSH terms: Tocotrienols
  14. Chew SC, Tan CP, Nyam KL
    J Food Sci, 2018 Sep;83(9):2288-2294.
    PMID: 30074623 DOI: 10.1111/1750-3841.14291
    Kenaf seed oil is prone to undergo oxidation due to its high content of unsaturated fatty acids, thus microencapsulation stands as an alternative to protect kenaf seed oil from the adverse environment. This study primarily aimed to evaluate the oxidative stability of microencapsulated refined kenaf seed oil (MRKSO) by the use of gum arabic, β-cyclodextrin, and sodium caseinate as the wall materials by spray drying. Bulk refined kenaf seed oil (BRKSO) and MRKSO were kept at 65 °C for 24 days to evaluate its oxidative stability, changes of tocopherol and tocotrienol contents, phytosterol content, and fatty acid profile. The results showed that the peroxide value, p-Anisidine value, and total oxidation value of BRKSO were significantly higher than the MRKSO at day 24. The total tocopherol and tocotrienol contents were reduced 66.1% and 56.8% in BRKSO and MRKSO, respectively, upon the storage. There was a reduction of 71.7% and 23.5% of phytosterol content in BRKSO and MRKSO, respectively, upon the storage. The degradation rate of polyunsaturated fatty acids in BRKSO was higher than that of MRKSO. This study showed that the current microencapsulation technique is a feasible way to retard the oxidation of kenaf seed oil.

    PRACTICAL APPLICATION: There is increasing research on the functional properties of crude kenaf seed oil, but the crude kenaf seed oil is not edible. This study offered in developing of microencapsulated refined kenaf seed oil by spray drying, which is suitable for food application. The microencapsulation of refined kenaf seed oil with healthier wall materials is beneficial in developing a diversity of functional food products and supplements.

    Matched MeSH terms: Tocotrienols/analysis
  15. Fu JY, Meganathan P, Gunasegaran N, Tan DMY
    Food Res Int, 2023 Sep;171:113048.
    PMID: 37330852 DOI: 10.1016/j.foodres.2023.113048
    Vitamin E is one of the most important essential vitamins to support the regulation of oxidative stress in human body. Tocotrienols are part of the vitamin E family. The potentials of tocotrienols as nutraceutical ingredient are largely understated due to low oral bioavailability, which is a common problem associated with fat-soluble bioactive compounds. Nanoencapsulation technology offers innovative solutions to enhance the delivery mechanisms of these compounds. In this study, the effect of nanoencapsulation on the oral bioavailability and tissue distribution of tocotrienols were investigated using two types of formulations, i.e. nanovesicles (NV-T3) and solid lipid nanoparticles (NP-T3). At least 5-fold increment in maximum plasma concentrations, evident with dual-peak pharmacokinetic profiles, were observed after oral administration of nano-encapsulated tocotrienols. Plasma tocotrienol composition showed a shift from α-tocotrienol dominant in control group (Control-T3) to γ-tocotrienol dominant after nanoencapsulation. Tissue distribution of tocotrienols was found to be strongly influenced by the type of nanoformulation. Both nanovesicles (NV-T3) and nanoparticles (NP-T3) showed elevated accumulation in the kidneys and liver (5-fold) compared to control group while selectivity for α-tocotrienol was evident for NP-T3. In brain and liver of rats given NP-T3, α-tocotrienol emerged as the dominant congener (>80%). Acute oral administration of nanoencapsulated tocotrienols did not show signs of toxicity. The study concluded enhanced bioavailability and selective tissue accumulation of tocotrienol congeners when delivered via nanoencapsulation.
    Matched MeSH terms: Tocotrienols*
  16. Gan YL, Fu JY, Lai OM, Chew BH, Yuen KH, Teng KT, et al.
    Sci Rep, 2017 09 14;7(1):11542.
    PMID: 28912593 DOI: 10.1038/s41598-017-11813-w
    Tocotrienols, the unsaturated form of vitamin E, were reported to modulate platelet aggregation and thrombotic mechanisms in pre-clinical studies. Using a Food and Drug Administration (FDA)-approved cartridge-based measurement system, a randomised, double-blind, crossover and placebo-controlled trial involving 32 metabolic syndrome adults was conducted to investigate the effect of palm-based tocotrienols and tocopherol (PTT) mixture supplementation on platelet aggregation reactivity. The participants were supplemented with 200 mg (69% tocotrienols and 31% α-tocopherol) twice daily of PTT mixture or placebo capsules for 14 days in a random order. After 14 days, each intervention was accompanied by a postprandial study, in which participants consumed 200 mg PTT mixture or placebo capsule after a meal. Blood samples were collected on day 0, day 14 and during postprandial for the measurement of platelet aggregation reactivity. Subjects went through a 15-day washout period before commencement of subsequent intervention. Fasting platelet aggregation reactivity stimulated with adenosine diphosphate (ADP) did not show substantial changes after supplementation with PTT mixture compared to placebo (p = 0.393). Concomitantly, changes in postprandial platelet aggregation reactivity remained similar between PTT mixture and placebo interventions (p = 0.408). The results of this study highlight the lack of inhibitory effect on platelet aggregation after short-term supplementation of PTT mixture in participants with metabolic syndrome.
    Matched MeSH terms: Tocotrienols/administration & dosage*
  17. Cheong JN, Mirhosseini H, Tan CP
    Int J Food Sci Nutr, 2010 Jun;61(4):417-24.
    PMID: 20151850 DOI: 10.3109/09637481003591574
    The main objective of the present study was to investigate the effect of polyoxyethylene sorbitan esters and sodium caseinate on physicochemical properties of palm-based functional lipid nanodispersions prepared by the emulsification-evaporation technique. The results indicated that the average droplet size increased significantly (P < 0.05) by increasing the chain length of fatty acids and also by increasing the hydrophile-lipophile balance value. Among the prepared nanodispersions, the nanoemulsion containing Polysorbate 20 showed the smallest average droplet size (202 nm) and narrowest size distribution for tocopherol-tocotrienol nanodispersions, while sodium caseinate-stabilized nanodispersions containing carotenoids had the largest average droplet size (386 nm), thus indicating a greater emulsifying role for Polysorbate 20 compared with sodium caseinate.
    Matched MeSH terms: Tocotrienols
  18. Aan GJ, Zainudin MS, Karim NA, Ngah WZ
    Clinics (Sao Paulo), 2013 May;68(5):599-604.
    PMID: 23778402 DOI: 10.6061/clinics/2013(05)04
    OBJECTIVE: This study was performed to determine the effect of the tocotrienol-rich fraction on the lifespan and oxidative status of C. elegans under oxidative stress.

    METHOD: Lifespan was determined by counting the number of surviving nematodes daily under a dissecting microscope after treatment with hydrogen peroxide and the tocotrienol-rich fraction. The evaluated oxidative markers included lipofuscin, which was measured using a fluorescent microscope, and protein carbonyl and 8-hydroxy-2'-deoxyguanosine, which were measured using commercially available kits.

    RESULTS: Hydrogen peroxide-induced oxidative stress significantly decreased the mean lifespan of C. elegans, which was restored to that of the control by the tocotrienol-rich fraction when administered before or both before and after the hydrogen peroxide. The accumulation of the age marker lipofuscin, which increased with hydrogen peroxide exposure, was decreased with upon treatment with the tocotrienol-rich fraction (p<0.05). The level of 8-hydroxy-2'-deoxyguanosine significantly increased in the hydrogen peroxide-induced group relative to the control. Treatment with the tocotrienol-rich fraction before or after hydrogen peroxide induction also increased the level of 8-hydroxy-2'-deoxyguanosine relative to the control. However, neither hydrogen peroxide nor the tocotrienol-rich fraction treatment affected the protein carbonyl content of the nematodes.

    CONCLUSION: The tocotrienol-rich fraction restored the lifespan of oxidative stress-induced C. elegans and reduced the accumulation of lipofuscin but did not affect protein damage. In addition, DNA oxidation was increased.

    Matched MeSH terms: Tocotrienols/pharmacology*
  19. Mohamad NV, Ima-Nirwana S, Chin KY
    Drug Des Devel Ther, 2018;12:555-564.
    PMID: 29588572 DOI: 10.2147/DDDT.S158410
    Background: Patients receiving androgen deprivation therapy experience secondary hypogonadism, associated bone loss, and increased fracture risk. It has been shown that tocotrienol from Bixa orellana (annatto) prevents skeletal microstructural changes in rats experiencing primary hypogonadism. However, its potential in preventing bone loss due to androgen deprivation therapy has not been tested. This study aimed to evaluate the skeletal protective effects of annatto tocotrienol using a buserelin-induced osteoporotic rat model.

    Methods: Forty-six male Sprague Dawley rats aged 3 months were randomized into six groups. The baseline control (n=6) was sacrificed at the onset of the study. The normal control (n=8) received corn oil (the vehicle of tocotrienol) orally daily and normal saline (the vehicle of buserelin) subcutaneously daily. The buserelin control (n=8) received corn oil orally daily and subcutaneous buserelin injection (75 µg/kg) daily. The calcium control (n=8) was supplemented with 1% calcium in drinking water and daily subcutaneous buserelin injection (75 µg/kg). The remaining rats were given daily oral annatto tocotrienol at 60 mg/kg (n=8) or 100 mg/kg (n=8) plus daily subcutaneous buserelin injection (75 µg/kg) (n=8). At the end of the experiment, the rats were euthanized and their blood, tibia, and femur were harvested. Structural changes of the tibial trabecular and cortical bone were examined using X-ray micro-computed tomography. Femoral bone calcium content and biomechanical strength were also evaluated.

    Results: Annatto tocotrienol at 60 and 100 mg/kg significantly prevented the deterioration of trabecular bone and cortical thickness in buserelin-treated rats (P<0.05). Both doses of annatto tocotrienol also improved femoral biomechanical strength and bone calcium content in buserelin-treated rats (P<0.05). The effects of annatto tocotrienol were comparable to calcium supplementation.

    Conclusion: Annatto tocotrienol supplementation is effective in preventing degeneration of the bone induced by buserelin. Therefore, it is a potential antiosteoporotic agent for men receiving androgen deprivation therapy.

    Matched MeSH terms: Tocotrienols/isolation & purification; Tocotrienols/pharmacology*; Tocotrienols/chemistry
  20. Amalia Lailanor, Nurul Alaina Hj Yahya, Junedah Sanusi, Huzwah Khaza’ai, Muhammad Danial Che Ramli
    MyJurnal
    Introduction: Muscle denervation is a process where muscles lose nerve supply due to neural damage and this may lead to paralysis in human. Muscle denervation is mainly caused by peripheral nerve injuries especially in the lower extremities that resulted in devastating effect on human daily functions and routines. Tocotrienol Rich Fraction (TRF) consist of 75% of tocotrienols have shown potential neuroprotective properties. The objective of this study is to ob- serve motor coordination and histological characteristics on muscles that underwent sciatic nerve crush injury and supplemented with TRF. Methods: A total of 104 Sprague-Dawley rats were divided into four groups; normal group (n=8) with no sciatic nerve crush injury, negative control (n=32) with sciatic nerve crush injury at hindlimb without treatment, positive control (n=32) sciatic nerve crush injury treated with 500 µg/kg/day of methylcobalamin, and experimental group (n=32) of rats that underwent sciatic nerve crush injury and treated with 200 mg/kg/day of TRF. Result: Skeletal muscles which located at hind limb; Soleus Muscle and Extenstor Digitorum Longus Muscle (EDL) muscle have shown an increasing in weight when it is supplemented with TRF 200 mg/kg/day and improved myelin layer of nerve. Conclusion: This study showed that TRF has the potency to improve reinnervation rate and neuron supply in hind muscle.
    Matched MeSH terms: Tocotrienols
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links