Displaying publications 41 - 60 of 63 in total

Abstract:
Sort:
  1. Koh, S.P., Aziz, N., Sharifudin, S.A., Abdullah, R., Hamid, N.S.A., Sarip, J.
    Food Research, 2017;1(4):109-113.
    MyJurnal
    Foodborne illness is recognized as an emerging infectious disease. The incidence of foodborne
    infections is common and the majority cases are undiagnosed or unreported. Apart from some
    diarrhea or minor gastrointestinal problem, some foodborne pathogenic microbes may cause
    death, particularly to those people with weakened immune system. In this study, we have
    developed a new fermented papaya beverage using symbiotic culture of yeast and acetic acid
    bacteria under controlled biofermentation process. An in-vitro assessment of fermented papaya
    beverage against few foodborne pathogenic microorganism was conducted to determine
    its minimum bactericidal concentration (MBC>99). Three types of foodborne pathogen:
    Escherichia coli O157, Salmonella enterica serovar Typhimurium ATCC 53648, Salmonella
    enterica serovar Enteritidis (isolated from infectious chicken) were selected. From minimum
    bactericidal concentration (MBC>99) assay, both fermented papaya pulp and leaves beverages
    have shown 100% killing rate against three selected foodborne pathogenic microbes. Inversely,
    non-fermented papaya pulp and leaves beverages indicated no inhibition at all. In fact, further
    dilution of fermented papaya pulp and leaves beverages demonstrated different degree of
    MBC>99 and brix value, but the pH value remained less than 3.5. These findings indicated
    the combination of soluble solid compounds presents in both fermented papaya beverage and
    product acidity play an important role in the inhibition of pathogenic microorganisms. The
    preliminary promising results of this work have shown that the great potential of fermented
    papaya beverages as a preventive measure to reduce the incidence of foodborne illness.
    Matched MeSH terms: Yeast, Dried
  2. Woon JS, Mackeen MM, Illias RM, Mahadi NM, Broughton WJ, Murad AMA, et al.
    PeerJ, 2017;5:e3909.
    PMID: 29038760 DOI: 10.7717/peerj.3909
    BACKGROUND: Aspergillus niger, along with many other lignocellulolytic fungi, has been widely used as a commercial workhorse for cellulase production. A fungal cellulase system generally includes three major classes of enzymes i.e., β-glucosidases, endoglucanases and cellobiohydrolases. Cellobiohydrolases (CBH) are vital to the degradation of crystalline cellulose present in lignocellulosic biomass. However, A. niger naturally secretes low levels of CBH. Hence, recombinant production of A. niger CBH is desirable to increase CBH production yield and also to allow biochemical characterisation of the recombinant CBH from A. niger.

    METHODS: In this study, the gene encoding a cellobiohydrolase B (cbhB) from A. niger ATCC 10574 was cloned and expressed in the methylotrophic yeast Pichia pastoris X-33. The recombinant CBHB was purified and characterised to study its biochemical and kinetic characteristics. To evaluate the potential of CBHB in assisting biomass conversion, CBHB was supplemented into a commercial cellulase preparation (Cellic(®) CTec2) and was used to hydrolyse oil palm empty fruit bunch (OPEFB), one of the most abundant lignocellulosic waste from the palm oil industry. To attain maximum saccharification, enzyme loadings were optimised by response surface methodology and the optimum point was validated experimentally. Hydrolysed OPEFB samples were analysed using attenuated total reflectance FTIR spectroscopy (ATR-FTIR) to screen for any compositional changes upon enzymatic treatment.

    RESULTS: Recombinant CBHB was over-expressed as a hyperglycosylated protein attached to N-glycans. CBHB was enzymatically active towards soluble substrates such as 4-methylumbelliferyl-β-D-cellobioside (MUC), p-nitrophenyl-cellobioside (pNPC) and p-nitrophenyl-cellobiotrioside (pNPG3) but was not active towards crystalline substrates like Avicel(®) and Sigmacell cellulose. Characterisation of purified CBHB using MUC as the model substrate revealed that optimum catalysis occurred at 50 °C and pH 4 but the enzyme was stable between pH 3 to 10 and 30 to 80 °C. Although CBHB on its own was unable to digest crystalline substrates, supplementation of CBHB (0.37%) with Cellic(®) CTec2 (30%) increased saccharification of OPEFB by 27%. Compositional analyses of the treated OPEFB samples revealed that CBHB supplementation reduced peak intensities of both crystalline cellulose Iα and Iβ in the treated OPEFB samples.

    DISCUSSION: Since CBHB alone was inactive against crystalline cellulose, these data suggested that it might work synergistically with other components of Cellic(®) CTec2. CBHB supplements were desirable as they further increased hydrolysis of OPEFB when the performance of Cellic(®) CTec2 was theoretically capped at an enzyme loading of 34% in this study. Hence, A. niger CBHB was identified as a potential supplementary enzyme for the enzymatic hydrolysis of OPEFB.

    Matched MeSH terms: Yeast, Dried
  3. Gan HM, Thomas BN, Cavanaugh NT, Morales GH, Mayers AN, Savka MA, et al.
    PeerJ, 2017;5:e4030.
    PMID: 29158974 DOI: 10.7717/peerj.4030
    In industry, the yeast Rhodotorula mucilaginosa is commonly used for the production of carotenoids. The production of carotenoids is important because they are used as natural colorants in food and some carotenoids are precursors of retinol (vitamin A). However, the identification and molecular characterization of the carotenoid pathway/s in species belonging to the genus Rhodotorula is scarce due to the lack of genomic information thus potentially impeding effective metabolic engineering of these yeast strains for improved carotenoid production. In this study, we report the isolation, identification, characterization and the whole nuclear genome and mitogenome sequence of the endophyte R. mucilaginosa RIT389 isolated from Distemonanthus benthamianus, a plant known for its anti-fungal and antibacterial properties and commonly used as chewing sticks. The assembled genome of R. mucilaginosa RIT389 is 19 Mbp in length with an estimated genomic heterozygosity of 9.29%. Whole genome phylogeny supports the species designation of strain RIT389 within the genus in addition to supporting the monophyly of the currently sequenced Rhodotorula species. Further, we report for the first time, the recovery of the complete mitochondrial genome of R. mucilaginosa using the genome skimming approach. The assembled mitogenome is at least 7,000 bases larger than that of Rhodotorula taiwanensis which is largely attributed to the presence of large intronic regions containing open reading frames coding for homing endonuclease from the LAGLIDADG and GIY-YIG families. Furthermore, genomic regions containing the key genes for carotenoid production were identified in R. mucilaginosa RIT389, revealing differences in gene synteny that may play a role in the regulation of the biotechnologically important carotenoid synthesis pathways in yeasts.
    Matched MeSH terms: Yeast, Dried
  4. Naef A, Abdullah R, Abdul Rashid N
    Biosystems, 2018 Sep 17;174:22-36.
    PMID: 30236951 DOI: 10.1016/j.biosystems.2018.09.003
    Automated methods for reconstructing biological networks are becoming increasingly important in computational systems biology. Public databases containing information on biological processes for hundreds of organisms are assisting in the inference of such networks. This paper proposes a multiobjective genetic algorithm method to reconstruct networks related to metabolism and protein interaction. Such a method utilizes structural properties of scale-free networks and known biological information about individual genes and proteins to reconstruct metabolic networks represented as enzyme graph and protein interaction networks. We test our method on four commonly-used protein networks in yeast. Two are networks related to the metabolism of the yeast: KEGG and BioCyc. The other two datasets are networks from protein-protein interaction: Krogan and BioGrid. Experimental results show that the proposed method is capable of reconstructing biological networks by combining different omics data and structural characteristics of scale-free networks. However, the proposed method to reconstruct the network is time-consuming because several evaluations must be performed. We parallelized this method on GPU to overcome this limitation by parallelizing the objective functions of the presented method. The parallel method shows a significant reduction in the execution time over the GPU card which yields a 492-fold speedup.
    Matched MeSH terms: Yeast, Dried
  5. Emami Moghaddam SA, Harun R, Mokhtar MN, Zakaria R
    Biomed Res Int, 2018;2018:6563196.
    PMID: 30643814 DOI: 10.1155/2018/6563196
    The interest in utilizing algae for wastewater treatment has been increased due to many advantages. Algae-wastewater treatment system offers a cost-efficient and environmentally friendly alternative to conventional treatment processes such as electrocoagulation and flocculation. In this biosystem, algae can assimilate nutrients in the wastewater for their growth and simultaneously capture the carbon dioxide from the atmosphere during photosynthesis resulting in a decrease in the greenhouse gaseousness. Furthermore, the algal biomass obtained from the treatment process could be further converted to produce high value-added products. However, the recovery of free suspended algae from the treated effluent is one of the most important challenges during the treatment process as the current methods such as centrifugation and filtration are faced with the high cost. Immobilization of algae is a suitable approach to overcome the harvesting issue. However, there are some drawbacks with the common immobilization carriers such as alginate and polyacrylamide related to low stability and toxicity, respectively. Hence, it is necessary to apply a new carrier without the mentioned problems. One of the carriers that can be a suitable candidate for the immobilization is zeolite. To date, various types of zeolite have been used for the immobilization of cells of bacteria and yeast. If there is any possibility to apply them for the immobilization of algae, it needs to be considered in further studies. This article reviews cell immobilization technique, biomass immobilization onto zeolites, and algal immobilization with their applications. Furthermore, the potential application of zeolite as an ideal carrier for algal immobilization has been discussed.
    Matched MeSH terms: Yeast, Dried
  6. Ding, C.H., Tzar M.N., Biswas S., Muttaqillah N.A.S., Wahab A.A.
    MyJurnal
    Catheter-related bloodstream infections caused by Kodamaea ohmeri are generally not considered due to the relative scarcity of reported cases. This is a case of an 85-year-old man with poorly controlled diabetes mellitus who was initially admitted to our hospital for diabetic ketoacidosis. An internal jugular catheter was inserted as part of the initial management. A week later the patient developed a temperature spike and a yeast identified as Kodamaea ohmeri by ID 32 C (bioMérieux, France) was isolated from both his central and peripheral blood cultures. The catheter was removed and the patient was treated with fluconazole despite the organism’s relatively high minimum inhibitory concentration (2 μg/mL) to this antifungal. The fungemia resolved following a 2-weeks course of fluconazole.
    Matched MeSH terms: Yeast, Dried
  7. Micky Vincent, Latifah Suali, Afizul Safwan Azahari, Patricia Rowena Mark Baran, Elexson Nillian, Lesley Maurice Bilung
    MyJurnal
    Yeast growth and biomass production are greatly influenced by the length of the
    incubation period during cultivation. Therefore, this study was conducted to
    investigate the growth kinetics of five Lipomyces starkeyi strains as determined by
    biomass production. The five L. starkeyi strains, namely L. starkeyi ATCC 12659, L.
    starkeyi MV-1, L. starkeyi MV-4, L. starkeyi MV-5 and L. starkeyi MV-8, were inoculated
    in sterilized Yeast Malt broth, and, incubated for 192 hr at ambient temperature.
    Biomass yields were assessed and calculated gravimetrically every 24 hr. Results
    indicated that the optimal biomass production of L. starkeyi ATCC 12659, L. starkeyi
    MV-1, L. starkeyi MV-4, L. starkeyi MV-5 and L. starkeyi MV-8 were at 120, 168, 144,
    168 and 120 hr, with the concentrations of 6.64, 6.43, 9.78, 11.23 and 8.56 g/L,
    respectively. These results indicate that each L. starkeyi strain requires specific
    incubation period for the optimum production of fungal biomass. Therefore, by
    cultivating each L. starkeyi strain at the predetermined incubation period, biomass
    yields could significantly be improved for further downstream applications such as
    single cell protein and lipid production.
    Matched MeSH terms: Yeast, Dried
  8. Xin Tong, Xiao-ye Shen, Cheng-lin Hou
    Sains Malaysiana, 2018;47:1685-1692.
    Fungi associated with Vaccinium species play important roles in plant growth and disease control, especially in the final
    blueberry production. Vaccinium dunalianum var. urophyllum (Ericaceae) is a well-known medicinal plant in Southern
    China used to treat inflammation and microbial infections. The endophytic fungi from these plants are therefore anticipated
    as potential new sources of antimicrobials. In this report, the inhibitory effects of endophytes against clinical bacteria
    and yeast were comprehensively screened and 11 isolates indicated high bioactivity by the agar diffusion method. The
    corresponding crude extracts of these fungi under submerged fermentation also demonstrated distinct differences and
    n-butyl alcohol displayed the lowest extraction efficiency among the extracts. The ethyl acetate and dichloromethane
    extracts of filtrates from the Colletotrichum sp. VD001, Epicoccum nigrum VD021 and E. nigrum VD022 strains
    displayed good properties against pathogenic microorganisms according to disc diffusion assays and minimal inhibitory
    concentration (MIC). This study is the first indicating that cultivable endophytic fungi associated with blueberry plants
    produce potential compounds against clinical pathogens.
    Matched MeSH terms: Yeast, Dried
  9. Noor Afiqah Md Noor, Maizura Murad, Effarizah Mohd Esah
    Sains Malaysiana, 2018;47:2047-2054.
    This study was designed to determine the physicochemical, antioxidant and microbial properties of fresh sugarcane juice
    with calamansi juice addition. The sugarcane that was used in the experiments was the black cane variety (Saccharum
    officinarum). Sugarcane pressed with and without their peel was juiced and added with calamansi juice before analysis
    was carried out. Standard method was used to analyse physicochemical properties such as pH, total soluble solids,
    acidity and colour of sugarcane juice. Total phenolic content (TPC), DPPH and FRAP assay were conducted for antioxidant
    properties. Total plate count and yeast and mould count were carried out for the microbiological analyses. Two way
    analysis of variance (ANOVA) shows significant (p<0.05) difference on colour of sugarcane juiced after extraction with and
    without peel. There were no significant (p>0.05) difference shown for pH, acidity and total soluble solids of sugarcane
    juice pressed with and without peel. Sugarcane juice pressed with peel produced higher antioxidant value compared
    to sugarcane pressed without peel. However, sugarcane juice pressed without peeled showed a lower microbial count
    compared to sugarcane juice pressed with peel. The addition of calamansi juice proved to have significant (p<0.05)
    effect on colour, antioxidant and microbial count of the sugarcane juices.
    Matched MeSH terms: Yeast, Dried
  10. Mukhtar H, Suliman SM, Shabbir A, Mumtaz MW, Rashid U, Rahimuddin SA
    Protein Pept Lett, 2018;25(2):195-201.
    PMID: 29359654 DOI: 10.2174/0929866525666180122112805
    BACKGROUND: Lipid-producing microorganisms, said to be oleaginous have been recognized since several years. We had investigated the effects of medium components and culturing situations on cell growth and lipid accumulation of oleaginous yeasts which were analytically examined so as to enhance lipid yield for biodiesel production.

    OBJECTIVE: The main objective of this study was to explore oleaginous yeast, Yarrowia lipolytica isolated from soil and optimization of culture conditions and medium components to obtained better quality microbial oil for biodiesel production.

    METHODS: Fifty yeast strains were isolated from soil from different regions of Lahore and eleven of them were selected for oil production. The isolated yeast colonies were screened to further check their lipid producing capabilities by the qualitative analysis. Five yeast strains were designated as oleaginous because they produced more than 16% of oil based on their biomass. To estimate the total lipid content of yeast cells, the extraction of lipids was done by performing the procedure proposed by Bligh and Dyer. The transesterification of yeast oils was performed by using different methods. There were three different strategies customized to transesterifying microbial oil using base catalyzed transesterification, acid catalyzed transesterification and enzyme-based transesterification. After completion of transesterification, sample was used for fatty acid methyl esters (FAMEs) were analyzed by gas-chromatograph with ionization detector type MS.

    RESULTS: The isolate IIB-10 identified as Yarrowia lipolytica produced maximum amount of lipids i.e. 22.8%. More amount of biomass was obtained when cane molasses was utilized as carbon source where it produced 29.4 g/L of biomass while sucrose and lactose were not utilized by IIB-10 and no biomass was obtained. Similarly, meat extracts showed best results when it was used as nitrogen source because it resulted in 35.8 g/L biomass of Yarrowia lipolytica IIB-10. The culturing conditions like size of inoculum, effect of pH and time of incubation were also studied. The 10% of inoculum size produced 25.4 g/L biomass at 120 h incubation time, while the pH 7 was the optimum pH at which 24.8 g/L biomass was produced by Yarrowia lipolytica IIB-10. GC-MS analysis showed that biodiesel produced by transesterification contained similar fatty acids as found in vegetable oil for this reason it is widely accepted feedstock for biodiesel production.

    CONCLUSION: The analysis of fatty acids methyl esters showed the similar composition of microbial oil as in vegetable oils and high amount of methyl esters were obtained after transesterification. Therefore, potentially oleaginous yeast could be used to generate a large amount of lipids for biodiesel production that will be the better substitute of petroleum-based diesel and will also control the environmental pollution.

    Matched MeSH terms: Yeast, Dried
  11. Firdaus-Raih M, Hashim NHF, Bharudin I, Abu Bakar MF, Huang KK, Alias H, et al.
    PLoS One, 2018;13(1):e0189947.
    PMID: 29385175 DOI: 10.1371/journal.pone.0189947
    Extremely low temperatures present various challenges to life that include ice formation and effects on metabolic capacity. Psyhcrophilic microorganisms typically have an array of mechanisms to enable survival in cold temperatures. In this study, we sequenced and analysed the genome of a psychrophilic yeast isolated in the Antarctic region, Glaciozyma antarctica. The genome annotation identified 7857 protein coding sequences. From the genome sequence analysis we were able to identify genes that encoded for proteins known to be associated with cold survival, in addition to annotating genes that are unique to G. antarctica. For genes that are known to be involved in cold adaptation such as anti-freeze proteins (AFPs), our gene expression analysis revealed that they were differentially transcribed over time and in response to different temperatures. This indicated the presence of an array of adaptation systems that can respond to a changing but persistent cold environment. We were also able to validate the activity of all the AFPs annotated where the recombinant AFPs demonstrated anti-freeze capacity. This work is an important foundation for further collective exploration into psychrophilic microbiology where among other potential, the genes unique to this species may represent a pool of novel mechanisms for cold survival.
    Matched MeSH terms: Yeast, Dried
  12. Shah NNAK, Supian NAM, Hussein NA
    J Food Sci Technol, 2019 Jan;56(1):262-272.
    PMID: 30728568 DOI: 10.1007/s13197-018-3486-2
    This work studied the effectiveness of gaseous ozone disinfection on pummelo (Citrus Grandis L. Osbeck) fruit juice components. Unfiltered and filtered pummelo fruit juices were treated with gaseous ozone for up to 50 min with ozone concentration fixed at 600 mg/h. A microbiological and physicochemical properties analysis were conducted on the ozone-treated fruit juices samples. It was found that the survival rate of aerobic bacteria, yeast and mold in unfiltered pummelo fruit juice were higher compared to filtered juice, as the juice components acted as protective barriers to the microorganisms. The microorganisms' inactivation in pummelo fruit juices was also observed to have increased as the ozone treatment time increased. Significant effects on total colour difference, ascorbic acid content, and total phenolic content were also observed over increased ozone-treatment time. However, ozone was shown to be ineffective in activating PME activity in both types of juice. The experimental results of this study indicated that pummelo fruit juice components had significant effects on the effectiveness of gaseous ozone, however, the degree of the effects depends on the different fruit components (total soluble solids, total phenolic content). As a conclusion, filtered juice showed better quality characteristics in comparison to unfiltered juice post-ozone treatment.
    Matched MeSH terms: Yeast, Dried
  13. Nurul Alia Risma Rismayuddin, Munirah Mokhtar, Noratikah Othman, Ahmad Faisal Ismail, Mohd Hafiz Arzmi
    MyJurnal
    Introduction:Candida albicans is an opportunistic fungus that is associated with oral carcinogenesis. In addition, biofilm formation has been one of the important virulence factors of the yeast. Streptococcus salivarius K12 is an oral probiotic while Musa acuminata is a well-known prebiotic. The objective of this study is to investigate the effect of S. salivarius K12 and M. acuminata skin aqueous extract (synbiotic) on C. albicans with the hypothesis that S. salivariusK12 and M. acuminata inhibit C. albicans biofilm formation. Methods: To develop mono-species biofilm, C. albicans(ATCC MYA-4901 and cancer isolates, ALC2 and ALC3 strains) and S. salivarius K12 were standardised to 105 cells and 106 cells, respectively and grown in 96-well plate in nutrient broth (NB) or RPMI at 37 °C for 72 h. Polymicro-bial biofilms were developed by inoculating both microorganisms in the same well with similar cell number as in mono-species. To determine the effect of synbiotic, similar protocol was repeated by mixing with 800 mg mL-1 of M. acuminata skin extract and incubated at 37 °C for 72 h. The medium was replenished at every 24 h, aseptically. Finally, the biofilms were assessed using crystal violet assay and the optical density was measured at OD620nm. Results:C. albicans strain MYA-4901 and ALC3, when grown in polymicrobial with S. salivarius K12 in NB that is predominated by yeast-form C. albicans, exhibited decreased biofilms by 71.40±11.7% and 49.40±3.9%, respec-tively when compared to the expected biofilms. Meanwhile in RPMI, which C. albicans strain ATCC MYA-4901, ALC2 and ALC3 were predominated by hyphal-form showed decreased biofilms by 72.0±26.7%, 53.4±14.4% and 65.7±6.7%, respectively when compared to the expected biofilms. Conclusion:S. salivarius K12 and M. acuminata skin extract synbiotic inhibit biofilm formation of C. albicans yeast and hyphal forms thus supported the hypothesis of the present study.
    Matched MeSH terms: Yeast, Dried
  14. Rosli, N.A., Azilan, N A., Mahyudin, N.A., Mahmud Ab Rashid, N.K., Meon, F.N.S., Ismail, Z., et al.
    MyJurnal
    Fennel (Foeniculum vulgare Mill.) and coriander (Coriandrum sativum L.) are known to possess good antimicrobial properties. In the present work, spice-infused frozen parathas were formulated to investigate the effect of fennel and coriander on microbial (aerobic mesophilic bacteria, yeast and mould, and Bacillus cereus) reduction and sensory acceptability of frozen paratha throughout the storage at -18°C. The present work was also aimed at determining the relationship between spice concentrations and storage durations on microbiological quality of the samples. Fennel and coriander seed powder were used at concentrations of 2, 4 and 6% of wheat flour (w/w). The microbiological analysis was performed by total plate count, yeast and mould count, and Bacillus cereus count after 9, 12 and 15 weeks of storage. Sensory evaluation was conducted using hedonic scales at the end of storage durations. Results showed that spice infusion in frozen paratha significantly delayed the growth of aerobic mesophilic bacteria, yeasts and moulds, and Bacillus cereus during storage. The lowest log count was demonstrated by coriander at 6% in total plate count (3.85, 3.90 and 3.91 log10 CFU/g), and yeast and mould count (2.54, 2.59 and 2.60 log10 CFU/g) after 9, 12 and 15 weeks, respectively. Bacillus cereus was not detected throughout the storage durations. Fennel exhibited minimum activity against Bacillus cereus with no significant difference on log count reduction when compared with control. Coriander showed the highest decrease in both total plate count and Bacillus cereus count during the storage duration. Sensory evaluation result indicated that control sample exhibited the highest preference over all attributes when compared with fennel and coriander. Coriander-infused paratha was slightly darker in colour due to high concentration of 6%. Fennel yielded the lowest score in terms of taste among all samples. Fennel and coriander showed no significant difference for sensory acceptability. Overall, all frozen parathas were in good quality after 15 weeks of frozen storage. It can thus be concluded that fennel and coriander can be used as potential natural preservatives to inhibit the growth of microorganisms in paratha during frozen storage. Nevertheless, the optimum spice concentration should be determined to minimise the effects on the sensory attributes.
    Matched MeSH terms: Yeast, Dried
  15. Khan MS, Ibrahim SM, Adamu AA, Rahman MBA, Bakar MZA, Noordin MM, et al.
    Cryobiology, 2020 02 01;92:26-33.
    PMID: 31580830 DOI: 10.1016/j.cryobiol.2019.09.012
    A number of living creatures in the Antarctic region have developed characteristic adaptation of cold weather by producing antifreeze proteins (AFP). Antifreeze peptide (Afp1m) fragment have been designed in the sequence of strings from native proteins. The objectives of this study were to assess the properties of Afp1m to cryopreserve skin graft at the temperature of -10 °C and -20 °C and to assess sub-zero injuries in Afp1m cryopreserved skin graft using light microscopic techniques. In the present study, a process was developed to cryopreserve Sprague-Dawley (SD) rat skin grafts with antifreeze peptide, Afp1m, α-helix peptide fragment derived from Glaciozyma antractica yeast. Its viability assessed by different microscopic techniques. This study also described the damages caused by subzero temperatures (-10 and -20 °C) on tissue cryopreserved in different concentrations of Afp1m (0.5, 1, 2, 5 and 10 mg/mL) for 72 h. Histological scores of epidermis, dermis and hypodermis of cryopreserved skin grafts showed highly significant difference (p 
    Matched MeSH terms: Yeast, Dried
  16. Suraweera CD, Anasir MI, Chugh S, Javorsky A, Impey RE, Hasan Zadeh M, et al.
    FEBS J, 2020 May 15.
    PMID: 32412687 DOI: 10.1111/febs.15365
    Premature programmed cell death or apoptosis of cells is a strategy utilized by multicellular organisms to counter microbial threats. Tanapoxvirus (TANV) is a large double-stranded DNA virus belonging to the poxviridae that causes mild Monkeypox-like infections in humans and primates. TANV encodes for a putative apoptosis inhibitory protein 16L. We show that TANV16L is able to bind to a range of peptides spanning the BH3 motif of human pro-apoptotic Bcl-2 proteins, and is able to counter growth arrest of yeast induced by human Bak and Bax. We then determined the crystal structures of TANV16L bound to three identified interactors, Bax, Bim and Puma BH3. TANV16L adopts a globular Bcl-2 fold comprising 7 a-helices, and utilizes the canonical Bcl-2 binding groove to engage pro-apoptotic host cell Bcl-2 proteins. Unexpectedly, TANV16L is able to adopt both a monomeric as well as a domain-swapped dimeric topology where the a1 helix from one protomer is swapped into a neighbouring unit. Despite adopting two different oligomeric forms, the canonical ligand binding groove in TANV16L remains unchanged from monomer to domain-swapped dimer. Our results provide a structural and mechanistic basis for tanapoxvirus mediated inhibition of host cell apoptosis, and reveal the capacity of Bcl-2 proteins to adopt differential oligomeric states whilst maintaining the canonical ligand binding groove in an unchanged state.
    Matched MeSH terms: Yeast, Dried
  17. Chin IBI, Yenn TW, Ring LC, Lazim Y, Tan WN, Rashid SA, et al.
    J Pharm Sci, 2020 09;109(9):2884-2890.
    PMID: 32534882 DOI: 10.1016/j.xphs.2020.06.005
    Pressure ulcers are commonly associated with microbial infections on the wounds which require an effective wound dressing for treatment. Thus far, the available silver dressing has shown tremendous result, however, it may cause argyria and complicate the internal organ function. Hence, our study aims to develop and characterize phomopsidione-loaded chitosan-polyethylene glycol nanocomposite hydrogel (C/PEG/Ph) as an antimicrobial dressing. Physically, the C/PEG/Ph hydrogel demonstrated a uniform light blue color, soft, flexible, and elastic, with no aggregation form. The evaluation via Fourier Transform Infrared (FTIR) exposed the C/PEG/Ph hydrogel has a notable shift towards lower frequency at 1600 and 1554 cm-1. For drug release test, the phomopsidione attained plateau at 24 h, with a total release of 67.9 ± 6.4% from the C/PEG/Ph hydrogel. There was a null burst release effect discovered throughout the experimental period. The C/PEG/Ph hydrogel showed significant results against all 4 Gram-negative bacteria and 1 yeast, with 99.99-100% reduction of microbial growth. The findings revealed that the C/PEG/Ph hydrogel can potentially act as an antimicrobial dressing for pressure ulcers.
    Matched MeSH terms: Yeast, Dried
  18. Eskandari A, Leow TC, Rahman MBA, Oslan SN
    Biomolecules, 2020 12 09;10(12).
    PMID: 33317024 DOI: 10.3390/biom10121649
    Antifreeze proteins (AFPs) are specific proteins, glycopeptides, and peptides made by different organisms to allow cells to survive in sub-zero conditions. AFPs function by reducing the water's freezing point and avoiding ice crystals' growth in the frozen stage. Their capability in modifying ice growth leads to the stabilization of ice crystals within a given temperature range and the inhibition of ice recrystallization that decreases the drip loss during thawing. This review presents the potential applications of AFPs from different sources and types. AFPs can be found in diverse sources such as fish, yeast, plants, bacteria, and insects. Various sources reveal different α-helices and β-sheets structures. Recently, analysis of AFPs has been conducted through bioinformatics tools to analyze their functions within proper time. AFPs can be used widely in various aspects of application and have significant industrial functions, encompassing the enhancement of foods' freezing and liquefying properties, protection of frost plants, enhancement of ice cream's texture, cryosurgery, and cryopreservation of cells and tissues. In conclusion, these applications and physical properties of AFPs can be further explored to meet other industrial players. Designing the peptide-based AFP can also be done to subsequently improve its function.
    Matched MeSH terms: Yeast, Dried
  19. Sorribes-Dauden R, Peris D, Martínez-Pastor MT, Puig S
    Comput Struct Biotechnol J, 2020;18:3712-3722.
    PMID: 33304466 DOI: 10.1016/j.csbj.2020.10.044
    Iron is an essential micronutrient for most living beings since it participates as a redox active cofactor in many biological processes including cellular respiration, lipid biosynthesis, DNA replication and repair, and ribosome biogenesis and recycling. However, when present in excess, iron can participate in Fenton reactions and generate reactive oxygen species that damage cells at the level of proteins, lipids and nucleic acids. Organisms have developed different molecular strategies to protect themselves against the harmful effects of high concentrations of iron. In the case of fungi and plants, detoxification mainly occurs by importing cytosolic iron into the vacuole through the Ccc1/VIT1 iron transporter. New sequenced genomes and bioinformatic tools are facilitating the functional characterization, evolution and ecological relevance of metabolic pathways and homeostatic networks across the Tree of Life. Sequence analysis shows that Ccc1/VIT1 homologs are widely distributed among organisms with the exception of animals. The recent elucidation of the crystal structure of a Ccc1/VIT1 plant ortholog has enabled the identification of both conserved and species-specific motifs required for its metal transport mechanism. Moreover, recent studies in the yeast Saccharomyces cerevisiae have also revealed that multiple transcription factors including Yap5 and Msn2/Msn4 contribute to the expression of CCC1 in high-iron conditions. Interestingly, Malaysian S. cerevisiae strains express a partially functional Ccc1 protein that renders them sensitive to iron. Different regulatory mechanisms have been described for non-Saccharomycetaceae Ccc1 homologs. The characterization of Ccc1/VIT1 proteins is of high interest in the development of biofortified crops and the protection against microbial-derived diseases.
    Matched MeSH terms: Yeast, Dried
  20. Ismail Fitry Mohammad Rashedi, Safiullah Jauhar, Chong, ?Gun Hean, Nor Khaizura Mahmud @ Ab Rashid, Wan Zunairah Wan Ibadullah
    MyJurnal
    Supercritical carbon dioxide (SC-CO2 ) is a non-thermal technique implemented by food, pharmaceutical, and similar industries with the aim of inhibiting the microorganisms and apply effective sterilisation. Presently, limited number of studies has reported the application of SC-CO2 on fresh chicken meat. The present work therefore aimed to reveal the microbial and physicochemical quality of the SC-CO2 -treated fresh chicken meat. The fresh chicken meat was subjected to the SC-CO2 at 14 MPa and 45°C for 40 min and was stored at 4°C for 0, 3, and 7 days. The obtained results indicated that the treatment with SC-CO2 significantly decreased the total plate count and, yeast and mould count from log10 5.90 to 2.00 CFU/g and from log10 5.02 to 2.00 CFU/g at day 7 of storage, respectively. The values of pH, cooking loss, and water holding capacity were not affected by the treatment. The results revealed that the SC-CO2 -treated samples displayed harder texture, higher lightness and yellowness, and lower redness. In addition, lipid peroxidation of SC-CO2 and control samples resulted in values of 1.9 and 0.5 MDA/mg of meat at day 7 of storage time and did not significantly change in the rest of the evaluation days. In summary, the application of SC-CO2 was capable of enhancing the microbial quality and certain physicochemical attributes. However, alteration of certain parameters of SC-CO2 might enhance the overall meat quality.
    Matched MeSH terms: Yeast, Dried
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links