Displaying publications 41 - 59 of 59 in total

Abstract:
Sort:
  1. Abu Bakar, F., Salleh, A.B., Razak, C.N.A., Basri, M., Ching, M.K., Son, R.
    MyJurnal
    Biochemical analysis was carried out for pH profiles, freshness in terms of K-values, amino acids profiles, total volatile bases (TVB), total volatile acids (TVA) and biogenic amines for fresh and preserved Macrobrachium rosenbergii. Results showed that pH profiles of Macrobrachium rosenbergii explain the inability of this parameter to be used to evaluate the quality of Macrobrachium rosenbergii. Thus changes in pH profiles of Macrobrachium rosenbergii should be combined with indicators such as total volatile acids and total volatile bases. Total volatile acids of the shrimps increased steadily in small amounts throughout the storage period. A rapid increase in TVB at 100C was detected due to the increase in total aerobic bacteria at elevated temperatures. The microbial activities caused the decrease in the amino acids arginine, lysine and histidine which correlated well with the increase in the corresponding biogenic amines such as putrescine, cadaverine and histamine respectively. Preservatives used in this study controlled the production of these biogenic amines without significantly altering the pH of preserved shrimp.
    Matched MeSH terms: Lysine
  2. Mahazar, N. H., Sufian, N. F., Meor Hussin, A. S., Norhayati, H., Mathawan, M., Rukayadi, Y.
    MyJurnal
    Two cocoa bean fermentation methods (spontaneous fermentation and the use of starter culture) for 7 days fermentation were compared in terms of safety and quality fermented beans. Candida sp. was used as a starter culture in this study. The safety of the fermented cocoa beans were measured by the growth colonies of pathogenic microorganisms namely Bacillus cereus, Escherichia coli, Salmonella sp., Staphylococcus aureus, and Pseudomonas sp., on Bacillus cereus agar, eosin-methylene blue (EMB) agar, xylose lysine deoxycholate (XLD) agar, Baird-Parker agar (BPA), and Pseudomonas agar, respectively. B. cereus, E. coli and Salmonella sp. were early present in both fermentations. Candida sp.-fermentation showed detection of B. cereus at 5.34 log10 CFU/g and absence after 24 hours of fermentation while in spontaneous-fermentation B. cereus was too few to count. Moreover, the log10 E. coli number in Candida sp.-fermentation and spontaneous-fermentation were reduced from 5.72 to 3.66 and from 7.15 to 4.46 on day 1 to day 3, respectively. There were no presences of pathogenic microorganisms on day 5 and day 7 for both fermentations. In term of quality, proximate analysis of spontaneous-fermentation resulted that the content of moisture, ash, fat, crude protein, crude fibre and carbohydrate was 56.47%, 2.32%, 3.17%, 7.02%, 28.14% and 2.88%, meanwhile for the Candida sp.-fermentation was 53.96%, 2.19%, 3.44%, 8.25%, 25.46% and 6.70%, respectively. This study showed that both fermentations are considered to be safe and there is no significant difference in proximate value in fermented cocoa beans from spontaneous-fermentation and Candida sp.-fermentation.
    Matched MeSH terms: Lysine
  3. Abdullahi, U.F., Igwenagu, E., Aliyu, S., Mu’azu, A., Naim, R., Wan-Taib, W.R.
    MyJurnal
    This study describes the development of a rapid and sensitive Loop-mediated isothermal
    amplification assay for detection of swine DNA in adulterated meat and meat products. The
    need to protect consumer’s right to eat foods of their choices, has made it imperative for
    researchers to develop efficient means of screening and certification of food products. Six sets
    of LAMP primers designed based on porcine tRNA lysine gene and ATPase subunit 8 genes
    were used for the assay. Amplification was carried out under constant temperature (630C), using
    a simple laboratory water bath. Average time spent in amplification and detection of results was
    25 min. All results were visually detected and confirmed by electrophoresis. Detection limit of
    the assay was 0.03 femtogram (fg) much high than the PCR assay, and detection probability of
    the assay was 100%. Detection of 0.5% of pork spiked with 99.5% of cattle beef is indicative
    of the sensitivity and robustness of the assay. This could serve as a prototype for development
    of a sensitive and inexpensive Swine DNA LAMP detection kit.
    Matched MeSH terms: Lysine
  4. Bhaskar HN, Udupa SL, Udupa AL
    Indian J Exp Biol, 2005 Mar;43(3):294-6.
    PMID: 15816421
    Effect of two calcium channel blockers (CCBs) nifedipine and amlodipine, was studied on normal and steroid depressed wound healing in albino rats, using the dead space wound model. The drugs enhanced normal healing as evidenced by increase in tensile strength of 10 days old granulation tissue. There was neither a significant change in the hydroxyproline level (or collagen) nor a change in the glycosaminoglycan content in granulation tissue. However, lysyloxidase level was increased significantly. The increase in tensile strength could thus be attributed to better cross-linking and maturation of collagen rather than collagen synthesis per se. The drugs were also able to overcome steroid depressed wound healing. It is likely that the prohealing effects may be related to the improved antioxidant status too, since superoxide dismutase levels were observed to be higher in the CCB- treated animals.
    Matched MeSH terms: Protein-Lysine 6-Oxidase/metabolism
  5. Lacombe C, Arous N, Pontet F, Blouquit Y, Bardakdjian J, Riou J, et al.
    Hemoglobin, 1987;11(2):173-6.
    PMID: 3114176
    Matched MeSH terms: Lysine/metabolism
  6. Ng ZX, Kuppusamy UR, Iqbal T, Chua KH
    Gene, 2013 Jun 1;521(2):227-33.
    PMID: 23545311 DOI: 10.1016/j.gene.2013.03.062
    Receptor for advanced glycation end-product (RAGE) gene polymorphism 2245G/A is associated with diabetic retinopathy (DR). However, the mechanism on how it affects the disease development is still unclear.
    Matched MeSH terms: Lysine/analogs & derivatives; Lysine/genetics; Lysine/metabolism
  7. Yap HY, Tan NH, Ng ST, Tan CS, Fung SY
    Front Pharmacol, 2018;9:103.
    PMID: 29491836 DOI: 10.3389/fphar.2018.00103
    Naturally occurring anti-glycation compounds have drawn much interest in recent years as they show potential in reducing or preventing the risk of chronic complications for diabetic patients. In this study, annotation of the genome-transcriptome data from tiger milk mushroom (Lignosus rhinocerus, syn.Lignosus rhinocerotis) to PlantCyc enzymes database identified transcripts that are related to anti-diabetic properties, and these include genes that are involved in carotenoid and abscisic acid biosynthesis as well as genes that code for glyoxalase I, catalase-peroxidases, and superoxide dismutases. The existence of these genes suggests thatL. rhinocerusmay contain bioactive compound(s) with anti-glycation properties that can be exploited for management of diabetic complications. A medium-molecular-weight (MMW) fraction which was obtained from a combination of cold water extraction and Sephadex®G-50 (fine) gel filtration chromatography ofL. rhinocerussclerotia powder was demonstrated to exhibit potent anti-glycation activity. The fraction specifically inhibited the formation of N𝜀-(carboxymethyl)lysine, pentosidine, and other advanced glycation end-product (AGE) structures in a human serum albumin-glucose system, with an IC50value of 0.001 mg/ml, almost 520 times lower than that of the positive control, aminoguanidine hydrochloride (IC50= 0.52 mg/ml). Its ability to suppress protein glycation may be partly associated with its strong superoxide anion radical scavenging activity (10.16 ± 0.12 mmol TE/g). Our results suggest that the MMW fraction ofL. rhinocerusshows potential to be developed into a potent glycation inhibitor for preventing AGE-mediated diabetic complications.
    Matched MeSH terms: Lysine
  8. Triassi AJ, Wheatley MS, Savka MA, Gan HM, Dobson RC, Hudson AO
    Front Microbiol, 2014;5:509.
    PMID: 25309529 DOI: 10.3389/fmicb.2014.00509
    Despite the urgent need for sustained development of novel antibacterial compounds to combat the drastic rise in antibiotic resistant and emerging bacterial infections, only a few clinically relevant antibacterial drugs have been recently developed. One of the bottlenecks impeding the development of novel antibacterial compounds is the identification of new enzymatic targets. The nutritionally essential amino acid anabolic pathways, for example lysine biosynthesis, provide an opportunity to explore the development of antibacterial compounds, since human genomes do not possess the genes necessary to synthesize these amino acids de novo. The diaminopimelate (DAP)/lysine (lys) anabolic pathways are attractive targets for antibacterial development since the penultimate lys precursor meso-DAP (m-DAP) is a cross-linking amino acid in the peptidoglycan (PG) cell wall of most Gram-negative bacteria and lys plays a similar role in the PG of most Gram-positive bacteria, in addition to its role as one of the 20 proteogenic amino acids. The L,L-diaminopimelate aminotransferase (DapL) pathway was recently identified as a novel variant of the DAP/lys anabolic pathways. The DapL pathway has been identified in the pathogenic bacteria belonging to the genus; Chlamydia, Leptospira, and Treponema. The dapL gene has been identified in the genomes of 381 or approximately 13% of the 2771 bacteria that have been sequenced, annotated and reposited in the NCBI database, as of May 23, 2014. The narrow distribution of the DapL pathway in the bacterial domain provides an opportunity for the development and or discovery of narrow spectrum antibacterial compounds.
    Matched MeSH terms: Lysine
  9. Md Nesran ZN, Shafie NH, Md Tohid SF, Norhaizan ME, Ismail A
    PMID: 32280356 DOI: 10.1155/2020/7958041
    In many studies, green tea epigallocatechin-3-gallate (EGCG) has already shown its therapeutic effects in colorectal cancer cells (CRC). However, its mechanism of actions in CRC is poorly elucidated. Hence, this study attempts to elucidate the mechanism of actions of green tea ECGG via iron chelation activity in CRC. In order to investigate this property, HT-29 cell lines (CRC) were treated with EGCG for 24 h, 48 h, and 72 h. From western blot analysis, EGCG had upregulated transferrin receptor (TfR) protein and downregulated Ferritin-H (FtH) protein indicating that iron chelation activity has occurred in CRC. Meanwhile, the molecular docking study demonstrated that EGCG is able to strongly interact the ferritin protein with a high binding affinity (-7.3 kcal/mol) via strong hydrogen bindings to glutamic acid 64 and lysine 71; two moderate hydrogen bindings to asparagine 74 and a hydrophobic interaction to the hydrophobic pocket of lysine 71. The strong interaction predicted between EGCG to ferritin may lead to inhibition of ferritin by EGCG, thus supporting the downregulation of FtH observed in in vitro studies. Molecular docking study of TfR to EGCG cannot be modulated based on the in vitro results. In conclusion, EGCG possesses iron chelator property in CRC and this potential could be further exploited for CRC treatment.
    Matched MeSH terms: Lysine
  10. Sosroseno W, Musa M, Ravichandran M, Ibrahim MF, Bird PS, Seymour GJ
    Eur J Oral Sci, 2008 Feb;116(1):31-6.
    PMID: 18186729 DOI: 10.1111/j.1600-0722.2007.00501.x
    Animal studies suggest that inducible nitric oxide synthase (iNOS) may be associated with destructive periodontal disease. l-N(6)-(1-Iminoethyl)-lysine (L-NIL) has been shown to inhibit iNOS in a selective manner, and hence the aim of the present study was to test the hypothesis that treatment with l-NIL may induce a T-cell helper 1 (Th1)-like immune response by Aggregatibacter (Actinobacillus) actinomycetemcomitans lipopolysaccharide (LPS)-stimulated murine spleen cells in vitro. BALB/c mice were either sham-immunized or immunized with A. actinomycetemcomitans LPS. Spleen cells were stimulated with A. actinomycetemcomitans LPS in the presence or absence of L-NIL. Nitric oxide (NO), iNOS activity, specific IgG subclass antibodies, interferon-gamma (IFN-gamma), and interleukin-4 (IL-4) levels and cell proliferation were determined. The results showed that treatment with L-NIL suppressed both NO production and iNOS activity but enhanced specific IgG2a, IFN-gamma levels, and increased cell proliferation following stimulation with A. actinomycetemcomitans LPS-stimulated cells. The results of the present study suggest that inhibition of iNOS activity by L-NIL may skew the A. actinomycetemcomitans LPS-stimulated murine splenic immune response towards the Th1-like immune profile in vitro.
    Matched MeSH terms: Lysine/analogs & derivatives*; Lysine/pharmacology
  11. Amid BT, Mirhosseini H, Kostadinović S
    Chem Cent J, 2012 Oct 14;6(1):117.
    PMID: 23062269 DOI: 10.1186/1752-153X-6-117
    BACKGROUND: The biological functions of natural biopolymers from plant sources depend on their chemical composition and molecular structure. In addition, the extraction and further processing conditions significantly influence the chemical and molecular structure of the plant biopolymer. The main objective of the present study was to characterize the chemical and molecular structure of a natural biopolymer from Durio zibethinus seed. A size-exclusion chromatography coupled to multi angle laser light-scattering (SEC-MALS) was applied to analyze the molecular weight (Mw), number average molecular weight (Mn), and polydispersity index (Mw/Mn).

    RESULTS: The most abundant monosaccharide in the carbohydrate composition of durian seed gum were galactose (48.6-59.9%), glucose (37.1-45.1%), arabinose (0.58-3.41%), and xylose (0.3-3.21%). The predominant fatty acid of the lipid fraction from the durian seed gum were palmitic acid (C16:0), palmitoleic acid (C16:1), stearic acid (C18:0), oleic acid (C18:1), linoleic acid (C18:2), and linolenic acid (C18:2). The most abundant amino acids of durian seed gum were: leucine (30.9-37.3%), lysine (6.04-8.36%), aspartic acid (6.10-7.19%), glycine (6.07-7.42%), alanine (5.24-6.14%), glutamic acid (5.57-7.09%), valine (4.5-5.50%), proline (3.87-4.81%), serine (4.39-5.18%), threonine (3.44-6.50%), isoleucine (3.30-4.07%), and phenylalanine (3.11-9.04%).

    CONCLUSION: The presence of essential amino acids in the chemical structure of durian seed gum reinforces its nutritional value.

    Matched MeSH terms: Lysine
  12. Gholami L, Jokar S, Fatahi Y, Samandari H, Hamzehalipour Almaki J, Hosseini M, et al.
    Cell Mol Neurobiol, 2020 Nov 21.
    PMID: 33222099 DOI: 10.1007/s10571-020-01004-z
    The current study aimed to determine the protective effect of AY9944 related to Caveolin-1 and Claudin-5 role in lipid raft, which can rescue the blood-brain barrier from enhanced permeability. Therefore, in vivo analyses were performed following ischemia in normal, ischemic, and AY9944-treated animal groups. The results revealed that AY9944 reduced the infarct size, edema, and brain water content. The extravasation of Alb-Alexa 594 and biocytin-TMR was minimum in the AY9944-treated animals. The results showed a significant decrease in the expression level of Caveolin-1 over 8 h and 48 h and a remarkable increase in the level of Claudin-5 over 48 h following ischemia in AY9944-treated animals. Molecular docking simulation demonstrated that AY9944 exerts a possible protective role via attenuating the interaction of the Caveolin-1 and cholesterol in lipid raft. These findings point out that AY9944 plays a protective role in stroke by means of blood-brain barrier preservation. Proper neural function essentially needs a constant homeostatic brain environment which is provided by the blood-brain barrier. Rescuing blood-brain barrier from enhanced permeability via inducing the protective effect of AY9944 related to caveolin-1 and claudin-5 role in lipid raft was the aim of the current study.
    Matched MeSH terms: Lysine
  13. Teoh PL, Sharrocks AD
    Cell Mol Biol Lett, 2014 Jun;19(2):215-32.
    PMID: 24715476 DOI: 10.2478/s11658-014-0190-8
    H3K4 trimethylation is strongly associated with active transcription. The deposition of this mark is catalyzed by SET-domain methyltransferases, which consist of a subcomplex containing WDR5, ASH2L, and RBBP5 (the WAR subcomplex); a catalytic SET-domain protein; and additional complexspecific subunits. The ERK MAPK pathway also plays an important role in gene regulation via phosphorylation of transcription factors, co-regulators, or histone modifier complexes. However, the potential interactions between these two pathways remain largely unexplored. We investigated their potential interplay in terms of the regulation of the immediate early gene (IEG) regulatory network. We found that depletion of components of the WAR subcomplex led to increased levels of unspliced transcripts of IEGs that did not necessarily reflect changes in their mature transcripts. This occurs in a manner independent from changes in the H3K4me3 levels at the promoter region. We focused on FOS and found that the depletion of WAR subcomplex components affected the efficiency of FOS transcript processing. Our findings show a new aspect of WAR subcomplex function in coordinating active transcription with efficient pre-mRNA processing.
    Matched MeSH terms: Histone-Lysine N-Methyltransferase/antagonists & inhibitors; Histone-Lysine N-Methyltransferase/genetics; Histone-Lysine N-Methyltransferase/metabolism*
  14. Lim L, Chen KS, Krishnan S, Gole L, Ariffin H
    Br J Haematol, 2012 Jun;157(6):651.
    PMID: 22429121 DOI: 10.1111/j.1365-2141.2012.09091.x
    Matched MeSH terms: Histone-Lysine N-Methyltransferase
  15. Chen LH, Sung TC, Lee HH, Higuchi A, Su HC, Lin KJ, et al.
    Biomater Sci, 2019 Aug 14.
    PMID: 31411209 DOI: 10.1039/c9bm00418a
    Recombinant vitronectin-grafted hydrogels were developed by adjusting surface charge of the hydrogels with grafting of poly-l-lysine for optimal culture of human embryonic stem cells (hESCs) under xeno- and feeder-free culture conditions, with elasticity regulated by crosslinking time (10-30 kPa), in contrast to conventional recombinant vitronectin coating dishes, which have a fixed stiff surface (3 GPa). hESCs proliferated on the hydrogels for over 10 passages and differentiated into the cells derived from three germ layers indicating the maintenance of pluripotency. hESCs on the hydrogels differentiated into cardiomyocytes under xeno-free culture conditions with much higher efficiency (80% of cTnT+ cells) than those on conventional recombinant vitronectin or Matrigel-coating dishes just only after 12 days of induction. It is important to have an optimal design of cell culture biomaterials where biological cues (recombinant vitronectin) and physical cues (optimal elasticity) are combined for high differentiation of hESCs into specific cell lineages, such as cardiomyocytes, under xeno-free and feeder-free culture conditions.
    Matched MeSH terms: Lysine
  16. Faridah HS, Goh YM, Noordin MM, Liang JB
    Asian-Australas J Anim Sci, 2020 Dec;33(12):1965-1974.
    PMID: 32164059 DOI: 10.5713/ajas.19.0964
    OBJECTIVE: This study consisted of two stages; the first was to determine the effect of extrusion and sieving treatments on the chemical properties of palm kernel cake (PKC), and accordingly, a follow-up experiment (second stage) was conducted to determine and compare the apparent metabolizable energy (AME), and protein and amino acid digestibility of extruded and sieved PKC.

    METHODS: Two physical treatments, namely extrusion (using temperature profiles of 90°C/100°C/100°C, 90°C/100°C/110°C, and 90°C/100°C/120°C) and sieving (to 8 particles sizes ranging from >8.00 to 0.15 mm) were carried out to determine their effects on chemical properties, primarily crude protein (CP) and fiber contents of PKC. Based on the results from the above study, PKC that extruded with temperature profile 90/100/110°C and of sieved size between 1.5 to 0.15 mm (which made up of near 60% of total samples) were used to determine treatments effect on AME and CP and amino acid digestibility. The second stage experiment was conducted using 64 male Cobb 500 chickens randomly assigned to 16 cages (4 cages [or replicates] per treatment) to the following four dietary groups: i) basal (control) diet, ii) basal diet containing 20% untreated PKC, iii) basal diet containing 20% extruded PKC (EPKC), and iv) basal diet containing 20% sieved PKC (SPKC).

    RESULTS: Extrusion and sieving had no effect on CP and ash contents of PKC, however, both treatments reduced (p<0.05) crude fiber by 21% and 19%, respectively. Overall, extrusion and sieving reduced content of most of the amino acids except for aspartate, glutamate, alanine and lysine which increased, while serine, cysteine and tryptophan remained unchanged. Extrusion resulted in 6% increase (p<0.05) in AME and enhanced CP digestibility (p<0.05) by 32%, as compared to the untreated PKC while sieving had no effect on AME but improved CP digestibility by 39% which was not significantly different from that by extrusion.

    CONCLUSION: Extrusion is more effective than sieving and serves as a practical method to enhance AME and digestibility of CP and several amino acids in broiler chickens.

    Matched MeSH terms: Lysine
  17. Gopinath VK, Musa M, Samsudin AR, Lalitha P, Sosroseno W
    Arch Oral Biol, 2006 Apr;51(4):339-44.
    PMID: 16214104
    The aim of this study was to determine the role of nitric oxide (NO) in hydroxyapatite (HA)-induced phagocytosis by a murine macrophage cell line (RAW264.7). The cells were incubated with HA particles at various incubation time and phagocytosis was assessed using phagocytic index (PI). NO production from the culture supernatants was determined by the Griess reagent. The inducible nitric oxide synthase (iNOS) expression was determined by Western blot. The particles were also incubated with cells pretreated with various concentrations of L-N(6)-(1-iminoethyl) lysine hydrochloride (L-NIL) or L-arginine. Latex beads were used as a control. Our results showed that macrophage phagocytosis induced by HA was higher than that induced by the beads. However, NO production by HA-stimulated cells was lower than that by bead-stimulated cells. iNOS expression in both bead- and HA-stimulated cells was observed expressed at 7, 15, 30, and 60 min. l-Arginine enhanced but l-NIL inhibited both phagocytosis and NO production by HA-stimulated cells. The results of the present study suggest that nitric oxide may play a crucial role in HA-induced phagocytosis by RAW264.7 cells.
    Matched MeSH terms: Lysine/analogs & derivatives; Lysine/immunology
  18. Akit H, Collins C, Fahri F, Hung A, D'Souza D, Leury B, et al.
    Animals (Basel), 2016;6(6).
    PMID: 27338483 DOI: 10.3390/ani6060038
    The purpose of this study was to investigate the effect of dietary lecithin on skeletal muscle gene expression of collagen precursors and enzymes involved in collagen synthesis and degradation. Finisher gilts with an average start weight of 55.9 ± 2.22 kg were fed diets containing either 0, 4, 20 or 80 g/kg soybean lecithin prior to harvest for six weeks and the rectus abdominis muscle gene expression profile was analyzed by quantitative real-time PCR. Lecithin treatment down-regulated Type I (α1) procollagen (COL1A1) and Type III (α1) procollagen (COL3A1) mRNA expression ( p < 0.05, respectively), indicating a decrease in the precursors for collagen synthesis. The α-subunit of prolyl 4-hydroxylase (P4H) mRNA expression also tended to be down-regulated ( p = 0.056), indicating a decrease in collagen synthesis. Decreased matrix metalloproteinase-1 (MMP-1) mRNA expression may reflect a positive regulatory response to the reduced collagen synthesis in muscle from the pigs fed lecithin ( p = 0.035). Lecithin had no effect on tissue inhibitor metalloproteinase-1 (TIMP-1), matrix metalloproteinase-13 (MMP-13) and lysyl oxidase mRNA expression. In conclusion, lecithin down-regulated COL1A1 and COL3A1 as well as tended to down-regulate α-subunit P4H expression. However, determination of muscle collagen content and solubility are required to support the gene functions.
    Matched MeSH terms: Protein-Lysine 6-Oxidase
  19. Tan CY, Rahman RN, Kadir HA, Tayyab S
    Acta Biochim. Pol., 2011;58(3):405-12.
    PMID: 21887412
    Bacillus licheniformis α-amylase (BLA) was chemically modified using 100-fold molar excess of succinic anhydride over protein or 0.66 M potassium cyanate to obtain 42 % succinylated and 81 % carbamylated BLAs. Size and charge homogeneity of modified preparations was established by Sephacryl S-200 HR gel chromatography and polyacrylamide gel electrophoresis. Conformational alteration in these preparations was evident by the larger Stokes radii (3.40 nm for carbamylated and 3.34 nm for succinylated BLAs) compared to 2.43 nm obtained for native BLA. Urea denaturation results using mean residue ellipticity (MRE) as a probe also showed conformational destabilization based on the early start of transition as well as ΔG(D)(H(2)O) values obtained for both modified derivatives and Ca-depleted BLA. Decrease in ΔG(D)(H(2)O) value from 5,930 cal/mol (for native BLA) to 3,957 cal/mol (for succinylated BLA), 3,336 cal/mol (for carbamylated BLA) and 3,430 cal/mol for Ca-depleted BLA suggested reduced conformational stability upon modification of amino groups of BLA or depletion of calcium. Since both succinylation and carbamylation reactions abolish the positive charge on amino groups (both α- and ε- amino), the decrease in conformational stability can be ascribed to the disruption of salt bridges present in the protein which might have released the intrinsic calcium from its binding site.
    Matched MeSH terms: Lysine/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links