INTRODUCTION: This study ascertains the minimum level of follow-up exercise required to maintain bone gains induced by an 8-week jumping exercise in rats.
METHODS: Twelve groups of 12-week old rats (n = 10 rats per group) were given either no exercise for 8 (8S) or 32 weeks (32S), or received 8 weeks of standard training program (8STP) that consisted of 200 jumps per week, given at 40 jumps per day for 5 days per week, followed by 24 weeks of exercise at loads of either 40 or 20 or 10 jumps per day, for either 5, or 3, or 1 day/week. Bone mass, strength, and morphometric properties were measured in the right tibia. Data were analyzed using one-way analyses of variance.
RESULTS: Bone mass, strength, mid-shaft periosteal perimeter and cortical area were significantly (p < 0.05) higher in the rats given 8STP than that in the 8S group. The minimal level of exercise required to maintain the bone gains was 31, 36, 25, and 21 jumps per week for mass, strength, periosteal perimeter and cortical area, respectively.
CONCLUSIONS: Eight weeks of jumping exercise-induced bone gains could be maintained for a period of 24 weeks with follow-up exercise consisting of 11% to 18% of the initial exercise load.
MATERIALS AND METHODS: Sixteen New Zealand white rabbits were randomly divided into four groups. Modified Hyrax expanders were placed across the midsagittal sutures and secured with miniscrew implants with the following activations: group 1 (control), 0.5 mm expansion/day for 12 days; group 2, 1 mm instant expansion followed by 0.5 mm expansion/day for 10 days; group 3, 2.5 mm instant expansion followed by 0.5 mm expansion/day for 7 days; and group 4, 4 mm instant expansion followed by 0.5 mm expansion/day for 4 days. After 6 weeks, sutural expansion and new bone formation were evaluated histomorphometrically. Statistical analysis was performed using Kruskal-Wallis/Mann-Whitney U tests and Spearman's rho correlation (p
METHODS: A systematic review of the literature was conducted to identify relevant studies on the effects of caffeic acid on bone. A comprehensive search was conducted from July to November 2020 using PubMed, Scopus, Cochrane Library and Web of Science databases. Cellular, animal and human studies reporting the effects of caffeic acid, as a single compound, on bone cells or bone were considered.
RESULTS: The literature search found 226 articles on this topic, but only 24 articles met the inclusion criteria and were included in this review. The results showed that caffeic acid supplementation reduced osteoclastogenesis and bone resorption, possibly through its antioxidant potential and increased expression of osteoblast markers. However, some studies showed that caffeic acid did not affect bone resorption in ovariectomized rats and might impair bone mechanical properties in normal rats.
CONCLUSION: Caffeic acid potentially regulates the bone remodelling process by inhibiting osteoclastogenesis and bone resorption, as well as osteoblast apoptosis. Thus, it has medicinal values against bone diseases.