Displaying publications 581 - 600 of 1534 in total

Abstract:
Sort:
  1. Selvarajah S, Fong AY, Selvaraj G, Haniff J, Hairi NN, Bulgiba A, et al.
    Am J Cardiol, 2013 May 1;111(9):1270-6.
    PMID: 23415636 DOI: 10.1016/j.amjcard.2013.01.271
    Developing countries face challenges in providing the best reperfusion strategy for patients with ST-segment elevation myocardial infarction because of limited resources. This causes wide variation in the provision of cardiac care. The aim of this study was to assess the impact of variation in cardiac care provision and reperfusion strategies on patient outcomes in Malaysia. Data from a prospective national registry of acute coronary syndromes were used. Thirty-day all-cause mortality in 4,562 patients with ST-segment elevation myocardial infarctions was assessed by (1) cardiac care provision (specialist vs nonspecialist centers), and (2) primary reperfusion therapy (thrombolysis or primary percutaneous coronary intervention [P-PCI]). All patients were risk adjusted by Thrombolysis In Myocardial Infarction (TIMI) risk score. Thrombolytic therapy was administered to 75% of patients with ST-segment elevation myocardial infarctions (12% prehospital and 63% in-hospital fibrinolytics), 7.6% underwent P-PCI, and the remainder received conservative management. In-hospital acute reperfusion therapy was administered to 68% and 73% of patients at specialist and nonspecialist cardiac care facilities, respectively. Timely reperfusion was low, at 24% versus 31%, respectively, for in-hospital fibrinolysis and 28% for P-PCI. Specialist centers had statistically significantly higher use of evidence-based treatments. The adjusted 30-day mortality rates for in-hospital fibrinolytics and P-PCI were 7% (95% confidence interval 5% to 9%) and 7% (95% confidence interval 3% to 11%), respectively (p = 0.75). In conclusion, variation in cardiac care provision and reperfusion strategy did not adversely affect patient outcomes. However, to further improve cardiac care, increased use of evidence-based resources, improvement in the quality of P-PCI care, and reduction in door-to-reperfusion times should be achieved.
    Matched MeSH terms: Survival Rate/trends
  2. Ramli M, Hussein MZ, Yusoff K
    Int J Nanomedicine, 2013;8:297-306.
    PMID: 23345976 DOI: 10.2147/IJN.S38858
    A new organic-inorganic nanohybrid based on zinc-layered hydroxide intercalated with an anti-inflammatory agent was synthesized through direct reaction of salicylic acid at various concentrations with commercially available zinc oxide. The basal spacing of the pure phase nanohybrid was 15.73 Å, with the salicylate anions arranged in a monolayer form and an angle of 57 degrees between the zinc-layered hydroxide interlayers. Fourier transform infrared study further confirmed intercalation of salicylate into the interlayers of zinc-layered hydroxide. The loading of salicylate in the nanohybrid was estimated to be around 29.66%, and the nanohybrid exhibited the properties of a mesoporous-type material, with greatly enhanced thermal stability of the salicylate compared with its free counterpart. In vitro cytotoxicity assay revealed that free salicylic acid, pure zinc oxide, and the nanohybrid have a mild effect on viability of African green monkey kidney (Vero-3) cells.
    Matched MeSH terms: Cell Survival/drug effects
  3. Sufian AS, Ramasamy K, Ahmat N, Zakaria ZA, Yusof MI
    J Ethnopharmacol, 2013 Mar 7;146(1):198-204.
    PMID: 23276785 DOI: 10.1016/j.jep.2012.12.032
    Muntingia calabura (Elaeocarpaceae) is one of the most common roadside trees in Malaysia. Its leaves, barks, flowers and roots have been used as a folk remedy for the treatment of fever, incipient cold, liver disease, as well as an antiseptic agent in Southeast Asia. The aim of this study is to isolate and identify the antibacterial and cytotoxic compounds from the leaves of Muntingia calabura L.
    Matched MeSH terms: Cell Survival/drug effects
  4. Lee CC, Houghton P
    J Ethnopharmacol, 2005 Sep 14;100(3):237-43.
    PMID: 15888378
    The SRB cytotoxicity assay was used to screen extracts and isolated constituents of some traditional medicinal plants from Malaysia and Thailand against two human cancer cell lines, COR L23 lung cancer cell line and MCF7 breast cancer cell line and the non-cancer MCF5 cell line. Five out of the seven species tested, i.e. Thai Alpinia galanga, Alpinia officinarum, Cayratia japonica, Physalis minima, Tabernaemontana divaricata, exhibited interesting cytotoxicity activity and this is the first report of cytotoxicity from any Cayratia species. Following bioassay-guided fractionation, 1'-acetoxychavicol acetate (48h exposure against COR L23 cells, IC(50) 7.8 microM against MCF7 cells, IC(50) 23.9 microM) was isolated as the major cytotoxic component of the Alpinia species, physalin F as the major cytotoxic component of Physalis minima (48 h exposure against COR L23 cells IC(50) 0.4 microM against MCF7 cells, IC(50) 0.59 microM). The Malaysian Alpinia galanga showed weak activity compared with the Thai sample and this was shown to be due to the relatively high amounts of 1'-acetoxychavicol acetate present in the Thai sample.
    Matched MeSH terms: Cell Survival/drug effects
  5. Lim MN, Leong CF, Cheong SK, Seow HF
    Malays J Pathol, 2003 Dec;25(2):107-12.
    PMID: 16196366
    Dendritic cells (DC) are efficient and potent antigen-presenting cells. Pilot clinical trials indicated that DC loaded with tumour antigen could induce tumour-specific immune responses in various cancers including B-cell lymphoma, melanoma and prostate cancer. Owing to extensively low number of DC in the blood circulation, a variety of sources have been used to generate DC including monocytes, CD34+ stem cells and even with leukaemic blast cells. We demonstrate here a simple method to generate DC from acute myeloid leukaemia (AML) cells and monocytes from healthy donor or remission samples. AML cells or monocytes were cultured in RPMI 1640 media supplemented with foetal bovine serum or autologous serum where possible and different combinations of cytokines GM-CSF, IL-4 and TNF-alpha. The generated DC were evaluated for their morphology by phase contrast microscopy and May Grunwald Giemsa staining. Viability of cells was determined by trypan blue dye exclusion. Percentage of yields and immunophenotypes were carried out by flow cytometry. We found that cultured AML cells and monocytes developed morphological and immuno-phenotypic characteristics of DC. Monocytes are better than AML blast in generating DC and serve as a ready source for dendritic cell vaccine development.
    Matched MeSH terms: Cell Survival/drug effects
  6. Leong KH, Looi CY, Loong XM, Cheah FK, Supratman U, Litaudon M, et al.
    PLoS One, 2016;11(4):e0152652.
    PMID: 27070314 DOI: 10.1371/journal.pone.0152652
    Plants in the Meliaceae family are known to possess interesting biological activities, such as antimalaral, antihypertensive and antitumour activities. Previously, our group reported the plant-derived compound cycloart-24-ene-26-ol-3-one isolated from the hexane extracts of Aglaia exima leaves, which shows cytotoxicity towards various cancer cell lines, in particular, colon cancer cell lines. In this report, we further demonstrate that cycloart-24-ene-26-ol-3-one, from here forth known as cycloartane, reduces the viability of the colon cancer cell lines HT-29 and CaCO-2 in a dose- and time-dependent manner. Further elucidation of the compound's mechanism showed that it binds to tumour necrosis factor-receptor 1 (TNF-R1) leading to the initiation of caspase-8 and, through the activation of Bid, in the activation of caspase-9. This activity causes a reduction in mitochondrial membrane potential (MMP) and the release of cytochrome-C. The activation of caspase-8 and -9 both act to commit the cancer cells to apoptosis through downstream caspase-3/7 activation, PARP cleavage and the lack of NFkB translocation into the nucleus. A molecular docking study showed that the cycloartane binds to the receptor through a hydrophobic interaction with cysteine-96 and hydrogen bonds with lysine-75 and -132. The results show that further development of the cycloartane as an anti-cancer drug is worthwhile.
    Matched MeSH terms: Cell Survival/drug effects
  7. Zha GF, Zhang CP, Qin HL, Jantan I, Sher M, Amjad MW, et al.
    Bioorg Med Chem, 2016 05 15;24(10):2352-9.
    PMID: 27083471 DOI: 10.1016/j.bmc.2016.04.015
    A series of new α,β-unsaturated carbonyl-based cyclohexanone derivatives was synthesized by simple condensation method and all compounds were characterized by using various spectroscopic techniques. New compounds were evaluated for their effects on acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). These compounds were also screened for in vitro cytotoxicity and for inhibitory activity for self-induced Aβ1-42 aggregation. The effect of these compounds against amyloid β-induced cytotoxicity was also investigated. The findings of in vitro experiment revealed that most of these compounds exhibited potent inhibitory activity against AChE and self-induced Aβ1-42 aggregation. The compound 3o exhibited best AChE (IC50=0.037μM) inhibitory potential. Furthermore, compound 3o disassembled the Aβ fibrils produced by self-induced Aβ aggregation by 76.6%. Compounds containing N-methyl-4-piperidone linker, showed high acetylcholinesterase and self-induced Aβ aggregation inhibitory activities as compared to reference drug donepezil. The pre-treatment of cells with synthetic compounds protected them against Aβ-induced cell death by up to 92%. Collectively, these findings suggest that some compounds from this series have potential to be promising multifunctional agents for AD treatment and our study suggest the cyclohexanone derivatives as promising new inhibitors for AChE and BuChE, potentially useful to treat neurodegenerative diseases.
    Matched MeSH terms: Cell Survival/drug effects
  8. Santhanam RK, Ahmad S, Abas F, Safinar Ismail I, Rukayadi Y, Tayyab Akhtar M, et al.
    Molecules, 2016 May 24;21(6).
    PMID: 27231889 DOI: 10.3390/molecules21060652
    Zanthoxylum rhetsa is an aromatic tree, known vernacularly as "Indian Prickly Ash". It has been predominantly used by Indian tribes for the treatment of many infirmities like diabetes, inflammation, rheumatism, toothache and diarrhea. In this study, we identified major volatile constituents present in different solvent fractions of Z. rhetsa bark using GC-MS analysis and isolated two tetrahydrofuran lignans (yangambin and kobusin), a berberine alkaloid (columbamine) and a triterpenoid (lupeol) from the bioactive chloroform fraction. The solvent fractions and purified compounds were tested for their cytotoxic potential against human dermal fibroblasts (HDF) and mouse melanoma (B16-F10) cells, using the MTT assay. All the solvent fractions and purified compounds were found to be non-cytotoxic to HDF cells. However, the chloroform fraction and kobusin exhibited cytotoxic effect against B16-F10 melanoma cells. The presence of bioactive lignans and alkaloids were suggested to be responsible for the cytotoxic property of Z. rhetsa bark against B16-F10 cells.
    Matched MeSH terms: Cell Survival/drug effects
  9. Tan BS, Tiong KH, Choo HL, Chung FF, Hii LW, Tan SH, et al.
    Cell Death Dis, 2015;6:e1826.
    PMID: 26181206 DOI: 10.1038/cddis.2015.191
    p53 is the most frequently mutated tumor-suppressor gene in human cancers. Unlike other tumor-suppressor genes, p53 mutations mainly occur as missense mutations within the DNA-binding domain, leading to the expression of full-length mutant p53 protein. Mutant p53 proteins not only lose their tumor-suppressor function, but may also gain new oncogenic functions and promote tumorigenesis. Here, we showed that silencing of endogenous p53-R273H contact mutant, but not p53-R175H conformational mutant, reduced AKT phosphorylation, induced BCL2-modifying factor (BMF) expression, sensitized BIM dissociation from BCL-XL and induced mitochondria-dependent apoptosis in cancer cells. Importantly, cancer cells harboring endogenous p53-R273H mutant were also found to be inherently resistant to anoikis and lack BMF induction following culture in suspension. Underlying these activities is the ability of p53-R273H mutant to suppress BMF expression that is dependent on constitutively active PI3K/AKT signaling. Collectively, these findings suggest that p53-R273H can specifically drive AKT signaling and suppress BMF expression, resulting in enhanced cell survivability and anoikis resistance. These findings open the possibility that blocking of PI3K/AKT will have therapeutic benefit in mutant p53-R273H expressing cancers.
    Matched MeSH terms: Cell Survival/genetics
  10. Amin Yavari S, Chai YC, Böttger AJ, Wauthle R, Schrooten J, Weinans H, et al.
    PMID: 25842117 DOI: 10.1016/j.msec.2015.02.050
    Anodizing could be used for bio-functionalization of the surfaces of titanium alloys. In this study, we use anodizing for creating nanotubes on the surface of porous titanium alloy bone substitutes manufactured using selective laser melting. Different sets of anodizing parameters (voltage: 10 or 20V anodizing time: 30min to 3h) are used for anodizing porous titanium structures that were later heat treated at 500°C. The nanotopographical features are examined using electron microscopy while the bioactivity of anodized surfaces is measured using immersion tests in the simulated body fluid (SBF). Moreover, the effects of anodizing and heat treatment on the performance of one representative anodized porous titanium structures are evaluated using in vitro cell culture assays using human periosteum-derived cells (hPDCs). It has been shown that while anodizing with different anodizing parameters results in very different nanotopographical features, i.e. nanotubes in the range of 20 to 55nm, anodized surfaces have limited apatite-forming ability regardless of the applied anodizing parameters. The results of in vitro cell culture show that both anodizing, and thus generation of regular nanotopographical feature, and heat treatment improve the cell culture response of porous titanium. In particular, cell proliferation measured using metabolic activity and DNA content was improved for anodized and heat treated as well as for anodized but not heat-treated specimens. Heat treatment additionally improved the cell attachment of porous titanium surfaces and upregulated expression of osteogenic markers. Anodized but not heat-treated specimens showed some limited signs of upregulated expression of osteogenic markers. In conclusion, while varying the anodizing parameters creates different nanotube structure, it does not improve apatite-forming ability of porous titanium. However, both anodizing and heat treatment at 500°C improve the cell culture response of porous titanium.
    Matched MeSH terms: Cell Survival/drug effects
  11. Dag A, Jiang Y, Karim KJ, Hart-Smith G, Scarano W, Stenzel MH
    Macromol Rapid Commun, 2015 May;36(10):890-7.
    PMID: 25790077 DOI: 10.1002/marc.201400576
    The delivery of macromolecular platinum drugs into cancerous cells is enhanced by conjugating the polymer to albumin. The monomers N-(2-hydroxypropyl)methacrylamide (HPMA) and Boc protected 1,3-diaminopropan-2-yl acrylate (Ac-DAP-Boc) are copolymerized in the presence of a furan protected maleimide functionalized reversible addition-fragmentation chain transfer (RAFT) agent. The resulting polymer with a composition of P(HPMA14 -co-(Ac-DAP-Boc)9 ) and a molecular weight of Mn = 7600 g mol(-1) (Đ = 1.24) is used as a macromolecular ligand for the conjugation to the platinum drug. Thermogravimetric analysis reveals full conjugation. After deprotection of the maleimide functionality of the polymer, the reactive polymer is conjugated to albumin using the Cys34 functionality. The conjugation is monitored using size exclusion chromatography, MALDI-TOF (matrix assisted laser desorption ionization time-of-flight), and SDS Page (sodium dodecyl sulphate polyacrylamide gel electrophoresis). The polymer-albumin conjugates self-assemble in water into nanoparticles of sizes of around 80 nm thanks to the hydrophobic nature of the platinum drugs. The albumin coated nanoparticles are readily taken up by ovarian cancer cell lines and they show superior toxicity compared to a control sample without protein coating.
    Matched MeSH terms: Cell Survival/drug effects
  12. Somchit N, Hassim SM, Samsudin SH
    Hum Exp Toxicol, 2002 Jan;21(1):43-8.
    PMID: 12046723
    This current study was to investigate the in vitro cytotoxicity of rat hepatocytes induced by the antifungal drugs, itraconazole and fluconazole. Both antifungal drugs caused dose-dependent cytotoxicity. In vitro incubation of hepatocytes with itraconazole revealed significantly higher lactate dehydrogenase (LDH) leakage when compared to fluconazole. Phenobarbital pretreated hepatocytes contained significantly higher total cytochrome P450 content than the control hepatocytes. P450 content was reduced approximately 30% for both types of hepatocytes after 6 hours incubation. Interestingly, cytotoxicity of itraconazole was reduced significantly by phenobarbital pretreatment. Phenobarbital did not have any effect on the cytotoxicity induced by fluconazole. These results demonstrate the in vitro toxicity of hepatocytes induced by itraconazole and fluconazole that were expressed in a dose- and time-dependent manner. Phenobarbital plays a role in the cytoprotection of hepatocytes to itraconazole-induced but not fluconazole-induced cytotoxicity in vitro.
    Matched MeSH terms: Cell Survival/drug effects
  13. Chien AL, Pihie AH
    J. Biochem. Mol. Biol., 2003 May 31;36(3):269-74.
    PMID: 12787481
    In the fight against cancer, novel chemotherapeutic agents are constantly being sought to complement existing drugs. Various studies have presented evidence that the apoptosis that is induced by these anticancer agents is implicated in tumor regression, and Bcl-2 family genes play a part in apoptosis following treatment with various stimuli. Here, we present data that a styrylpyrone derivative (SPD) that is extracted from the plant Goniothalamus sp. showed cytotoxic effects on the human breast cancer cell line MCF-7. SPD significantly increased apoptosis in MCF-7 cells, as visualized by phase contrast microscopy and evaluated by the Tdt-mediated dUTP nick end-labeling assay and nuclear morphology. Western blotting and immunostaining revealed up-regulation of the proapoptotic Bax protein expression. SPD, however, did not affect the expression of the anti-apoptotic protein, Bcl-2. These results, therefore, suggest SPD as a potent cytotoxic agent on MCF-7 cells by inducing apoptosis through the modulation of Bax levels.
    Matched MeSH terms: Cell Survival/drug effects
  14. Lombardo E
    Genus, 1983 Jan-Dec;39(1-4):167-73.
    PMID: 12266118
    "A tentative approximation of the expectation of life at 60-65 years, for populations with defective demographic statistics, is explored and expounded on the basis of a recent Horiuchi and [Coale] paper." The method is applied to data for El Salvador, Mexico, Puerto Rico, and Peninsular Malaysia, and it is shown that the method can be used on actual data, although it requires some drastic rounding off. (summary in ENG, FRE)
    Matched MeSH terms: Survival Rate*
  15. Ho IYM, Abdul Aziz A, Mat Junit S
    Sci Rep, 2020 06 19;10(1):9987.
    PMID: 32561807 DOI: 10.1038/s41598-020-66913-x
    Barringtonia racemosa leaf water extract (BLE) had been shown to have high gallic acid (GA) content and BLE has been postulated to have anti-proliferative effects towards colorectal cancer. This study aims to further investigate the mechanism underlying the anti-proliferative effect of BLE in Caco-2 cells and to determine if GA is responsible for the observed effects. Both BLE and GA inhibited Caco-2 cells in a dose-dependent manner. Cells exposed to IC50 concentration of BLE and GA showed reduced antioxidant activities. GA-treated Caco-2 cells experienced higher oxidative stress compared to cells treated with BLE. Both BLE and GA significantly up-regulated the expression of SLC2A1. BLE but not GA, significantly down-regulated the expression of ADH4. Meanwhile, GA but not BLE, significantly up-regulated AKRIB10 and GLO1 but significantly down-regulated HAGH. Alterations in gene expression were coupled with changes in extracellular glucose and pyruvate levels. While BLE decreased intracellular pyruvate, GA did the opposite. Both intracellular and extracellular D-lactate were not affected by either BLE or GA. GA showed more pronounced effects on apoptosis while BLE irreversibly reduced cell percentage in the G0/G1 phase. In conclusion, this study demonstrates the multiple-actions of BLE against Caco-2 cells, potentially involving various polyphenolic compounds, including GA.
    Matched MeSH terms: Cell Survival/drug effects
  16. Magalingam KB, Radhakrishnan A, Haleagrahara N
    Int J Mol Med, 2013 Jul;32(1):235-40.
    PMID: 23670213 DOI: 10.3892/ijmm.2013.1375
    Free radicals are widely known to be the major cause of human diseases such as neurodegenerative diseases, cancer, allergy and autoimmune diseases. Human cells are equipped with a powerful natural antioxidant enzyme network. However, antioxidants, particularly those originating from natural sources such as fruits and vegetables, are still considered essential. Rutin, a quercetin glycoside, has been proven to possess antioxidant potential. However, the neuroprotective effect of rutin in pheochromocytoma (PC-12) cells has not been studied extensively. Therefore, the present study was designed to establish the neuroprotective role of rutin as well as to elucidate the antioxidant mechanism of rutin in 6-hydroxydopamine (6-OHDA)-induced toxicity in PC-12 neuronal cells. PC-12 cells were pretreated with different concentrations of rutin for 4, 8 and 12 h and subsequently incubated with 6-OHDA for 24 h to induce oxidative stress. A significant cytoprotective activity was observed in rutin pretreated cells in a dose-dependent manner. Furthermore, there was marked activation of antioxidant enzymes including superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx), and total glutathione (GSH) in rutin pretreated cells compared to cells incubated with 6-OHDA alone. Rutin significantly reduced lipid peroxidation in 6-OHDA-induced PC-12 cells. On the basis of these observations, it was concluded that the bioflavonoid rutin inhibited 6-OHDA-induced neurotoxicity in PC-12 cells by improving antioxidant enzyme levels and inhibiting lipid peroxidation.
    Matched MeSH terms: Cell Survival/drug effects
  17. Haleagrahara N, Siew CJ, Mitra NK, Kumari M
    Neurosci Lett, 2011 Aug 15;500(2):139-43.
    PMID: 21704673 DOI: 10.1016/j.neulet.2011.06.021
    An increasing large body of research on Parkinson's disease (PD) has focused on the understanding of the mechanisms behind the potential neuro protection offered by antioxidants and iron chelating agents. In this study, the protective effect of the bioflavonoid quercetin on 6-hydroxydopamine (6-OHDA)-induced model of PD was investigated. PD was induced by a single intracisternal injection of 6-hydroxydopamine (300μg) to male Sprague-Dawley rats. Quercetin treatment (30mg/kg body weight) over 14 consecutive days markedly increased the striatal dopamine and antioxidant enzyme levels compared with similar measurements in the group treated with 6-OHDA alone. There was a significant decrease in protein carbonyl content in the striatum compared with that of rats that did not receive quercetin. A significant increase in neuronal survivability was also found with quercetin treatment in rats administered 6-OHDA. In conclusion, treatment with quercetin defended against the oxidative stress in the striatum and reduced the dopaminergic neuronal loss in the rat model of PD.
    Matched MeSH terms: Cell Survival/drug effects
  18. Arafath MA, Al-Suede FSR, Adam F, Al-Juaid S, Khadeer Ahamed MB, Majid AMSA
    Drug Dev Res, 2019 09;80(6):778-790.
    PMID: 31215682 DOI: 10.1002/ddr.21559
    The bidentate N-cyclohexyl-2-(3-hydroxy-4-methoxybenzylidene)hydrazine-1-carbothioamide Schiff base ligand (HL) was coordinated to divalent nickel, palladium and platinum ions to form square planar complexes. The nickel and palladium complexes, [NiL2 ], [PdL2 ] form square planar complexes with 2:1 ligand to metal ratio. The platinum complex, [PtL(dmso)Cl] formed a square planar complex with 1:1 ligand to metal ratio. Platinum undergoes in situ reaction with DMSO before complexing with the ligand in solution. The cytotoxicity of HL, [NiL2 ], [PdL2 ], and [PtL(dmso)Cl] were evaluated against human colon cancer cell line (HCT-116), human cervical cancer (Hela) cell line, melanoma (B16F10) cells, and human normal endothelial cell lines (Eahy926) by MTT assay. The [NiL2 ] complex displayed selective cytotoxic effect against the HCT 116 cancer cell line with IC50 of 7.9 ± 0.2 μM. However, HL, [PdL2 ], and [PtL(dmso)Cl] only exhibited moderate cytotoxic activity with IC50 = 75.9 ± 2.4, 100.0 ± 1.8, and 101.0 ± 3.6 μM, respectively. The potent cytotoxicity of [NiL2 ] was characterized using Hoechst and Rhodamine assays. The nickel complex, [NiL2 ], caused remarkable nuclear condensation and reduction in mitochondrial membrane potential. In addition, molecular docking studies confirms that [NiL2 ] possesses significant binding efficiency with Tyrosine kinase. Altogether, the results revealed that [NiL2 ] exhibits cytotoxicity against the cancer cells via Tyrosine kinase-induced proapoptosis pathway. This study demonstrates that the [NiL2 ] complex could be a promising therapeutic agent against colorectal carcinoma.
    Matched MeSH terms: Cell Survival/drug effects
  19. Alomari M, Taha M, Imran S, Jamil W, Selvaraj M, Uddin N, et al.
    Bioorg Chem, 2019 11;92:103235.
    PMID: 31494327 DOI: 10.1016/j.bioorg.2019.103235
    Hybrid bis-coumarin derivatives 1-18 were synthesized and evaluated for their in vitro urease inhibitory potential. All compounds showed outstanding urease inhibitory potential with IC50 value (The half maximal inhibitory concentration) ranging in between 0.12 SD 0.01 and 38.04 SD 0.63 µM (SD standard deviation). When compared with the standard thiourea (IC50 = 21.40 ± 0.21 µM). Among these derivatives, compounds 7 (IC50 = 0.29 ± 0.01), 9 (IC50 = 2.4 ± 0.05), 10 (IC50 = 2.25 ± 0.05) and 16 (IC50 = 0.12 ± 0.01) are better inhibitors of the urease compared with thiourea (IC50 = 21.40 ± 0.21 µM). To find structure-activity relationship molecular docking as well as absorption, distribution, metabolism, and excretion (ADME) studies were also performed. Various spectroscopic techniques like 1H NMR, 13C NMR, and EI-MS were used for characterization of all synthesized analogs. All compounds were tested for cytotoxicity and found non-toxic.
    Matched MeSH terms: Cell Survival/drug effects
  20. Abbasi MA, Nazir M, Ur-Rehman A, Siddiqui SZ, Hassan M, Raza H, et al.
    Arch Pharm (Weinheim), 2019 Mar;352(3):e1800278.
    PMID: 30624805 DOI: 10.1002/ardp.201800278
    Novel bi-heterocyclic benzamides were synthesized by sequentially converting 4-(1H-indol-3-yl)butanoic acid (1) into ethyl 4-(1H-indol-3-yl)butanoate (2), 4-(1H-indol-3-yl)butanohydrazide (3), and a nucleophilic 5-[3-(1H-indol-3-yl)propyl]-1,3,4-oxadiazole-2-thiol (4). In a parallel series of reactions, various electrophiles were synthesized by reacting substituted anilines (5a-k) with 4-(chloromethyl)benzoylchloride (6) to afford 4-(chloromethyl)-N-(substituted-phenyl)benzamides (7a-k). Finally, the nucleophilic substitution reaction of 4 was carried out with newly synthesized electrophiles, 7a-k, to acquire the targeted bi-heterocyclic benzamides, 8a-k. The structural confirmation of all the synthesized compounds was done by IR, 1 H NMR, 13 C NMR, EI-MS, and CHN analysis data. The inhibitory effects of these bi-heterocyclic benzamides (8a-k) were evaluated against alkaline phosphatase, and all these molecules were identified as potent inhibitors relative to the standard used. The kinetics mechanism was ascribed by evaluating the Lineweaver-Burk plots, which revealed that compound 8b inhibited alkaline phosphatase non-competitively to form an enzyme-inhibitor complex. The inhibition constant Ki calculated from Dixon plots for this compound was 1.15 μM. The computational study was in full agreement with the experimental records and these ligands exhibited good binding energy values. These molecules also exhibited mild cytotoxicity toward red blood cell membranes when analyzed through hemolysis. So, these molecules might be deliberated as nontoxic medicinal scaffolds to render normal calcification of bones and teeth.
    Matched MeSH terms: Cell Survival/drug effects
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links