Displaying publications 621 - 640 of 837 in total

Abstract:
Sort:
  1. Lokanathan Y, Mohd-Adnan A, Kua BC, Nathan S
    J Fish Dis, 2016 Sep;39(9):1069-83.
    PMID: 27086498 DOI: 10.1111/jfd.12474
    Cryptocaryonosis is a major problem for mariculture, and the absence of suitable sero-surveillance tools for the detection of cryptocaryonosis makes it difficult to screen Cryptocaryon irritans-infected fish, particularly asymptomatic fish. In this study, we proposed a serum-based assay using selected C. irritans proteins to screen infected and asymptomatic fish. Eight highly expressed genes were chosen from an earlier study on C. irritans expressed sequence tags and ciliate glutamine codons were converted to universal glutamine codons. The chemically synthesized C. irritans genes were then expressed in an Escherichia coli expression host under optimized conditions. Five C. irritans proteins were successfully expressed in E. coli and purified by affinity chromatography. These proteins were used as antigens in an enzyme-linked immunosorbent assay (ELISA) to screen sera from experimentally immunized fish and naturally infected fish. Sera from both categories of fish reacted equally well with the expressed C. irritans recombinant proteins as well as with sonicated theronts. This study demonstrated the utility of producing ciliate recombinant proteins in a heterologous expression host. An ELISA was successfully developed to diagnose infected and asymptomatic fish using the recombinant proteins as antigens.
    Matched MeSH terms: Escherichia coli/genetics
  2. Samad MA, Hashim SH, Simarani K, Yaacob JS
    Molecules, 2016 Mar 26;21(4):419.
    PMID: 27023514 DOI: 10.3390/molecules21040419
    Phoenix dactylifera or date palm fruits are reported to contain natural compounds that exhibit antioxidant and antibacterial properties. This research aimed to study the effect of fruit chilling at 4 °C for 8 weeks, extract storage at -20 °C for 5 weeks, and extraction solvents (methanol or acetone) on total phenolic content (TPC), antioxidant activity and antibacterial properties of Saudi Arabian P. dactylifera cv Mabroom, Safawi and Ajwa, as well as Iranian P. dactylifera cv Mariami. The storage stability of total anthocyanin content (TAC) was also evaluated, before and after storing the extracts at -20 °C and 4 °C respectively, for 5 weeks. Mariami had the highest TAC (3.18 ± 1.40 mg cyd 3-glu/100 g DW) while Mabroom had the lowest TAC (0.54 ± 0.15 mg cyd 3-glu/100 g DW). The TAC of all extracts increased after storage. The chilling of date palm fruits for 8 weeks prior to solvent extraction elevated the TPC of all date fruit extracts, except for methanolic extracts of Mabroom and Mariami. All IC50 values of all cultivars decreased after the fruit chilling treatment. Methanol was a better solvent compared to acetone for the extraction of phenolic compounds in dates. The TPC of all cultivars extracts decreased after 5 weeks of extract storage. IC50 values of all cultivars extracts increased after extract storage except for the methanolic extracts of Safawi and Ajwa. Different cultivars exhibited different antibacterial properties. Only the methanolic extract of Ajwa exhibited antibacterial activity against all four bacteria tested: Staphylococcus aureus, Bacillus cereus, Serratia marcescens and Escherichia coli. These results could be useful to the nutraceutical and pharmaceutical industries in the development of natural compound-based products.
    Matched MeSH terms: Escherichia coli/drug effects
  3. Haseeb A, Faidah HS, Bakhsh AR, Malki WH, Elrggal ME, Saleem F, et al.
    Int J Infect Dis, 2016 Jun;47:92-4.
    PMID: 27312582 DOI: 10.1016/j.ijid.2016.06.006
    OBJECTIVE: To identify commonly reported community-acquired organisms and antimicrobial resistance patterns exhibited by Gram-positive and Gram-negative pathogens among pilgrims visiting emergency care departments in Makkah.
    METHOD: The study was designed as a retrospective audit of all patients (pilgrims) admitted to two hospitals and residing in the city of Makkah, Saudi Arabia.
    RESULTS: Among 374 isolates, Gram-negative pathogens accounted for 280 (75%), while the remaining 94 (25%) were Gram-positive organisms. Among all isolated pathogens, the highest resistance was observed for amoxicillin-clavulanic acid. Klebsiella pneumoniae had the highest resistance to amoxicillin-clavulanic acid and ampicillin. Most of the organisms were sensitive to tobramycin except Acinetobacter baumannii (n=3, 50%), Escherichia coli (n=4, 57%), and K. pneumoniae (n=6, 46%).
    CONCLUSION: Overall, a high resistance was observed for beta-lactam antibiotics. In addition, a high resistance was noted for ceftazidime with A. baumannii species (n=16, 77%). However, for quinolones, the highest resistance to ciprofloxacin was observed for E. coli, A. baumannii, methicillin-resistant Staphylococcus aureus, and K. pneumoniae.
    KEYWORDS: Antimicrobial resistance; Community-acquired organisms; Makkah; Pilgrims
    Matched MeSH terms: Escherichia coli/drug effects
  4. Gomaa MN, Soliman K, Ayesh A, Abd El-Wahed A, Hamza Z, Mansour HM, et al.
    Nat Prod Res, 2016;30(6):729-34.
    PMID: 26186031 DOI: 10.1080/14786419.2015.1040991
    The marine soft corals Sarcophyton trocheliophorum crude extracts possessed antimicrobial activity towards pathogenic bacterial strains, i.e. Bacillus cereus, Salmonella typhi, Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa. Bioassay-guided fractionation indicated that the antimicrobial effect was due to the presence of terpenoid bioactive derivatives. Further biological assays of the n-hexane fractions were carried out using turbidity assay, inhibition zone assay and minimum inhibitory concentration for investigating the growth-inhibition effect towards the Gram-positive and Gram-negative bacteria. The fractions were screened and the structure of the isolated compound was justified by interpretation of the spectroscopic data, mainly mass spectrometry (GC-MS). The structure was assigned as (5S)-3-[(3E,5S)-5-hydroxy-3-hepten-6-yn-1-yl]-5-methyl-2(5H)-furanone and was effective at concentrations as low as 0.20 mg/mL. The above findings, in the course of our ongoing research on marine products, may implicate that the profound anti-microbial activity of the S. trocheliophorum soft corals, inhabiting the red sea reefs, is attributed to the presence of growth-inhibiting secondary metabolites mainly terpenoids.
    Matched MeSH terms: Escherichia coli/drug effects
  5. Ghorbani P, Soltani M, Homayouni-Tabrizi M, Namvar F, Azizi S, Mohammad R, et al.
    Molecules, 2015;20(7):12946-58.
    PMID: 26193248 DOI: 10.3390/molecules200712946
    The development of reliable and ecofriendly approaches for the production of nanomaterials is a significant aspect of nanotechnology nowadays. One of the most important methods, which shows enormous potential, is based on the green synthesis of nanoparticles using plant extract. In this paper, we aimed to develop a rapid, environmentally friendly process for the synthesis silver nanoparticles using aqueous extract of sumac. The bioactive compounds of sumac extract seem to play a role in the synthesis and capping of silver nanoparticles. Structural, morphological and optical properties of the nanoparticles were characterized using FTIR, XRD, FESEM and UV-Vis spectroscopy. The formation of Ag-NP was immediate within 10 min and confirmed with an absorbance band centered at 438 nm. The mean particle size for the green synthesized silver nanoparticles is 19.81 ± 3.67 nm and is fairly stable with a zeta potential value of -32.9 mV. The bio-formed Ag-NPs were effective against E. coli with a maximum inhibition zone of 14.3 ± 0.32 mm.
    Matched MeSH terms: Escherichia coli/drug effects
  6. Al-Qaim FF, Mussa ZH, Othman MR, Abdullah MP
    J Hazard Mater, 2015 Dec 30;300:387-397.
    PMID: 26218306 DOI: 10.1016/j.jhazmat.2015.07.007
    The electrochemical oxidation of caffeine, a widely over-the-counter stimulant drug, has been investigated in effluent wastewater and deionized water (DIW) using graphite-poly vinyl chloride (PVC) composite electrode as anode. Effects of initial concentration of caffeine, chloride ion (Cl(-)) loading, presence of hydrogen peroxide (H2O2), sample volume, type of sample and applied voltage were determined to test and to validate a kinetic model for the oxidation of caffeine by the electrochemical oxidation process. The results revealed that the electrochemical oxidation rates of caffeine followed pseudo first-order kinetics, with rate constant values ranged from 0.006 to 0.23 min(-1) depending on the operating parameters. The removal efficiency of caffeine increases with applied voltage very significantly, suggesting a very important role of mediated oxidation process. However, the consumption energy was considered during electrochemical oxidation process. In chloride media, removal of caffeine is faster and more efficiently, although occurrence of more intermediates takes place. The study found that the adding H2O2 to the NaCl solution will inhibit slightly the electrochemical oxidation rate in comparison with only NaCl in solution. Liquid chromatography-time of flight-mass spectrometry (LC-TOF-MS) technique was applied to the identification of the by-products generated during electrochemical oxidation, which allowed to construct the proposed structure of by-products.
    Matched MeSH terms: Escherichia coli/drug effects
  7. Rahman RN, Chin JH, Salleh AB, Basri M
    Mol Genet Genomics, 2003 May;269(2):252-60.
    PMID: 12756537
    A Bacillus sphaericus strain (205y) that produces an organic solvent-tolerant lipase was isolated in Port Dickson, Malaysia. The gene for the lipase was recovered from a genomic library and sequenced. Phylogenetic analysis was performed based on an alignment of thirteen microbial lipase sequences obtained from the NCBI database. The analysis suggested that the B. sphaericus lipase gene is a novel gene, as it is distinct from other lipase genes in Families I.4 and I.5 reported so far. Expression in Escherichia coli under the control of the lacZ promoter resulted in an eight-fold increase in enzyme activity after a 3-h induction with 1 mM IPTG. The crude enzyme thus obtained showed a slight (10%) enhancement in activity after a 30-min incubation in 25% (v/v) n-hexane at 37 degrees C, and retained 90% of its activity after a similar period in 25% (v/v) p-xylene.
    Matched MeSH terms: Escherichia coli/metabolism
  8. Kho CL, Tan WS, Yusoff K
    J. Biochem. Mol. Biol. Biophys., 2002 Apr;6(2):117-21.
    PMID: 12186767
    The phosphoprotein (P) gene of a heat stable Newcastle disease virus (NDV) was cloned, sequenced and expressed in Escherichia coli. SDS-PAGE analysis of the recombinant P protein (395 amino acids) and a C-terminal extension derivative (424 amino acids), gave rise to two distinct protein bands with molecular masses of approximately 53-55 and 56-58 kDa, respectively, which are approximately 26-30% heavier than those calculated from the deduced amino acid sequences. The differences in molecular mass on SDS-PAGE are thought to be attributed to the acidic nature of the P protein (pI=6.27) and also the different degrees of phosphorylation in the prokaryotic cell. Amino acid sequence comparison of the P protein among the published NDV strains showed that they were highly conserved particularly at the putative phosphorylation sites.
    Matched MeSH terms: Escherichia coli/genetics
  9. Verdugo-Rodriguez A, Gam LH, Devi S, Koh CL, Puthucheary SD, Calva E, et al.
    Asian Pac J Allergy Immunol, 1993 Jun;11(1):45-52.
    PMID: 8216558
    An indirect ELISA was used to detect antibodies against outer membrane protein preparations (OMPs) from Salmonella typhi. Sera from patients with a definitive diagnosis of typhoid fever (TF) gave a mean absorbance reading, at 414 nm, of 1.52 +/- 0.23 as compared to 0.30 +/- 0.11 for sera from healthy individuals. This gave a positive to negative ratio of absorbance readings of approximately 5.1. Suspected TF patients (no isolation of S. typhi), with positive and negative Widal titers had mean absorbance readings of 1.282 +/00.46 and 0.25 +/- 0.19, respectively. Sera from patients with leptospirosis, rickettsial typhus, dengue fever, and other infections gave mean absorbances of 0.20 +/- 0.08, 0.24 +/- 0.08, 0.27 +/- 0.08, and 0.31 +/- 0.16, respectively. The sensitivity, specificity, positive and negative predictive values were 100%, 94%, 80% and 100%, respectively. The antibody response detected in the definitive TF cases was predominantly IgG in nature and no cross-reactivity was seen with OMP preparations extracted from E. coli. Variable reactivity was noted with OMP preparations obtained from other Salmonella spp. Three major OMPs are presented in the antigen preparation and strong binding of positive sera was detected to all three bands.
    Matched MeSH terms: Escherichia coli/immunology
  10. Williams JD, Moosdeen F, Teoh-Chan CH, Lim VK, Jayanetra P
    Eur J Epidemiol, 1989 Jun;5(2):207-13.
    PMID: 2504618
    Antibiotic resistance in Gram-negative bacteria, particularly Salmonella and Shigella, requires surveillance worldwide. This study describes results of surveys in Hong Kong, Bangkok and Kuala Lumpur. All strains were isolated in hospitals which have large community catchment areas in addition to specialised hospital units. The prevalence of resistant strains was high in all areas. Gram-negative bacteria such as Enterobacter associated with hospital infections were resistant to penicillins and cephalosporins, with gentamicin resistance ranging from about 20% in Kuala Lumpur and Hong Kong, to 35% in Bangkok. Ninety-seven percent of Shigella isolated in Thailand were resistant to ampicillin. About 10% of Salmonella were resistant to chloramphenicol in all three centres.
    Matched MeSH terms: Escherichia coli/drug effects
  11. Ang SS, Salleh AB, Chor LT, Normi YM, Tejo BA, Rahman MBA, et al.
    Protein J, 2018 04;37(2):180-193.
    PMID: 29508210 DOI: 10.1007/s10930-018-9764-z
    The bioconversion of vitamin D3 catalyzed by cytochrome P450 (CYP) requires 25-hydroxylation and subsequent 1α-hydroxylation to produce the hormonal activated 1α,25-dihydroxyvitamin D3. Vitamin D3 25-hydroxylase catalyses the first step in the vitamin D3 biosynthetic pathway, essential in the de novo activation of vitamin D3. A CYP known as CYP107CB2 has been identified as a novel vitamin D hydroxylase in Bacillus lehensis G1. In order to deepen the understanding of this bacterial origin CYP107CB2, its detailed biological functions as well as biochemical characteristics were defined. CYP107CB2 was characterized through the absorption spectral analysis and accordingly, the enzyme was assayed for vitamin D3 hydroxylation activity. CYP-ligand characterization and catalysis optimization were conducted to increase the turnover of hydroxylated products in an NADPH-regenerating system. Results revealed that the over-expressed CYP107CB2 protein was dominantly cytosolic and the purified fraction showed a protein band at approximately 62 kDa on SDS-PAGE, indicative of CYP107CB2. Spectral analysis indicated that CYP107CB2 protein was properly folded and it was in the active form to catalyze vitamin D3 reaction at C25. HPLC and MS analysis from a reconstituted enzymatic reaction confirmed the hydroxylated products were 25-hydroxyitamin D3 and 1α,25-dihydroxyvitamin D3 when the substrates vitamin D3 and 1α-hydroxyvitamin D3 were used. Biochemical characterization shows that CYP107CB2 performed hydroxylation activity at 25 °C in pH 8 and successfully increased the production of 1α,25-dihydroxyvitamin D3 up to four fold. These findings show that CYP107CB2 has a biologically relevant vitamin D3 25-hydroxylase activity and further suggest the contribution of CYP family to the metabolism of vitamin D3.
    Matched MeSH terms: Escherichia coli/genetics
  12. Ali MS, Yun CC, Chor AL, Rahman RN, Basri M, Salleh AB
    Protein J, 2012 Mar;31(3):229-37.
    PMID: 22350313 DOI: 10.1007/s10930-012-9395-8
    A mutant of the lipase from Geobacillus sp. strain T1 with a phenylalanine to leucine substitution at position 16 was overexpressed in Escherichia coli strain BL21(De3)pLysS. The crude enzyme was purified by two-step affinity chromatography with a final recovery and specific activity of 47.4 and 6,315.8 U/mg, respectively. The molecular weight of the purified F16L lipase was approximately 43 kDa by 12% SDS-PAGE analysis. The F16L lipase was demonstrated to be a thermophilic enzyme due its optimum temperature at 70 °C and showed stability over a temperature range of 40-60 °C. The enzyme exhibited an optimum pH 7 in phosphate buffer and was relatively stable at an alkaline pH 8-9. Metal ions such as Ca(2+), Mn(2+), Na(+), and K(+) enhanced the lipase activity, but Mg(2+), Zn(2+), and Fe(2+) inhibited the lipase. All surfactants tested, including Tween 20, 40, 60, 80, Triton X-100, and SDS, significantly inhibited the lipolytic action of the lipase. A high hydrolytic rate was observed on long-chain natural oils and triglycerides, with a notable preference for olive oil (C18:1; natural oil) and triolein (C18:1; triglyceride). The F16L lipase was deduced to be a metalloenzyme because it was strongly inhibited by 5 mM EDTA. Moderate inhibition was observed in the presence of PMSF at a similar concentration, indicating that serine residues are involved in its catalytic action. Further, the activity was not impaired by water-miscible solvents, including methanol, ethanol, and acetone.
    Matched MeSH terms: Escherichia coli/metabolism
  13. Dayaghi E, Bakhsheshi-Rad HR, Hamzah E, Akhavan-Farid A, Ismail AF, Aziz M, et al.
    Mater Sci Eng C Mater Biol Appl, 2019 Sep;102:53-65.
    PMID: 31147024 DOI: 10.1016/j.msec.2019.04.010
    Recently, porous magnesium and its alloys are receiving great consideration as biocompatible and biodegradable scaffolds for bone tissue engineering application. However, they presented poor antibacterial performance and corrosion resistance which limited their clinical applications. In this study, Mg-Zn (MZ) scaffold containing different concentrations of tetracycline (MZ-xTC, x = 1, 5 and 10%) were fabricated by space holder technique to meet the desirable antibacterial activity and corrosion resistance properties. The MZ-TC contains total porosity of 63-65% with pore sizes in the range of 600-800 μm in order to accommodate bone cells. The MZ scaffold presented higher compressive strength and corrosion resistance compared to pure Mg scaffold. However, tetracycline incorporation has less significant effect on the mechanical and corrosion properties of the scaffolds. Moreover, MZ-xTC scaffolds drug release profiles show an initial immediate release which is followed by more stable release patterns. The bioactivity test reveals that the MZ-xTC scaffolds are capable of developing the formation of HA layers in simulated body fluid (SBF). Next, Staphylococcus aureus and Escherichia coli bacteria were utilized to assess the antimicrobial activity of the MZ-xTC scaffolds. The findings indicate that those scaffolds that incorporate a high level concentration of tetracycline are tougher against bacterial organization than MZ scaffolds. However, the MTT assay demonstrates that the MZ scaffolds containing 1 to 5% tetracycline are more effective to sustain cell viability, whereas MZ-10TC shows some toxicity. The alkaline phosphatase (ALP) activity of the MZ-(1-5)TC was considerably higher than that of MZ-10TC on the 3 and 7 days, implying higher osteoblastic differentiation. All the findings suggest that the MZ-xTC scaffolds containing 1 to 5% tetracycline is a promising candidate for bone tissue healing due to excellent antibacterial activity and biocompatibility.
    Matched MeSH terms: Escherichia coli/drug effects
  14. Ismail NA, Shameli K, Wong MM, Teow SY, Chew J, Sukri SNAM
    Mater Sci Eng C Mater Biol Appl, 2019 Nov;104:109899.
    PMID: 31499959 DOI: 10.1016/j.msec.2019.109899
    In this study, a comparative study of effect using honey on copper nanoparticles (Cu-NPs) via simple, environmentally friendly process and inexpensive route was reported. Honey and ascorbic acid act as stabilizing and reducing agents with the assistance of sonochemical method. The products were characterized using UV-visible (UV-vis) spectroscopy, X-Ray Diffraction (XRD), High-Resolution Transmission Electron Microscopy (HRTEM), Field-Emission Scanning Electron Microscopy (FESEM) and Fourier Transform Infrared (FTIR) spectroscopy. The reddish brown colour demonstrated the formation of Cu-NPs and UV-visible proved the plasmon resonance of Cu-NPs. XRD also confirmed a highly pure Cu-NPs obtained with absence of copper oxide in which the structure is crystalline. The spherical size of the Cu-NPs was acquire in the presence of honey which is 3.68 ± 0.78 nm with narrow particle distribution. The antibacterial activity was seen against gram-positive and gram-negative bacteria which are Enterococcus faecalis (E. faecalis) and Escherichia coli (E. coli). At higher concentration of Cu-NPs, they were more effective in killing both bacteria. The Cu-NPs without and with honey exhibited toxicities toward normal and cancerous cells. However, Cu-NPs without honey showed more potent killing activity against normal and cancer cells.
    Matched MeSH terms: Escherichia coli/drug effects
  15. Gautam A, Paudel YN, Abidin S, Bhandari U
    Hum Exp Toxicol, 2019 Mar;38(3):356-370.
    PMID: 30526076 DOI: 10.1177/0960327118817862
    The current study investigated the role of guggulsterone (GS), a farnesoid X receptor antagonist, in the choline metabolism and its trimethylamine (TMA)/flavin monooxygenases/trimethylamine-N-oxide (TMAO) inhibiting potential in a series of in vitro and in vivo studies as determined by high-performance liquid chromatography (HPLC), mass spectroscopy (MS), and liquid chromatography (LC)-MS techniques. Atherosclerosis (AS) was successfully induced in a group of experimental animals fed with 2% choline diet for 6 weeks. Serum lipid profiles such as total cholesterol, triglycerides, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, and very low-density lipoprotein cholesterol were measured. Pro-inflammatory cytokines levels, markers for a hepatic injury, and oxidative stress markers were assessed. Interestingly, GS reduced the level of TMA/TMAO in both in vitro and in vivo studies as demonstrated by the peaks obtained from HPLC, MS, and LC-MS. Furthermore, GS exhibited cardioprotective and antihyperlipidemic effects as evidenced by the attenuation of levels of several serum lipid profiles and different atherogenic risk predictor indexes. GS also prevented hepatic injury by successfully restoring the levels of hepatic injury biomarkers to normal. Similarly, GS inhibited the production of pro-inflammatory cytokines levels, as well as GS, enhanced antioxidant capacity, and reduced lipid peroxidation. Histopathological study of aortic sections demonstrated that GS maintained the normal architecture in AS-induced rats. On the basis of results obtained from current investigation, we suggest that GS might have a great therapeutic potential for the treatment of AS.
    Matched MeSH terms: Escherichia/metabolism
  16. Ashraf MA, Peng WX, Fakhri A, Hosseini M, Kamyab H, Chelliapan S
    J. Photochem. Photobiol. B, Biol., 2019 Sep;198:111579.
    PMID: 31401316 DOI: 10.1016/j.jphotobiol.2019.111579
    The sol-gel/ultrasonically rout produced the novel MnS2-SiO2 nano-hetero-photocatalysts with the various ratio of MnS2. Prepared nano-catalyst were investigated in the photo-degradation of methylene blue under UV light illumination. Structural and optical attributes of as-prepared nano-catalysts were evaluated by X-ray diffraction and photoelectron spectroscopy. The morphological were studied by scanning electron microscopy-EDS, and dynamic light scattering. The diffuse reflectance spectroscopy was applied to examine the band gap energy. The Eg values of SiO2, MnS2-SiO2-0, MnS2-SiO2-1, and MnS2-SiO2-2 nanocomposites are 6.51, 3.85, 3.17, and 2.67 eV, respectively. The particle size of the SiO2 and MnS2-SiO2-1 nanocomposites were 100.0, and 65.0 nm, respectively. The crystallite size values of MnS2-SiO2-1 were 52.21 nm, and 2.9 eV, respectively. MnS2-SiO2 nano-photocatalyst was recognized as the optimum sample by degrading 96.1% of methylene blue from water. Moreover, the influence of pH of the solution, and contact time as decisive factors on the photo-degradation activity were investigated in this project. The optimum data for pH and time were found 9 and 60 min, respectively. The photo-degradation capacity of MnS2-SiO2-2 is improved (96.1%) due to the low band gap was found from UV-vis DRS. The antimicrobial data of MnS2-SiO2 were studied and demonstrated that the MnS2-SiO2 has fungicidal and bactericidal attributes.
    Matched MeSH terms: Escherichia coli/drug effects
  17. Winnie FYM, Siddiqui R, Sagathevan K, Khan NA
    Curr Pharm Biotechnol, 2020;21(5):425-437.
    PMID: 31577204 DOI: 10.2174/1389201020666191002153435
    BACKGROUND: Snakes feed on germ-infested rodents, while water monitor lizards thrive on rotten matter in unhygienic conditions. We hypothesize that such creatures survive the assault of superbugs and are able to fend off disease by producing antimicrobial substances. In this study, we investigated the potential antibacterial activity of sera/lysates of animals living in polluted environments.

    METHODS: Snake (Reticulatus malayanus), rats (Rattus rattus), water monitor lizard (Varanus salvator), frog (Lithobates catesbeianus), fish (Oreochromis mossambicus), chicken (Gallus gallus domesticus), and pigeon (Columba livia) were dissected and their organ lysates/sera were collected. Crude extracts were tested for bactericidal effects against neuropathogenic E. coli K1, methicillin-resistant Staphylococcus aureus (MRSA), Streptococcus pyogenes, Pseudomonas aeruginosa, Bacillus cereus and Klebsiella pneumoniae. To determine whether lysates/sera protect human cells against bacterialmediated damage, cytotoxicity assays were performed by measuring lactate dehydrogenase release as an indicator of cell death. Lysates/sera were partially characterized using heat-treatment and pronasetreatment and peptide sequences were determined using the Liquid Chromatography Mass Spectrometry (LC-MS).

    RESULTS: Snake and water monitor lizard sera exhibited potent broad-spectrum bactericidal effects against all bacteria tested. Heat inactivation and pronase-treatment inhibited bactericidal effects indicating that activity is heat-labile and pronase-sensitive suggesting that active molecules are proteinaceous in nature. LCMS analyses revealed the molecular identities of peptides.

    CONCLUSION: The results revealed that python that feeds on germ-infested rodents and water monitor lizards that feed on rotten organic waste possess antibacterial activity in a heat-sensitive manner and several peptides were identified. We hope that the discovery of antibacterial activity in the sera of animals living in polluted environments will stimulate research in finding antibacterial agents from unusual sources as this has the potential for the development of novel strategies in the control of infectious diseases.

    Matched MeSH terms: Escherichia coli/drug effects
  18. Ong RM, Goh KM, Mahadi NM, Hassan O, Rahman RN, Illias RM
    J Ind Microbiol Biotechnol, 2008 Dec;35(12):1705-14.
    PMID: 18726621 DOI: 10.1007/s10295-008-0462-2
    The cyclodextrin glucanotransferase (CGTase, EC 2.4.1.19) gene from Bacillus sp. G1 was successfully isolated and cloned into Escherichia coli. Analysis of the nucleotide sequence revealed the presence of an open reading frame of 2,109 bp and encoded a 674 amino acid protein. Purified CGTase exhibited a molecular weight of 75 kDa and had optimum activity at pH 6 and 60 degrees C. Heterologous recombinant protein expression in E. coli is commonly problematic causing intracellular localization and formation of inactive inclusion bodies. This paper shows that the majority of CGTase was secreted into the medium due to the signal peptide of Bacillus sp. G1 that also works well in E. coli, leading to easier purification steps. When reacted with starch, CGTase G1 produced 90% beta-cyclodextrin (CD) and 10% gamma-CD. This enzyme also preferred the economical tapioca starch as a substrate, based on kinetics studies. Therefore, CGTase G1 could potentially serve as an industrial enzyme for the production of beta-CD.
    Matched MeSH terms: Escherichia coli/metabolism
  19. Gull N, Khan SM, Butt OM, Islam A, Shah A, Jabeen S, et al.
    Int J Biol Macromol, 2020 Nov 01;162:175-187.
    PMID: 32562726 DOI: 10.1016/j.ijbiomac.2020.06.133
    Inflammation is a key challenge in the treatment of chronic diseases. Spurred by topical advancement in polymer chemistry and drug delivery, hydrogels that release a drug in temporal, spatial and dosage controlled fashion have been trendy. This research focused on the fabrication of hydrogels with controlled drug release properties to control inflammation. Chitosan and polyvinyl pyrrolidone were used as base polymers and crosslinked with epichlorohydrin to form hydrogel films by solution casting technique. Prepared hydrogels were analyzed by swelling analysis in deionized water, buffer and electrolyte solutions and gel fraction. Functional groups confirmation and development of new covalent and hydrogen bonds, thermal stability (28.49%) and crystallinity were evaluated by FTIR, TGA and WAXRD, respectively. Rheological properties including gel strength and yield stress, elasticity (2309 MPa), porosity (75%) and hydrophilicity (73°) of prepared hydrogels were also evaluated. In vitro studies confirmed that prepared hydrogels have good biodegradability, excellent antimicrobial property and admirable cytotoxicity. Drug release profile (87.56% in 130 min) along with the drug encapsulation efficiency (84%) of prepared hydrogels was also studied. These results paved the path towards the development of hydrogels that can release the drugs with desired temporal patterns.
    Matched MeSH terms: Escherichia coli/drug effects*
  20. Son R, Rusul G, Sahilah AM, Zainuri A, Raha AR, Salmah I
    Lett Appl Microbiol, 1997 Jun;24(6):479-82.
    PMID: 9203404
    Strains of Aeromonas hydrophila isolates from skin lesions of the common freshwater fish, Telapia mossambica, were screened for the presence of plasmid DNA by agarose gel electrophoresis and tested for susceptibility to 10 antimicrobial agents. Of the 21 fish isolates examined, all were resistant to ampicillin and sensitive to gentamycin. Most isolates were resistant to streptomycin (57%), tetracycline (48%) and erythromycin (43%). While seven of 21 isolates harboured plasmids, with sizes ranging from 3 to 63.4 kilobase pair (kb), it was only possible to associate the presence of a plasmid with antibiotic resistance (ampicillin and tetracycline) in strain AH11. Both the plasmid and the associated antimicrobial resistance could be transferred to an Escherichia coli recipient by single-step conjugation at a frequency of 4.3 x 10(-3) transconjugants per donor cell.
    Matched MeSH terms: Escherichia coli/genetics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links