A dried high fiber product from bambangan (Mangifera pajang Kort.) fruit pulp was prepared and evaluated for proximate composition, functional properties, and soluble and insoluble dietary fiber composition. Mangifera pajang fibrous (MPF) consisted of 4.7% moisture, 0.8% fat, 4% protein, and 30 mg total polyphenol per g of dry sample, and 9, 79 and 88% soluble, insoluble and total dietary fiber, respectively. Water holding capacity, oil holding capacity, swelling, and solubility were found to be 9 g/g dry sample, 4 g/g dry sample, 16 mL/g dry sample, and 11%, respectively. The glucose dialysis retardation index of MPF was approximately double that of cellulose fiber. Soluble dietary fiber contained mannose, arabinose, glucose, rhamnose, erythrose, galactose, xylose, and fucose at 1.51, 0.72, 0.39, 0.16, 0.14, 0.05, 0.04, and 0.01%, respectively, with 5.8% uronic acid, while insoluble dietary fiber was composed of arabinose (18.47%), glucose (4.46%), mannose (3.15%), rhamnose (1.65%), galactose (1.20%), xylose (0.99%), and fucose (0.26%) with 15.5% uronic acid and 33.1% klason lignin. These characteristics indicate that MPF is a rich source of dietary fiber and has physicochemical properties which make it suitable as an added ingredient in various food products and/or dietetic, low-calorie high-fiber foods to enhance their nutraceutical properties.
An efficient in vitro plant regeneration system was established for elite, recalcitrant Malaysian indica rice, Oryza sativa L. CV. MR 219 using mature seeds as explant on Murashige and Skoog and Chu N6 media containing 2,4-dichlorophenoxy acetic acid and kinetin either alone or in different combinations. L-proline, casein hydrolysate and L-glutamine were added to callus induction media for enhancement of embryogenic callus induction. The highest frequency of friable callus induction (84%) was observed in N6 medium containing 2.5 mg l(-1) 2,4-dichlorophenoxy acetic acid, 0.2 mg l(-1) kinetin, 2.5 mg l(-1) L-proline, 300 mg l(-1) casein hydrolysate, 20 mg l(-1) L-glutamine and 30 g l(-1) sucrose under culture in continuous lighting conditions. The maximum regeneration frequency (71%) was observed, when 30-day-old N6 friable calli were cultured on MS medium supplemented with 3 mg l(-1) 6-benzyl aminopurine, 1 mg l(-1) naphthalene acetic acid, 2.5 mg l(-1) L-proline, 300 mg l(-1) casein hydrolysate and 3% maltose. Developed shoots were rooted in half strength MS medium supplemented with 2% sucrose and were successfully transplanted to soil with 95% survival. This protocol may be used for other recalcitrant indica rice genotypes and to transfer desirable genes in to Malaysian indica rice cultivar MR219 for crop improvement.
In order to improve Boer goat semen quality during cryopreservation process, the influence of sugar supplementation on semen characteristics of sperm were investigated. Three experiments were carried out to investigate the effect of (a) addition of two monosaccharides (fructose and glucose) and two disaccharides sugars (trehalose and sucrose) (b) sugar combination (fructose and trehalose, sucrose and trehalose, glucose and trehalose), and control (glucose without trehalose) (c) different concentrations of trehalose on cryopreservation using Tris based extender. The total motility, forward motility, viability, normal spermatozoa, acrosome integrity and membrane integrity were assessed subjectively. Differences were not detected among monosaccharides, but glucose increased (P<0.05) sperm forward motility in post-thaw goat semen compared to trehalose or sucrose supplementation. Semen quality did not differ (P>0.05) among disaccharide sugar supplementation. Combination of glucose and trehalose significantly improved the characteristics of Boer spermatozoa after cryopreservation (P<0.05). Supplementation of trehalose (198.24mM) into the glucose extender significantly increased total motility, forward motility, live spermatozoa, acrosome integrity and membrane integrity following cryopreservation (P<0.05). In conclusion, glucose had the better ability to support Boer sperm motility and movement patterns. Combination of monosaccharide (glucose) and disaccharide (trehalose) improved semen quality following cryopreservation. Trehalose supplementation at the concentration of 198.24mM to the glucose extender conferred the greater improvement of semen quality for Boer semen cryopreservation.
Studies were carried out on heat treatment of bamboo species Gigantochloa scortechinii Gamble using palm oil. The samples were laminated and glued. The adhesion results showed that the delamination of glue line increased as the temperature and duration of oil heat treatment increased. Maximum load and shear strength of the glue line reduced as the heat treatment become more severe. It was found that the palm oil used as the heating medium penetrated in some parts of the cell wall as well as in the cell lumen of the bamboo.
Since 2003, highly pathogenic A(H5N1) influenza viruses have been the cause of large-scale death in poultry and the subsequent infection and death of over 140 humans. A group of 55 influenza A(H5N1) viruses isolated from various regions of South East Asia between 2004 and 2006 were tested for their susceptibility to the anti-influenza drugs the neuraminidase inhibitors and adamantanes. The majority of strains were found to be fully sensitive to the neuraminidase inhibitors oseltamivir carboxylate, zanamivir and peramivir; however two strains demonstrated increased IC50 values. Sequence analysis of these strains revealed mutations in the normally highly conserved residues 116 and 117 of the N1 neuraminidase. Sequence analysis of the M2 gene showed that all of the A(H5N1) viruses from Vietnam, Malaysia and Cambodia contained mutations (L26I and S31N) associated with resistance to the adamantane drugs (rimantadine and amantadine), while strains from Indonesia were found to be a mix of both adamantane resistant (S31N) and sensitive viruses. None of the A(H5N1) viruses from Myanmar contained mutations known to confer adamantane resistance. These results support the use of neuraminidase inhibitors as the most appropriate class of antiviral drug to prevent or treat human A(H5N1) virus infections.
The in-vitro susceptibility of quinupristin/dalfopristin, levofloxacin and moxifloxacin against methicillin-resistant Staphylococcus aureus (MRSA) strains, which are also resistant to fusidic acid and rifampicin were carried out to determine whether these antibiotics can be used as an alternative treatment for multiply resistant MRSA strains. The minimum inhibitory concentrations (MIC) of these antibiotics were determined by E-test. Quinupristin/dalfopristin had good activity (MIC90 = 1 mg/L) against these strains while most of the strains showed intermediate resistance to moxifloxacin with MIC90 = 2 mg/L). However, more than 90% of these strains were resistant to levofloxacin with the MICs that ranged from 8 mg/L to 16 mg/L with the majority inhibited at 8 mg/L.
Although rove beetles (Paederus spp.) play a beneficial role as biological control agents to manage crop pests in agro-ecosystems, their high prevalence in human settings has elevated them to pest status in urban areas. Rove beetles neither bite nor sting, but accidental crushing on human skin causes them to release the toxin paederin, which causes dermatitis linearis. This review integrates currently available knowledge about the issues pertaining to Paederus infestation. For instance, the results of life history studies conducted under different food and temperature regimes are summarized, as they indicate how large a population can be in a habitat to cause massive and widespread infestation and illustrate the physiological traits required to maintain the population at the maximum level even under adverse conditions. In contrast to what is generally reported, we speculate that climatic factors do not necessarily result in Paederus dispersal in temperate regions; instead, habitat disturbance and site unsuitability may be the main factors that lead to massive dispersal to human settings. Factors such as whether dispersers are adaptable to xeric conditions in human settings, the probability that dispersed Paederus mate with the opposite sex, and whether dispersers have adequate nutrient intake to reproduce are considered to evaluate their potential to reproduce in human settings. Finally, the effectiveness of current commercial insecticides, challenges faced in managing infestations, and sustainable management practices are discussed to provide information for long-term control programs.
In this phyto-pharmacological screening of Pistia stratiotes L leaf and root extracts each separately in two different solvents demonstrated its potential medicinal value. Apparent antioxidant value is demonstrated by DPPH, Nitric oxide scavenging and Ferric ion reducing method. Additionally, total flavonoid and phenolic compounds were measured. The leaf methanolic extract scavenged both nitric oxide (NO) and DPPH radical with a dose dependent manner. But the pet ether fraction of root was found to have highest efficacy in Fe(3±) reducing power assay. Flavonoid was found to contain highest in the pet ether fraction of root (411.35mg/g) in terms of quercetin equivalent, similarly highest amount (34.96mg/g) of total phenolic compounds (assayed as gallic acid equivalents) were found to contain in the same fraction. The methanolic fractions appeared less cytotoxic compared to pet ether extracts. The plant extracts caused a dose dependent decrease in faecal droppings in both castor oil and magnesium sulphate induced diarrhea, where as leaf extracts in each solvent appeared most effective. Also, the plant extracts showed anthelmintic activity in earthworm by inducing paralysis and death in a dose dependent manner. At highest doses (50 mg/ml) all fractions were almost effective as the positive control piperazine citrate (10 mg/ml). Thus, besides this cytotoxic effect it's traditional claim for therapeutic use can never be overlooked.
The study investigated the changes in the metabolite, antioxidant and α-glucosidase inhibitory activities of Phyllanthus niruri after three drying treatments: air, freeze and oven dryings. Water extracts and extracts obtained using different solvent ratios of ethanol and methanol (50, 70, 80 and 100%) were compared. The relationships among the antioxidant, α-glucosidase inhibitory activity and metabolite levels of the extracts were evaluated using partial least-square analysis (PLS). The solvent selectivity was assessed based on the phytochemical constituents present in the extract and their concentrations quantitatively analyzed using high performance liquid chromatography. The freeze-dried P. niruri samples that were extracted with the mixture of ethanol or methanol with low ratio of water showed higher biological activity values compared with the other extracts. The PLS results for the ethanolic with different ratio and water extracts demonstrated that phenolic acids (chlorogenic acid and ellagic acid) and flavonoids were highly linked to strong α-glucosidase inhibitory and antioxidant activities.
Eleven Malaysian Plasmodium falciparum isolates were cultured in vitro and later subjected to antimalarial evaluations in 96-well microtiter plates. After cryopreservation, the IC50 (nM) for ST 195, ST 196, ST 197, ST 244 and ST 245 isolates were, respectively: 180.9, 198.7, 482.0, 580.0 and 690.1 for chloroquine; 3.4, 3.4, 9.2, 4.0 and 5.8 for mefloquine; 21.9, 10.5, 40.7, 40.1 and 48.7 for quinine; 136.7, 58.8, 116.4, 29.4 and 95.4 for cycloguanil, and 48.3, 57.5, 47.4, 61.5 and 37.8 for pyrimethamine. Before cryopreservation they were 172.5, 141.5, 453.2, 636.0 and 651.6 nM for chloroquine; 4.8, 2.6, 9.0, 6.9 and 5.8 nM for mefloquine; 21.3, 8.3, 41.9, 49.6 and 40.1 nM for quinine, 129.9, 47.3, 109.3, 30.6 and 95.4 nM for cycloguanil, and 45.4, 47.4, 40.2, 66.3 and 36.0 nM for pyrimethamine. IC50 (nM) for Gombak A, Gombak C, ST 9, ST 12, ST 85 and ST 148 isolates after 12 months of continuous in vitro culture were, respectively: 477.0, 492.3, 367.1, 809.4, 566.5 and 341.8 for chloroquine; 2.9, 11.1, 8.5, 16.9, 5.3 and 4.2 for mefloquine; 6.2, 58.3, 52.7, 36.7, 31.8 and 26.2 for quinine; 154.5, 57.2, 130.3, 94.2, 81.4 and 102.9 for cycloguanil, 26.9, 24.9, 43.8, 31.0, 14.1 and 56.7 for pyrimethamine. Before the 12-month culture they were 472.3, 452.9, 352.7, 773.7, 702.7 and 322.7 nM for chloroquine; 2.6, 13.2, 8.5, 17.2, 5.0 and 4.0 nM for mefloquine; 6.2, 85.4, 53.9, 38.5, 35.8 and 38.5 nM for quinine; 106.8, 74.3, 112.4, 89.8, 91.8 and 103.3 nM for cycloguanil, and 26.9, 31.4, 47.0, 28.1, 14.9 and 56.7 nM for pyrimethamine. Thus none of these isolates differed in their original susceptibilities after either of these procedures.
1. Glucocorticosteroid may relieve bronchospasm by mediating changes in the muscarinic receptor concentration and/or its affinity. 2. Cholinergic muscarinic receptors were determined by using Scatchard's plots from radioligand binding assays of 0.13-3.2 nM [3H]quinuclidinyl benzylate binding to the membrane fraction of bronchial smooth muscle (BSM). 3. The concentration of muscarinic receptor in BSM of normal rat was 57 +/- 3 fmol mg protein and the dissociation constant was 0.07 +/- 0.02 nM. Dexamethasone and corticosterone reduced muscarinic receptor concentration to 50-60% of basal with no changes in receptor affinity. No changes were found in rat treated with deoxycorticosterone. 4. These findings suggest that glucocorticoids but not mineralocorticoid relieve bronchospasm at least partly by reducing the cholinergic hypersensitivity.
Schistosomiasis, a grave and debilitating disease of socioeconomic importance, is increasing in incidence despite concerted efforts to control and contain the disease in all the endemic areas. While a multipronged method of control using health education, sanitation and snail control has been used, chemotherapy and chemoprophylaxis play the most important and crucial role in containing/preventing the transmission of the disease. Schistosomicides such as antimonials were introduced, as early as the 1990s as the drugs of choice and continued to be used until the early 1960s. The antimonials were administered intravenously, and produced severe side effects; the various variables that determined their effects at the site of action made their application difficult and adversely affected their use in large scale chemotherapy. The antimonials were then replaced by hycanthone and lucanthone which were administered intramuscularly. These drugs produced immediate side effects such as hepatotoxicity and gastrointestinal disturbances, and were consequently withdrawn. It was then decided that the alternative was to produce synthetic drugs that could be administered orally. Niridazole, oxamniquine, and metrifonate were introduced as schistosomicidal agents, with drugs like oltipraz and amoscanate still at clinical trial phase. Therapeutic doses of drugs like hycanthone, niridazole and amoscanate have been found to cause many major side effects. A significant advance in the control of schistosomiasis chemotherapy is the introduction of a relatively safe, effective, broad spectrum oral helminthic agent, praziquantel. Studies have also shown that oxamniquine is as effective as praziquantel in eliminating intestinal S. mansoni infection, and metrifonate is as effective as praziquantel in eliminating urinary S. haematobium and S. mansoni infections. Praziquantel has been found to be effective in treating S. haematobium infections compared with metrifonate and more effective in treating S. mansoni infection when compared with oxamniquine. Because the drug is effective even when treating advanced hepatosplenic schistosomiasis, with few side effects, praziquantel is currently the drug of choice for the treatment of any kind of schistosomiasis. The only limitation is the cost which restricts its use in many developing countries. While effective, safe drugs for mass chemotherapy are being developed, the problem of therapeutic failure and drug resistance is being reported from certain developing countries. Under these circumstances, alternative drugs must be resorted to. Mass treatment, a crucial goal in the eventual control of schistosomiasis, awaits a well-tolerated and nontoxic drug that will ultimately prove to be effective where cure is definite. Until such a time, while eradication of the disease is a near impossibility, reducing the intensity of infection can ultimately reduce morbidity and even mortality.(ABSTRACT TRUNCATED AT 400 WORDS)
The effect of oxytocin on testicular function was examined in the adult male long-tailed macaques (Macaca fascicularis). The monkeys were either infused with increasing concentrations of synthetic oxytocin (16-128 m.i.u./min for 3 h) or injected daily for a week with the same hormone (20 i.u., i.v.) and the plasma testosterone levels measured. The results of the present study show that acute infusion or chronic injection of oxytocin does not significantly affect the plasma testosterone levels, suggesting that systemic control of testicular endocrine function by oxytocin may be unimportant.
Addition of the non-ionic detergent Tween 20 to the serum diluent enhances anti-cardiolipin binding reactivity in an ELISA system. Maximal enhancement was obtained using a concentration of 0.05% Tween 20 in the diluent. Non-specific interactions were also considerably reduced.
The lack of kinin formation in systemic circulation and in the renal system may lead to the pathogenesis of high blood pressure (hypertension). Angiotensin converting enzyme inhibitors are able to protect the kinin inactivation by kininase II, therefore, causing an accumulation of kinin. Although the concentrations of kinin in plasma after oral administration of ACE inhibitors are conflicting this is mainly due to methodological difficulties. Kinin receptor antagonists are becoming most reliable pharmacological probes for defining the molecular actions of kinin in several physiopathological states, and in the mechanism of actions of drugs which are dependent on the kinin system. The blood pressure lowering effect of ACE inhibitors can be antagonized by the pretreatment with kinin receptor antagonists. I have therefore proposed that the hypotensive action of ACE inhibitors may reflect the activation of kinin receptor. It is suggested that the development of compounds having protective properties on the kallikrein-kinin system might be therapeutically applicable as anti-hypertensive drugs.
1. The effects of corticosteroid pretreatment on acetylcholine (ACH)-induced contraction of bronchial smooth muscle (BSM) were studied. 2. ACH dose-response curves for dexamethasone (DM)- and corticosterone (B)-treated but not deoxycorticosterone (DOC)-treated BSM were significantly shifted to the right; this provides evidence that glucocorticoid treatment reduced the sensitivity of BSM to ACH. 3. Morphine enhanced BSM contraction in response to ACH by 20%. DM suppressed this enhancement. 4. These findings correlated well with the reduction of muscarinic receptor numbers in BSM by glucocorticoids in our previous study. In addition, glucocorticoids reduced the sensitivity of BSM to opioids.
The prevalence of obesity is increasing rapidly globally and has recently reached pandemic proportions. It is a multifactorial disorder linked to a number of non-communicable diseases such as type-2 diabetes, cardiovascular disease, and cancer. Over-nutrition and a sedentary lifestyle are considered the most significant causes of obesity; a healthy lifestyle and behavioural interventions are the most powerful ways to achieve successful weight loss, but to maintain this in the long term can prove difficult for many individuals, without medical intervention. Various pharmacological anti-obesogenic drugs have been tested and marketed in the past and have been moderately successful in the management of obesity, but their adverse effects on human health often outweigh the benefits. Natural products from plants, either in the form of crude extracts or purified phytochemicals, have been shown to have anti-obesogenic properties and are generally considered as nontoxic and cost-effective compared to synthetic alternatives. These plant products combat obesity by targeting the various pathways and/or regulatory functions intricately linked to obesity. Their mechanisms of action include inhibition of pancreatic lipase activities, an increase in energy expenditure, appetite regulation, lipolytic effects, and inhibition of white adipose tissue development. In this review, we discuss the distinct anti-obesogenic properties of recently reported plant extracts and specific bioactive compounds, along with their molecular mechanisms of action. This review will provide a common platform for understanding the different causes of obesity and the possible approaches to using plant products in tackling this worldwide health issue.