Displaying publications 721 - 740 of 3987 in total

Abstract:
Sort:
  1. Abdul Rahman Hassan, Nurul Hannan Mohd Safari, Sabariah Rozali, Hafizan Juahir, Mohd Khairul Amri Kamarudin
    MyJurnal
    Nanofiltration membranes technology commonly used for wastewater treatment especially
    wastewater containing charged and/or uncharged species. Commonly, textile wastewater
    possesses high chemical oxygen demand (COD) and non-biodegradable compounds such as
    pigments and dyes which lead to environmental hazard and serious health problem. Therefore, the
    objective of this study was to investigate the effects of hydrophilic surfactant on the preparation and
    performance of Active Nanofiltration (ANF) membrane. The polymeric ANF membranes were
    prepared via dry/wet phase inversion technique by immersion precipitation process. The
    Cetyletrimethylammonium bromide (CTAB) as cationic surfactant was added in casting solution at
    concentrations from 0 to 2.5 wt%. The synthesized membrane performance was evaluated in terms
    of pure water permeation (PWP) and dye rejection. The experimental data showed that the
    membrane demonstrated good increment of PWP ranging from 0.27 to 10.28 L/m2
    h at applied
    pressure from 100 to 500kPa, respectively. Meanwhile, the ANF membranes achieved high
    removal of Methyl Blue and Reactive Black 5 dye up to 99.5% and 91.6%, respectively.
    Matched MeSH terms: Water; Waste Water
  2. Sarmin S, Ethiraj B, Islam MA, Ideris A, Yee CS, Khan MMR
    Sci Total Environ, 2019 Dec 10;695:133820.
    PMID: 31416036 DOI: 10.1016/j.scitotenv.2019.133820
    The petrochemical wastewater (PCW) from acrylic acid plants possesses a very high chemical oxygen demand (COD) due to the presence of acrylic acid along with other organic acids. The treatment of PCW by conventional aerobic and anaerobic methods is energy intensive. Therefore, the treatment of PCW with concurrent power generation by employing microbial fuel cell (MFC) could be a potential alternative to solve the energy and environmental issues. This study demonstrates the potentiality of PCW from acrylic acid plant with an initial COD of 45,000 mg L-1 generating maximum power density of 850 mW m-2 at a current density of 1500 mA m-2 using acclimatized anaerobic sludge (AS) as biocatalyst. The predominant microbes present in acclimatized AS were identified using Biolog GEN III analysis, which include the electrogenic genera namely Pseudomonas spp. and Bacillus spp. along with methanogenic archea Methanobacterium spp. The mechanism of electron transfer was elucidated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) which clearly demonstrated the natural metabolite-based electron transfer across the electrode/biofilm/solution interface. The abundance of the electron shuttle metabolites was increased with the microbial growth in the bulk solution as well as in the biofilm leading to a high power generation. The COD removal efficiency and the coulombic efficiency (CE) were found to be 40% and 21%, respectively after 11 days of operation using initial COD of 45,000 mg L-1. The low COD removal efficiency could drastically be increased to 82% when the initial COD of PCW was 5000 mg L-1 generating a power density of 150 mW m-2. The current work proves the feasibility of the MFC for the treatment of acrylic acid plant PCW using acclimatized anaerobic sludge (AS) as a biocatalyst.
    Matched MeSH terms: Waste Water/microbiology
  3. Sherlala AIA, Raman AAA, Bello MM, Buthiyappan A
    J Environ Manage, 2019 Sep 15;246:547-556.
    PMID: 31202019 DOI: 10.1016/j.jenvman.2019.05.117
    Chitosan-magnetic-graphene oxide (CMGO) nanocomposite was prepared for arsenic adsorption. The nanocomposite was characterized through BET, FTIR, FESEM, EDX, and VSM analyses. These characterizations confirmed the formation of CMGO nanocomposites with high specific surface area (152.38 m2/g) and excellent saturation magnetization (49.30 emu/g). Batch adsorption experiments were conducted to evaluate the performance of the nanocomposite in the adsorption of arsenic from aqueous solution. The effects of operational parameters, adsorption kinetic, equilibrium isotherm and thermodynamics were evaluated. The removal efficiency of arsenic increased with increasing adsorbent dosage and contact time. However, the effect of pH followed a different pattern, with the removal efficiency increasing from acidic to neutral pH, and then decreasing at alkaline conditions. The highest adsorption capacity (45 mg/g) and removal efficiency (61%) were obtained at pH 7.3. The adsorption kinetic followed a pseudo-second-order kinetic model. The analysis of adsorption isotherm shows that the adsorption data fitted well to Langmuir isotherm model, indicating a homogeneous process. Thermodynamic analysis shows that the adsorption of As(III) is exothermic and spontaneous. The superparamagnetic properties of the nanocomposite enabled the separation and recovery of the nanoparticles using an external magnetic field. Thus, the developed nanocomposite has a potential for arsenic remediation.
    Matched MeSH terms: Water Pollutants, Chemical*
  4. Buthiyappan A, Gopalan J, Abdul Raman AA
    J Environ Manage, 2019 Nov 01;249:109323.
    PMID: 31400589 DOI: 10.1016/j.jenvman.2019.109323
    This present research aims to synthesize and investigate the adsorption potential of sugarcane bagasse (SCB) impregnated with iron oxide (Fe3O4) for dye removal. The surface morphology and functional groups of the newly developed adsorbent (ISCB) were studied using Scanning Electron Microscopy/Energy-dispersive X-ray spectroscopy (SEM/EDX), Fourier transforms infrared spectroscopy (FTIR), and X-ray powder diffraction (XRD) analysis. The effects of the operating parameters, including initial dye concentration, adsorbent dosage, contact time and initial pH of the dye solution on the adsorption efficiency were investigated to identify an optimal condition. The characterization of SEM-EDX and FTIR analyses shows that ISCB has a porous structure and carbon-containing functional groups. The adsorption result revealed that ISCB removed 93.7% of dye, 88.8% of color and had a dye adsorption capacity of 7.2 mg/g within 6 h of contact time using 0.7 g/L of ISCB at pH 8.4. The result obtained fitted well for Langmuir isotherms, and adsorption process followed the pseudo-second-order kinetic model. In conclusion, this study proved that ISCB has the potential to be used as an effective and low-cost adsorbent to remove dyes from wastewater.
    Matched MeSH terms: Water Pollutants, Chemical*
  5. Naje AS, Ajeel MA, Ali IM, Al-Zubaidi HAM, Alaba PA
    Water Sci Technol, 2019 Aug;80(3):458-465.
    PMID: 31596257 DOI: 10.2166/wst.2019.289
    In this work, landfill leachate treatment by electrocoagulation process with a novel rotating anode reactor was studied. The influence of rotating anode speed on the removal efficiency of chemical oxygen demand (COD), total dissolved solids (TDS), and total suspended solids (TSS) of raw landfill leachate was investigated. The influence of operating parameters like leachate pH, leachate temperature, current, and inter-distance between the cathode rings and anode impellers on the electrocoagulation performance were also investigated. The results revealed the optimum rotating speed is 150 rpm and increasing the rotating speed above this value led to reducing process performance. The leachate electrocoagulation treatment process favors the neutral medium and the treatment performance increases with increasing current intensity. Furthermore, the electrocoagulation treatment performance improves with increasing leachate temperature. However, the performance reduces with increasing inter-electrode distance.
    Matched MeSH terms: Water Pollutants, Chemical*
  6. Lim, Leong Seng, Isabella Ebi, Liew, Kit Shing, Yap, Tzuen Kiat, Tan, Nai Han
    MyJurnal
    Tieshangang Bay in the Beibu Gulf, Guangxi of China, is a strategic location for pearl farming. Although water pollution has been reported in this bay but the general health of the pearl oyster, Pinctada fucata martensii, farmed there has never been assessed. The present study examined the condition of P. fucata martensii farmed in the Tieshangang Bay by analyzing its length-weight relationship (LWR) and relative condition factor (RCF). A total of 111 specimens were sampled for measuring their shell height and total weight for determining the LWR and RCF. The coefficient of correlation of the LWR was high (R2 = 0.93), significant at 0.01 level. Negative allometric growth (b = 2.7048) was observed. However, P. fucata martensii achieved the expected growth in terms of weight, as determined through the RCF (mean 1.13). Negative allometric growth is commonly reported on the wild Pinctada spp. collected from different regions. Apparently, the water pollution in the Tieshangang Bay did not compromise the general health of the pearl oyster cultured there. Nevertheless, further study on the farm’s surrounding water quality and plankton availability is necessary to investigate the interaction between the growth of the oyster and its culture environment. In conclusion, the P. fucata martensii farmed in the Tieshangang Bay was considered healthy and the bay is still suitable for pearl oyster farming.
    Matched MeSH terms: Water Pollution; Water Quality
  7. Zainol Z, Akhir MF, Johari A, Ali A
    Data Brief, 2021 Apr;35:106866.
    PMID: 33816725 DOI: 10.1016/j.dib.2021.106866
    This article contains water quality data collected in a shallow and narrow Setiu Lagoon during the southwest monsoon, wet period of northeast monsoon and dry period of northeast monsoon. The surface water quality parameters, which include the temperature, salinity, chlorophyll-a and nutrients (ammonia, nitrate, phosphate, and silicate) were sampled twice per day (high and low tides) at a total of eight stations. Hourly current speed and direction was obtained from mooring of two units of current meters. Compared to the Malaysia Marine Water Quality Criteria and Standard (MWQCS), nutrients in Setiu Lagoon were in Class 2. Although limited, this dataset can provide insights on the changes of water quality condition in Setiu Lagoon under the presence of anthropogenic pressures.
    Matched MeSH terms: Water; Water Quality
  8. Leong HY, Chang CK, Khoo KS, Chew KW, Chia SR, Lim JW, et al.
    Biotechnol Biofuels, 2021 Apr 07;14(1):87.
    PMID: 33827663 DOI: 10.1186/s13068-021-01939-5
    Global issues such as environmental problems and food security are currently of concern to all of us. Circular bioeconomy is a promising approach towards resolving these global issues. The production of bioenergy and biomaterials can sustain the energy-environment nexus as well as substitute the devoid of petroleum as the production feedstock, thereby contributing to a cleaner and low carbon environment. In addition, assimilation of waste into bioprocesses for the production of useful products and metabolites lead towards a sustainable circular bioeconomy. This review aims to highlight the waste biorefinery as a sustainable bio-based circular economy, and, therefore, promoting a greener environment. Several case studies on the bioprocesses utilising waste for biopolymers and bio-lipids production as well as bioprocesses incorporated with wastewater treatment are well discussed. The strategy of waste biorefinery integrated with circular bioeconomy in the perspectives of unravelling the global issues can help to tackle carbon management and greenhouse gas emissions. A waste biorefinery-circular bioeconomy strategy represents a low carbon economy by reducing greenhouse gases footprint, and holds great prospects for a sustainable and greener world.
    Matched MeSH terms: Water Purification; Waste Water
  9. Altowayti WAH, Algaifi HA, Bakar SA, Shahir S
    Ecotoxicol Environ Saf, 2019 May 15;172:176-185.
    PMID: 30708229 DOI: 10.1016/j.ecoenv.2019.01.067
    Globally, the contamination of water with arsenic is a serious health issue. Recently, several researches have endorsed the efficiency of biomass to remove As (III) via adsorption process, which is distinguished by its low cost and easy technique in comparison with conventional solutions. In the present work, biomass was prepared from indigenous Bacillus thuringiensis strain WS3 and was evaluated to remove As (III) from aqueous solution under different contact time, temperature, pH, As (III) concentrations and adsorbent dosages, both experimentally and theoretically. Subsequently, optimal conditions for As (III) removal were found; 6 (ppm) As (III) concentration at 37 °C, pH 7, six hours of contact time and 0.50 mg/ml of biomass dosage. The maximal As (III) loading capacity was determined as 10.94 mg/g. The equilibrium adsorption was simulated via the Langmuir isotherm model, which provided a better fitting than the Freundlich model. In addition, FESEM-EDX showed a significant change in the morphological characteristic of the biomass following As (III) adsorption. 128 batch experimental data were taken into account to create an artificial neural network (ANN) model that mimicked the human brain function. 5-7-1 neurons were in the input, hidden and output layers respectively. The batch data was reserved for training (75%), testing (10%) and validation process (15%). The relationship between the predicted output vector and experimental data offered a high degree of correlation (R2 = 0.9959) and mean squared error (MSE; 0.3462). The predicted output of the proposed model showed a good agreement with the batch work with reasonable accuracy.
    Matched MeSH terms: Water; Water Purification
  10. Samsudin MS, Azid A, Khalit SI, Sani MSA, Lananan F
    Mar Pollut Bull, 2019 Apr;141:472-481.
    PMID: 30955758 DOI: 10.1016/j.marpolbul.2019.02.045
    The prediction models of MWQI in mangrove and estuarine zones were constructed. The 2011-2015 data employed in this study entailed 13 parameters from six monitoring stations in West Malaysia. Spatial discriminant analysis (SDA) had recommended seven significant parameters to develop the MWQI which were DO, TSS, O&G, PO4, Cd, Cr and Zn. These selected parameters were then used to develop prediction models for the MWQI using artificial neural network (ANN) and multiple linear regressions (MLR). The SDA-ANN model had higher R2 value for training (0.9044) and validation (0.7113) results than SDA-MLR model and was chosen as the best model in mangrove estuarine zone. The SDA-ANN model had also demonstrated lower RMSE (5.224) than the SDA-MLR (12.7755). In summary, this work suggested that ANN was an effective tool to compute the MWQ in mangrove estuarine zone and a powerful alternative prediction model as compared to the other modelling methods.
    Matched MeSH terms: Water Quality*
  11. Phoon BL, Ong CC, Mohamed Saheed MS, Show PL, Chang JS, Ling TC, et al.
    J Hazard Mater, 2020 12 05;400:122961.
    PMID: 32947727 DOI: 10.1016/j.jhazmat.2020.122961
    Antibiotics and pharmaceuticals related products are used to enhance public health and quality of life. The wastewater that is produced from pharmaceutical industries still contains noticeable amount of antibiotics, and this has remained one of the major environmental problems facing public health. The conventional wastewater remediation approach employed by the pharmaceutical industries for the antibiotics wastewater removal is unable to remove the antibiotics completely. Besides, municipal and livestock wastewater also contain unmetabolized antibiotics released by human and animal, respectively. The antibiotic found in wastewater leads to antibiotic resistance challenges, also emergence of superbugs. Currently, numerous technological approaches have been developed to remove antibiotics from the wastewater. Therefore, it was imperative to critically review the weakness and strength of these current advanced technological approaches in use. Besides, the conventional methods for removal of antibiotics such as Klavaroti et al., Homem and Santos also discussed. Although, membrane treatment is discovered as the ultimate choice of approach, to completely remove the antibiotics, while the filtered antibiotics are still retained on the membrane. This study found, hybrid processes to be the best solution antibiotics removal from wastewater. Nevertheless, real-time monitoring system is also recommended to ascertain that, wastewater is cleared of antibiotics.
    Matched MeSH terms: Waste Water*
  12. A'ziz ANA, Minhat FI, Pan HJ, Shaari H, Saelan WNW, Azmi N, et al.
    Sci Rep, 2021 Apr 26;11(1):8890.
    PMID: 33903697 DOI: 10.1038/s41598-021-88404-3
    Pulau Tioman is a famous tourist island off Peninsular Malaysia with beautiful coral reefs. This study aims to assess the health of the coral reefs surrounding Pulau Tioman based on the application of the Foraminifera in Reef Assessment and Monitoring Index (FI). Ten sampling sites around Pulau Tioman were studied with a total of 30 samples. Eight orders, 41 families, 80 genera, and 161 species of benthic foraminifera were identified. The agglutinated type of foraminifera constituted 2-8% of the total assemblages. Calcareous hyaline and porcelaneous groups represented 79% and 19% of the total assemblages, respectively. Symbiont-bearing taxa were the most common foraminifera. The results indicate that most of the sampling sites are conducive for coral reef growth with good recoverability from future stress to the ecosystem. However, several areas with higher coastal development and tourism have reduced water and sediment quality. Therefore, the limit on the number of visitors and tourists should be revised to enable coral growth and health. The FI values in this study showed a positive correlation with good water qualities and a negative correlation with organic matter enrichment. The FI is a good measure to assess the health of a coral reef and can be applied to other reef ecosystems around Malaysia.
    Matched MeSH terms: Water; Water Quality
  13. Yogeshwaran A, Gayathiri K, Muralisankar T, Gayathri V, Monica JI, Rajaram R, et al.
    Mar Pollut Bull, 2020 Sep;158:111443.
    PMID: 32753221 DOI: 10.1016/j.marpolbul.2020.111443
    The present study was performed to analyze the bioaccumulation of heavy metals, biochemical constituents, antioxidants, and metabolic enzymes in the crab Scylla serrata from different regions of Tuticorin, Southeast Coast of India. The study area consists of Threspuram and Harbour Beach which were polluted environments due to the discharge of industrial effluents and domestic sewage into them. Punnakayal, which is a low-polluted environment where the in-situ culture of S. serrata is carried out by local fish farmers, was selected as well. The results revealed that the level of heavy metals, biochemical constituents, antioxidants, and metabolic enzymes were significantly high in the crabs collected from Threspuram and Harbour Beach compared to the crabs collected from Punnakayal. This study indicates that crabs from polluted environments have significant heavy metals bioaccumulation which leads to elevated antioxidants and metabolic enzyme levels. This implies that the crabs are under oxidative and metabolic stress.
    Matched MeSH terms: Water Pollutants, Chemical/analysis*
  14. Lam SS, Yek PNY, Ok YS, Chong CC, Liew RK, Tsang DCW, et al.
    J Hazard Mater, 2020 05 15;390:121649.
    PMID: 31753673 DOI: 10.1016/j.jhazmat.2019.121649
    Improving the sustainability and cost-effectiveness of biochar production is crucial to meet increased global market demand. Here, we developed a single-step microwave steam activation (STMSA) as a simplified yet efficient method to produce microwave activated biochar (MAB) from waste palm shell (WPS). The STMSA recorded a higher heating rate (70 °C/min) and higher conversion (45 wt%) of WPS into highly microporous MAB (micropore surface area of 679.22 m2/g) in contrast with the conventional heating approach (≤ 12-17 wt%). The MAB was then applied as biosorbent for hazardous landfill leachate (LL) treatment and the adsorption performance was compared with commercial activated carbon under different pH, adsorbent quantity, adsorbate concentrations, and contact times. The MAB demonstrated high adsorption capacity, achieving maximum adsorption efficiency at 595 mg/g and 65 % removal of chemical oxygen demand (COD) with 0.4 g/L of adsorbent amount under optimal acidic conditions (pH ≈ 2-3) after 24 h of contact time. The Freundlich isotherm and pseudo second-order kinetic models were well-fitted to explain the equilibrium adsorption and kinetics. The results indicate the viability of STMSA as a fast and efficient approach to produce activated biochar as a biosorbent for the treatment of hazardous landfill leachate.
    Matched MeSH terms: Water Pollutants, Chemical/chemistry*
  15. Teow YH, Ooi BS, Ahmad AL, Lim JK
    Membranes (Basel), 2020 Dec 24;11(1).
    PMID: 33374274 DOI: 10.3390/membranes11010016
    Natural organic matters (NOMs) have been found to be the major foulant in the application of ultrafiltration (UF) for treating surface water. Against this background, although hydrophilicity has been demonstrated to aid fouling mitigation, other parameters such as membrane surface morphology may contribute equally to improved fouling resistance. In this work, with humic acid solution as the model substance, the effects of titanium dioxides (TiO2) types (PC-20, P25, and X500) on membrane anti-fouling and defouling properties were comparatively analysed. The aims are (1) to determine the correlation between membrane surface morphology and membrane fouling and (2) to investigate the anti-fouling and UV-cleaning abilities of PVDF/TiO2 mixed-matrix membranes with different membrane topographies and surface energy conditions. The mixed-matrix membrane with P25 TiO2 exhibited the most significant UV-defouling ability, with a high irreversible flux recovery ratio (IFRR(UV)) of 16.56 after 6 h of UV irradiation, whereas that with X500 TiO2 exhibited both superior anti-fouling and defouling properties due to its smoother surface and its highly reactive surface layer.
    Matched MeSH terms: Water; Water Purification
  16. Chen CY, Kuo EW, Nagarajan D, Dong CD, Lee DJ, Varjani S, et al.
    Bioresour Technol, 2021 Jan 28;326:124773.
    PMID: 33548816 DOI: 10.1016/j.biortech.2021.124773
    In this study, process optimization for the microalgae-based piggery wastewater treatment was carried out by growing Chlorella sorokiniana AK-1 on untreated piggery wastewater with efficient COD/BOD/TN/TP removal and high biomass/protein productivities. Integration of the immobilization carriers (sponge, activated carbon) and semi-batch cultivation resulted in the effective treatment of raw untreated piggery wastewater. With 100% wastewater, 0.2% sponge and 2% activated carbon, the semi-batch cultivation (90% media replacement every 6 days) exhibited a COD, BOD, TN and TP removal efficiency of 95.7%, 99.0%, 94.1% and 96.9%, respectively. The maximal protein content, protein productivity, lutein content, and lutein productivity of the obtained microalgal biomass was 61.1%, 0.48 g/L/d, 4.56 mg/g, and 3.56 mg/L/d, respectively. The characteristics of the treated effluent satisfied Taiwan Piggery Wastewater Discharge Standards (COD 
    Matched MeSH terms: Water Purification; Waste Water
  17. Muniandy Sivasambu, Nik Aziz Bin Nik Ali
    MyJurnal
    Nowadays, the world is confronting the increasing energy demand, reduction of emissions and security of energy supply. The high energy demand leads to a severe problem, and we need to reduce the usage of non-renewable energy to avoid adverse climate change. Thus, renewable energy is an important role obtained from the natural environment and can be replenished naturally from those sources without environmental degradation. Water energy is one of the most promising renewable energy sources today, especially in the aquaculture industry. Hydropower played a vital role in producing large scale power and electricity. This study was set up to determine the electrical energy output depending on the different sizes and shapes of tanks. It is also to measure the water flow rate based on different size and shape tanks. Besides, the Pelton type of water turbine generator micro-hydroelectric DC 12V output was used in this experiment. Two types of tanks (rectangular and circular) with three different sizes (0.5 ton, 1.0 ton and 2.0 ton) were tested to measure high value of output energy (V) and flow rate (m3/s) by using clear water and wastewater. The result significantly shows that the circular tank had a higher water flow rate and output energy than the rectangular tank due to higher gravitational force, where the outlet placed in the middle and edge of the tank, respectively. The finding of this study benefits the aquaculture industry, where it introduced an alternative and cheaper method of reusing wastewater, reducing the cost maintenances and enhancing the profit of the business.
    Matched MeSH terms: Water; Waste Water
  18. NURUL NAZIRA ZULKIFLI, NAZAITULSHILA RASIT
    MyJurnal
    Lipases are enzyme with versatile industrial applications can be produced by the solid-state fermentation (SSF) method and is an economical alternative for enzyme production assisted by fungus. In Malaysia, 5 million of copra waste were generated annually. Large amount of copra waste produced will cause an increasing amount of the waste dumped to the landfill. Copra waste is one of the potential substrates to produce lipase enzyme through SSF. Thus, the aim of this study is to optimize the lipase production by SSF associated by Aspergillus niger using the 23 full factorial design approach. In this study the factors affecting parameters that involved in the production of lipase enzyme such as temperature (25˚ and 35˚), substrates concentration (40% and 60%) and inoculum size of Aspergillus niger (1 and 9 petri dish) were determined. The maximum production of lipase was obtained after 120-hour incubation in SSF. The optimum condition for inoculum size of Aspergillus niger was 9 plates, 30°C of incubation temperature and 60 % moisture contents. The range of the concentration of lipase enzyme produced varied from 105 U/ml to 170 U/ml. When applied to the wastewater treatment, the reducing percentage of fat, oil and grease (FOG) in food processing wastewater is reduced from 219.4925mg/l to 169.467mg/l accounted to the amount of 34 % FOG removal. Lipase produced using copra waste as a substrate using SSF has the potential value to be developed in the future for various industry including wastewater treatment industry.
    Matched MeSH terms: Water Purification; Waste Water
  19. Aziz FFA, Jalil AA, Hassan NS, Fauzi AA, Azami MS
    Environ Pollut, 2021 Sep 15;285:117490.
    PMID: 34091265 DOI: 10.1016/j.envpol.2021.117490
    The co-existence of heavy metals and organic compounds including Cr(VI) and p-cresol (pC) in water environment becoming a challenge in the treatment processes. Herein, the synchronous photocatalytic reduction of Cr(VI) and oxidation of pC by silver oxide decorated on fibrous silica zirconia (AgO/FSZr) was reported. In this study, the catalysts were successfully developed using microemulsion and electrochemical techniques with various AgO loading (1, 5 and 10 wt%) and presented as 1, 5 and 10-AgO/FSZr. Catalytic activity was tested towards simultaneous photoredox of hexavalent chromium and p-cresol (Cr(VI)/pC) and was ranked as followed: 5-AgO/FSZr (96/78%) > 10-AgO/FSZr (87/61%) > 1-AgO/FSZr (47/24%) > FSZr (34/20%). The highest photocatalytic activity of 5-AgO/FSZr was established due to the strong interaction between FSZr and AgO and the lowest band gap energy, which resulted in less electron-hole recombination and further enhanced the photoredox activity. Cr(VI) ions act as a bridge between the positive charge of catalyst and cationic pC in pH 1 solution which can improve the photocatalytic reduction and oxidation of Cr(VI) and pC, respectively. The scavenger experiments further confirmed that the photogenerated electrons (e-) act as the main species for Cr(VI) to be reduced to Cr(III) while holes (h+) and hydroxyl radicals are domain for photooxidation of pC. The 5-AgO/FSZr was stable after 5 cycles of reaction, suggesting its potential for removal of Cr(VI) and pC simultaneously in the chemical industries.
    Matched MeSH terms: Water Pollutants, Chemical*
  20. Abdullah FH, Abu Bakar NHH, Abu Bakar M
    J Hazard Mater, 2021 03 15;406:124779.
    PMID: 33338763 DOI: 10.1016/j.jhazmat.2020.124779
    Zinc oxide (ZnO) photocatalysts were successfully synthesized via chemical and green, environmentally-benign methods. The work highlights the valorization of banana peel (BP) waste extract as the reducing and capping agents to produce pure, low temperature, highly crystalline, and effective ZnO nanoparticles with superior photocatalytic activities for the removal of hazardous Basic Blue 9 (BB9), crystal violet (CV), and cresol red (CR) dyes in comparison to chemically synthesized ZnO. Their formation and morphologies were verified by various optical spectroscopic and electron microscopic techniques. XRD results revealed that the biosynthesized ZnO exhibited 15.3 nm crystallite size when determined by Scherrer equation, which was smaller than the chemically synthesized ZnO. The FTIR spectra confirmed the presence of biomolecules in the green-mediated catalyst. EDX and XPS analyses verified the purity and chemical composition of ZnO. Nitrogen sorption analysis affirmed the high surface area of bio-inspired ZnO. Maximum removal efficiencies were achieved with 30 mg green ZnO catalyst, 2.0 × 10-5 M BB9 solution, alkaline pH 12, and irradiation time 90 min. Green-mediated ZnO showed superior photodegradation efficiency and reusability than chemically synthesized ZnO. Therefore, this economical, environment-friendly photocatalyst is applicable for the removal of organic contaminants in wastewater treatment under visible light irradiation.
    Matched MeSH terms: Water Purification*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links