METHODS: NPV was extracted using liquid-liquid extraction method and the obtained samples were subjected to antidiabetic studies using normal and streptozotocin-induced diabetic rat models whereas antidoxidant activities were investigated via in vitro antioxidant tests namely 2,2-diphenyl-1-picrylhydrazyl and 2,2'-azinobis-3-ethylbenzothiozoline-6-sulfonic acid free radicals scavenging activities and the reducing power assay.
RESULTS: Single administration of NPV and its extracts were not effective in both normal and diabetic rats. In intraperitoneal glucose tolerance test, NPV and its aqueous extract showed significant blood glucose lowering effect. In the sub-acute study, compared with the diabetic control, aqueous extract of NPV showed the most notable blood glucose lowering effect (56.6%) and a significant improvement in serum insulin levels (79.8%, P
AIM OF THE STUDY: This study is designed to investigate the vasorelaxant effect of Chen pi and to study its pharmacology effects.
MATERIALS AND METHODS: The vasorelaxant effect of water extract of Chen pi (CRW) were evaluated on thoracic aortic rings isolated from Sprague Dawley rats. The fingerprint of Chen pi and the extracts were developed with quantification of hesperidin content by HPTLC.
RESULTS: CRW exhibited the strongest vasorelaxant activity. CRW caused the relaxation of the phenylephrine pre-contracted aortic rings in the presence and absence of endothelium as well as in potassium chloride pre-contracted endothelium-intact aortic ring. The incubation of propranolol (β-adrenergic receptor blocker), atropine (muscarinic receptor blocker), Nω-nitro-L-arginine methyl ester (NO synthase inhibitor), ODQ (sGC inhibitor), indomethacin (COX inhibitor), 4-aminopyridine (KV blocker), barium chloride (Kir blocker), and glibenclamide (KATP blocker) significantly reduced the vasorelaxant effects of CRW. CRW was also found to be active in reducing Ca2+ releases from the sarcoplasmic reticulum and suppressing the voltage-operated calcium channels.
CONCLUSION: The vasorelaxant effect of CRW on rat aorta involves NO/sGC, calcium and potassium channels, muscarinic and β-adrenergic receptors.
METHODS: GLES was orally administered at doses of 250, 500 and 1000 mg/kg/day consecutively for 90 days.
RESULTS: No behavioral or physiological changes and mortality were observed. GLES did not have a marked impact on general hematological parameters and did not precipitate nephrotoxicity. However, compared to the control, serum triglycerides, total cholesterol and low-density lipoprotein levels were lower and white adipose tissue paired retroperitoneal fat depots were depleted in male rats treated with GLES3 by the end of the experiment. The liver was significantly enlarged in GLES-treated rats of both sexes. Negative gender-specific alterations were observed with the highest dose. Adverse risk was evident in the female rats mainly due to marked body weight gain and cerebrum weight reduction.
CONCLUSION: Further research is needed to reach more specific conclusions about to the safety of ingesting high doses of GLES for long periods of time.
METHODS: AE was administered to streptozotocin (STZ)-induced diabetic rats twice daily at three doses (1000, 500, and 250 mg/kg b.w.) for 12 days p.o. Several biochemical analyses and a histological study of the pancreas and liver were performed, accompanied by a cell culture assay.
RESULTS: As compared to diabetic control (DC), AE at the doses of 500 and 1000 mg/kg b.w. caused significant reduction (p < 0.05) of blood glucose, total cholesterol and triglycerides levels, with positive improvement of serum insulin levels. Interestingly, immunohistochemical staining of the pancreas suggested no β-cell regeneration, despite significant increase in insulin production. AE-treated groups, however, showed overall restoration of the hepatic histoarchitecture of STZ-induced liver damage, suggesting a possible hepatoprotective effect. The pancreatic effect of AE was further studied through RIN-5F cell culture, which revealed a positive stimulatory effect on insulin release at a basal glucose concentration (1.1 mM).
CONCLUSION: Nypa fruticans Wurmb. vinegar's aqueous extract exerts its antihyperglycaemic activity, at least in part, through insulin stimulatory and hepatoprotective effects.