Displaying publications 61 - 80 of 87 in total

Abstract:
Sort:
  1. Bello I, Bakkouri AS, Tabana YM, Al-Hindi B, Al-Mansoub MA, Mahmud R, et al.
    Med Sci (Basel), 2016 Mar 08;4(1).
    PMID: 29083368 DOI: 10.3390/medsci4010004
    Alstonia scholaris has been used by traditional medicine practitioners since the medieval ages for the treatment of diseases. The aim of this research was to evaluate the acute and sub-acute oral toxicity of its methanolic extract. The acute toxicity test was conducted using Sprague Dawley (SD) rats. The methanolic extract of Alstonia scholaris stem bark (ASME) was administrated in a single dose of 2000 mg/kg via oral gavage; and the animals were observed for any behavioral changes or mortality. In the sub-acute toxicity study, SD rats received three doses of ASME (250, 500 and 1000 mg/kg) for 28 days via oral gavage. During these 28 days of treatment, the rats were observed weekly for toxicity symptoms. Following the 28-day treatment, the rats were sacrificed for hematological, biochemical and histopathology studies. In the acute toxicity study, Alstonia scholaris was found to be non-toxic at a dose of 2000 mg/kg b.w. In the sub-acute toxicity study, significant variations in body weight, hematological and biochemical parameters were observed in the experimental groups at the dose of 500 and 1000 mg/kg with the death of two female rats being recorded at the highest dose (1000 mg/kg b.w.). Histopathological studies revealed slight degeneration (lesion) and centrilobular necrosis in the liver, which was most expressed in the highest-dose group. These results demonstrate that, while a single dose and short term oral intake of Alstonia scholaris bark extract caused no toxicity up to a dose of 2000 mg/kg b.w., toxic effects manifested in the long term treatment at the highest dose (500 and 1000 mg/kg). The long-term toxic effect was found to be associated with alterations in hematological compositions and end-organ damage to the liver. Thus, prolonged use of high doses of ASME orally should be discouraged and lower doses encouraged.
  2. Loh YC, Ch'ng YS, Tan CS, Ahmad M, Asmawi MZ, Yam MF
    J Med Food, 2017 Sep;20(9):895-911.
    PMID: 28771084 DOI: 10.1089/jmf.2016.3804
    Uncaria rhynchophylla is one of the major components included in Traditional Chinese Medicine prescriptions for hypertensive treatment. Previous studies have suggested that U. rhynchophylla might contain vasodilation-mediating active compounds, especially indole alkaloids. Hence, this study was carried out to determine the vasodilatory effects of U. rhynchophylla, which was extracted by different solvents. The most effective extract was then further studied for its signaling mechanism pathways. The authenticity of U. rhynchophylla was assured by using modernized tri-step Fourier transform infrared (FTIR), including conventional 1D FTIR, second derivative scanning combined with 2D-correlated IR spectroscopy. Results obtained proved that the fingerprint of U. rhynchophylla used was identical to the atlas. Isolated aortic rings from male Sprague-Dawley rats were preconstricted with phenylephrine (PE) followed by cumulative addition of U. rhynchophylla extracts. The signaling mechanism pathways were studied by incubation with different receptor antagonists before the PE precontraction. In conclusion, the 95% ethanolic U. rhynchophylla extract (GT100) was found to be most effective with an EC50 value of 0.028 ± 0.002 mg/mL and an Rmax value of 101.30% ± 2.82%. The signaling mechanism pathways employed for exerting its vasodilatory effects included nitric oxide/soluble guanylyl cylcase/cyclic guanosine monophosphate (NO/sGC/cGMP) and PGI2 (endothelium-derived relaxing factors), G protein-coupled M3- and β2 receptors, regulation of membrane potential through voltage-operated calcium channel, intracellular Ca2+ released from inositol triphosphate receptor (IP3R), and all potassium channels except the Kca channel.
  3. Tan CS, Loh YC, Ng CH, Ch'ng YS, Asmawi MZ, Ahmad M, et al.
    Biomed Pharmacother, 2018 Jan;97:985-994.
    PMID: 29136777 DOI: 10.1016/j.biopha.2017.11.021
    Although Banxia Baizhu Tianma Tang (BBT) has been long administered for hypertensive treatment in Traditional Chinese Medicine (TCM), the ratio of the herbal components that makes up the formulation has not been optimized with respect to the anti-hypertensive effect that it inherently possesses. A newly amended BBT (ABBT) formulation was developed using the evidence-based approach of orthogonal stimulus-response compatibility model. The ABBT showed enhanced therapeutic effect while maintaining its traditional theoretical approach rooted in TCM. This study was designed to investigate the possible mechanism of actions involved in the vasodilatory activity of ABBT-50 by evaluating its vasodilative effect on isolated Sprague Dawley rats in the presence of absence of various antagonists. When pre-contracted with phenylephrine, relaxation was observed in endothelium intact (EC50=0.027±0.003mg/ml, Rmax=109.8±2.12%) and denuded aortic rings (EC50=0.409±0.073mg/ml, Rmax=63.15±1.78%), as well as in endothelium intact aortic rings pre-contracted with potassium chloride (EC50=32.7±12.16mg/ml, Rmax=34.02±3.82%). Significant decrease in the vasodilative effect of ABBT-50 was observed in the presence of Nω-nitro-l-arginine methyl ester (EC50=0.12±0.021mg/ml, Rmax=75.33±3.28%), 1H-[1,2,4] Oxadiazolo[4,3-a]quinoxalin-1-one (EC50=0.463±0.18mg/ml, Rmax=54.48±2.02%), methylene blue (EC50=0.19±0.037mg/ml, Rmax=83.69±3.19%), indomethacin (EC50=0.313±0.046mg/ml, Rmax=71.33±4.12%), atropine (EC50=0.146±0.013mg/ml, Rmax=77.2±3.41%), and 4-aminopyridine (EC50=0.045±0.008mg/ml, Rmax=95.55±2.36%). ABBT-50 was also suppressing Ca2+ release from sarcoplasmic reticulum and inhibiting calcium channels. Vasodilatory effects of ABBT-50 are mediated through NO/sGC/cGMP cascade and PGI2, followed by muscarinic pathways and calcium channels.
  4. Iqbal Z, Bello I, Asmawi MZ, Al-Mansoub MA, Ahmad A, Jabeen Q, et al.
    Inflammopharmacology, 2019 Apr;27(2):421-431.
    PMID: 29185178 DOI: 10.1007/s10787-017-0422-4
    Previous studies have investigated the cardiovascular activity of Gynura procumbens Merr. single-solvent extracts. The objective of this study was to evaluate the in vitro vasorelaxant properties and the underlying pharmacological mechanisms of serial extracts and fractions of Gynura procumbens (GP). The leaves of GP were serially extracted with petroleum ether, chloroform, methanol and water using the maceration method. Suspended aortic ring preparations were pre-contracted with phenylephrine (PE 1 µM), followed by cumulative addition of GP extracts (0.25-3 mg/mL). The petroleum ether extract (GPPE) was the most potent among the four extracts. Pre-incubation of endothelium-intact aorta with atropine (1 µM), indomethacin (10 µM), methylene blue (10 µM), propranolol (1 µM) and potassium channel blockers such as TEA (1 µM), glibenclamide (10 µM), 4-aminopyridine (1 µM) and barium chloride (10 mM) had no effect on GPPE-induced vasorelaxation. The vasorelaxant effect of GPPE was partly diminished by pretreatment of aortic rings preparations with L-NAME (10 µM) and even more so in endothelium-denuded aortic rings, indicating a minimal involvement of endothelium-dependent pathway in GPPE-induced vasorelaxation. The calcium-induced vasocontractions were antagonized significantly and concentration-dependently by GPPE in calcium free and high potassium medium. These results illustrate that Ca2+ antagonizing actions of GPPE in rat isolated aorta are comparable to that of verapamil and may be mainly responsible for its vasodilation effect. The antioxidant activity of GPPE supports its vasorelaxant effect by attenuating the production of deleterious free radicals and reactive oxygen species in the vasculature.
  5. Ch'ng YS, Loh YC, Tan CS, Ahmad M, Asmawi MZ, Wan Omar WM, et al.
    J Med Food, 2018 Mar;21(3):289-301.
    PMID: 29420109 DOI: 10.1089/jmf.2017.4008
    The seeds of Swietenia macrophylla King (SM) (Meliaceae) are used as a folk medicine for the treatment of hypertension in Malaysia. However, the antihypertensive and vasorelaxant effects of SM seeds are still not widely studied. Thus, this study was designed to investigate the in vivo antihypertensive effects and in vitro mechanism of vasorelaxation of a 50% ethanolic SM seed extract (SM50) and the fingerprint of SM50 was developed through tri-step Fourier transform infrared (FTIR) spectroscopy. The vasorelaxant activity and the underlying mechanisms of SM50 were evaluated on thoracic aortic rings isolated from Sprague-Dawley rats in the presence of antagonists. The pharmacological effect of SM50 was investigated by oral administration of spontaneously hypertensive rats (SHRs) with three different doses of SM50 (1000, 500, and 250 mg/kg/day) for 4 weeks and their systolic blood pressure (SBP) and diastolic blood pressure (DBP) values were measured weekly using tail-cuff method. The tri-step FTIR macro-fingerprint of SM50 showed that SM50 contains stachyose, flavonoids, limonoids, and ester, which may contribute to its vasorelaxant effect. The results showed that the vasorelaxant activity of SM50 was mostly attributed to channel-linked receptors pathways through the blockage of voltage-operated calcium channels (VOCC). SM50 also acts as both potassium channels opener and inositol triphosphate receptor (IP3R) inhibitor, followed by β2-adrenergic pathway, and ultimately mediated through the nitric oxide/soluble guanylyl cyclase/cyclic 3',5'-guanosine monophosphate (NO/sGC/cGMP) signaling pathways. The treatment of SM50 also significantly decreased the SBP and DBP in SHRs. In conclusion, the antihypertensive mechanism of SM50 was mediated by VOCC, K+ channels, IP3R, G-protein-coupled β2-adrenergic receptor, and followed by NO/sGC/cGMP signaling mechanism pathways in descending order. The data suggested that SM50 has the potential to be used as a herbal medicament to treat hypertension.
  6. Murugesu K, Murugaiyah V, Saghir SAM, Asmawi MZ, Sadikun A
    Curr Pharm Biotechnol, 2017;18(14):1132-1140.
    PMID: 29564975 DOI: 10.2174/1389201019666180322111800
    BACKGROUND: Ethanolic extract of G. procumbens leaves has been previously shown to possess antihyperlipidemic effects.

    OBJECTIVE: This study was designed to prepare caffeoylquinic acids rich and poor fractions of the ethanolic extract using resin column technology and compare their antihyperlipidemic and antioxidant potentials.

    RESULTS: Among the treatment groups, caffeoylquinic acids rich fraction (F2) and chlorogenic acid (CA, one of the major caffeoylquinic acids) showed potent antihyperlipidemic effects, with significant reductions in total cholesterol (TC), triglycerides (TG), low-density lipoprotein-cholesterol (LDL-C), very low-density lipoprotein-cholesterol (VLDL-C), atherogenic index (AI) and coronary risk index (CRI) (p<0.01 or better) compared to the hyperlipidemic control at the 58 h. The effect was better than that of ethanolic extract. In addition, only F2 significantly increased the high-density lipoproteincholesterol (HDL-C) level (p<0.05). F2 showed better effect than CA alone (60 mg) despite the fact that it only contained 9.81 mg CA/1000 mg dose. The findings suggest that the di-caffeoylquinic acids (86.61 mg/g dose) may also in part be responsible for the potent antihyperlipidemic effect shown by the F2. Likewise, F2 showed the highest antioxidant activity. Thus, simple fractionation of ethanolic extract using the Amberlite XAD-2 resin technique had successfully enriched the caffeoylquinic acids into F2 with improved antihyperlipidemic and antioxidant capacities than that of the ethanolic extract.

    CONCLUSION: The resin separation technology may find application in caffeoylquinic acids enrichment of plant extracts for pre-clinical studies. The F2 has potential for development into phytopharmaceuticals as adjunct therapy for management of hyperlipidemia.

  7. Ali RB, Atangwho IJ, Kaur N, Abraika OS, Ahmad M, Mahmud R, et al.
    Molecules, 2012 Apr 30;17(5):4986-5002.
    PMID: 22547320 DOI: 10.3390/molecules17054986
    An earlier anti-hyperglycemic study with serial crude extracts of Phaleria macrocarpa (PM) fruit indicated methanol extract (ME) as the most effective. In the present investigation, the methanol extract was further fractionated to obtain chloroform (CF), ethyl acetate (EAF), n-butanol (NBF) and aqueous (AF) fractions, which were tested for antidiabetic activity. The NBF reduced blood glucose (p < 0.05) 15 min after administration, in an intraperitoneal glucose tolerance test (IPGTT) similar to metformin. Moreover, it lowered blood glucose in diabetic rats by 66.67% (p < 0.05), similar to metformin (51.11%), glibenclamide (66.67%) and insulin (71.43%) after a 12-day treatment, hence considered to be the most active fraction. Further fractionation of NBF yielded sub-fractions I (SFI) and II (SFII), and only SFI lowered blood glucose (p < 0.05), in IPGTT similar to glibenclamide. The ME, NBF, and SFI correspondingly lowered plasma insulin (p < 0.05) and dose-dependently inhibited glucose transport across isolated rat jejunum implying an extra-pancreatic mechanism. Phytochemical screening showed the presence of flavonoids, terpenes and tannins, in ME, NBF and SFI, and LC-MS analyses revealed 9.52%, 33.30% and 22.50% mangiferin respectively. PM fruit possesses anti-hyperglycemic effect, exerted probably through extra-pancreatic action. Magniferin, contained therein may be responsible for this reported activity.
  8. Farsi E, Shafaei A, Hor SY, Ahamed MB, Yam MF, Asmawi MZ, et al.
    Clinics (Sao Paulo), 2013 Jun;68(6):865-75.
    PMID: 23778480 DOI: 10.6061/clinics/2013(06)23
    Ficus deltoidea leaves have been used in traditional medicine in Southeast Asia to treat diabetes, inflammation, diarrhea, and infections. The present study was conducted to assess the genotoxicity and acute and subchronic toxicity of a standardized methanol extract of F. deltoidea leaves.
  9. Mohamed EA, Ahmad M, Ang LF, Asmawi MZ, Yam MF
    PMID: 26649063 DOI: 10.1155/2015/754931
    In the present study, a 50% ethanolic extract of Orthosiphon stamineus was tested for its α-glucosidase inhibitory activity. In vivo assays of the extract (containing 1.02%, 3.76%, and 3.03% of 3'hydroxy-5,6,7,4'-tetramethoxyflavone, sinensetin, and eupatorin, resp.) showed that it possessed an inhibitory activity against α-glucosidase in normal rats loaded with starch and sucrose. The results showed that 1000 mg/kg of the 50% ethanolic extract of O. stamineus significantly (P < 0.05) decreased the plasma glucose levels of the experimental animals in a manner resembling the effect of acarbose. In streptozotocin-induced diabetic rats, only the group treated with 1000 mg/kg of the extract showed significantly (P < 0.05) lower plasma glucose levels after starch loading. Hence, α-glucosidase inhibition might be one of the mechanisms by which O. stamineus extract exerts its antidiabetic effect. Furthermore, our findings indicated that the 50% ethanolic extract of O. stamineus can be considered as a potential agent for the management of diabetes mellitus.
  10. Akinboro A, Bin Mohamed K, Asmawi MZ, Yekeen TA
    Acta Biochim. Pol., 2014;61(4):779-85.
    PMID: 25520963
    Natural plant extracts offer a promising hope in the prevention/treatment of cancer arising from genetic mutations. This study evaluated in vitro and in vivo mutagenic and antimutagenic effects of aqueous fraction of Myristica fragrans (AFMF) leaves on TA100 strain of Salmonella typhimurium and Mus musculus (Male Swiss albino mice), respectively. The antioxidant activity of AFMF against 2,2-diphenyl-1-picrylhydrazyl (DPPH), total phenolic and flavonoid contents were determined, followed by its phytochemical elucidation using the Ultra Performance Liquid Chromatography technique (UPLC). The mutagenicity of AFMF at 4, 20, 50, 100, 200, 500, and 1000 µg/well was <2.0 in S. typhimurium and the induced micronucleated polychromatic and normochromatic erythrocytes at 500, 1000, 2000, and 4000 mg/kg were not significantly different from the negative control (p≥0.05). The mutagenic activity of benzo[a]pyrene and cyclophosphamide was significantly suppressed above 50.0% throughout the tested concentrations. Fifty percent of the free radicals from DPPH were scavenged by AFMF at 0.11 mg/ml. Total phenolic and flavonoid contents of AFMF were 51.0 mg GAE/g and 27 mg QE/g, respectively. Rutin was elucidated by the UPLC technique, and thereby suspected to be the phytochemical responsible for the observed antimutagenic activity. Thus far, AFMF seems to contain a promising chemotherapeutic agent for the prevention of genetic damage that is crucial for cancer development.
  11. Altaf R, Asmawi MZ, Dewa A, Sadikun A, Umar MI
    Pharmacogn Rev, 2013 Jan;7(13):73-80.
    PMID: 23922460 DOI: 10.4103/0973-7847.112853
    Phaleria macrocarpa, commonly known as Mahkota dewa is a medicinal plant that is indigenous to Indonesia and Malaysia. Extracts of P. macrocarpa have been used since years in traditional medicine that are evaluated scientifically as well. The extracts are reported for a number of valuable medicinal properties such as anti-cancer, anti-diabetic, anti-hyperlipidemic, anti-inflammatory, anti-bacterial, anti-fungal, anti-oxidant and vasorelaxant effect. The constituents isolated from different parts of P. macrocarpa include Phalerin, gallic acid, Icaricide C, magniferin, mahkoside A, dodecanoic acid, palmitic acid, des-acetylflavicordin-A, flavicordin-A, flavicordin-D, flavicordin-A glucoside, ethyl stearate, lignans, alkaloids andsaponins. The present review is an up-to-date summary of occurrence, botanical description, ethnopharmacology, bioactivity and toxicological studies related to P. macrocarpa.
  12. Bello I, Usman NS, Mahmud R, Asmawi MZ
    J Ethnopharmacol, 2015 Dec 4;175:422-31.
    PMID: 26429073 DOI: 10.1016/j.jep.2015.09.031
    Alstonia scholaris has a long history of use in the Ayurveda traditional treatment of various ailments including hypertension. We have reported the blood pressure lowering activity of the extract of A. scholaris. The following research aim to delineate the pharmacological mechanism involve in the antihypertensive action.
  13. Widyawati T, Yusoff NA, Asmawi MZ, Ahmad M
    Nutrients, 2015 Sep;7(9):7764-80.
    PMID: 26389944 DOI: 10.3390/nu7095365
    Syzygium polyanthum (S. polyanthum), a plant belonging to Myrtaceae, is widely used in Indonesian and Malaysian cuisines. Diabetic patients in Indonesia also commonly use it as a traditional medicine. Hence, this study was conducted to investigate the antihyperglycemic effect of the methanol extract (ME) of S. polyanthum leaf and its possible mechanisms of action. To test for hypoglycemic activity, ME was administered orally to normal male Sprague Dawley rats after a 12-h fast. To further test for antihyperglycemic activity, the same treatment was administered to glucose-loaded (intraperitoneal glucose tolerance test, IPGTT) and streptozotocin (STZ)-induced diabetic rats, respectively. Hypoglycemic test in normal rats did not show significant reduction in blood glucose levels (BGLs) by the extract. Furthermore, IPGTT conducted on glucose-loaded normal rats also did not show significant reduction of BGLs. However, repeated administration of metformin and three doses of ME (250, 500 and 1000 mg/kg) for six days caused significant reduction of fasting BGLs in STZ-induced diabetic rats. The possible mechanisms of action of S. polyanthum antihyperglycemic activity were assessed by measurement of intestinal glucose absorption and glucose uptake by isolated rat abdominal muscle. It was found that the extract not only inhibited glucose absorption from the intestine but also significantly increased glucose uptake in muscle tissue. A preliminary phytochemical qualitative analysis of ME indicated the presence of tannins, glycosides, flavonoids, alkaloids and saponins. Additionally, Gas Chromatography-Mass Spectrometry (GC-MS) analysis detected squalene. In conclusion, S. polyanthum methanol leaf extract exerts its antihyperglycemic effect possibly by inhibiting glucose absorption from the intestine and promoting glucose uptake by the muscles.
  14. Ameer OZ, Salman IM, Quek KJ, Asmawi MZ
    J Pharmacopuncture, 2015 Mar;18(1):7-18.
    PMID: 25830054 DOI: 10.3831/KPI.2015.18.001
    Loranthus ferrugineus (L. ferrugineus) from Loranthaceae, a mistletoe, is a medicinal herb used for a variety of human ailments. Traditionally, decoctions of this parasitic shrub have been mainly used to treat high blood pressure (BP) and gastrointestinal complaints; usage which is supported by experimental based pharmacological investigations. Nonetheless, there is still limited data available evaluating this plant's traditions, and few studies have been scientifically translated toward evidence based phytomedicine. We therefore provide a concise review of the currently available L. ferrugineus literature and discuss potential directions for future areas of investigation.
  15. Samud AM, Asmawi MZ, Sharma JN, Yusof AP
    Immunopharmacology, 1999 Sep;43(2-3):311-6.
    PMID: 10596868
    Crinum asiaticum Linn plant is used in Malaysia as a rheumatic remedy and to relieve local pain. In the present study, we examined the anti-inflammatory effects of this plant extract on carrageenan-induced hind paw oedema in mice. C. asiaticum was serially extracted with petroleum ether, followed by chloroform and lastly, methanol. The chloroform and methanol extracts of the plant given orally (50 mg kg-1) caused significant (p < 0.05; n = 7) reduction in paw oedema but the petroleum ether extract did not induce significant effect (p > 0.05) on paw oedema. The methanol extract was then dissolved in water and extracted consecutively with chloroform, ethyl acetate and butanol. The chloroform fraction of methanol extract (CFME) treatment (50 mg kg(-1)) significantly reduced (p < 0.05; n = 7) the acute paw oedema. This may indicate that active anti-inflammatory compounds are present in the CFME. In an attempt to study the mechanism of action of its anti-inflammatory activity, the effects of CFME on BK- and histamine-induced contractions were investigated in isolated rat uterus and guinea-pig ileum preparations, respectively. It was found that CFME caused dose-dependent reduction (p < 0.05; n = 6) of the contractile response induced by BK and shifted the log dose-response curve of histamine to the right. The present findings suggest that C. asiaticum possessed an anti-inflammatory activity as suggested by its use in traditional medicine. The anti-inflammatory activity of this plant could not have been due to its anti-bradykinin activities as CFME non-specifically inhibited BK-induced contraction. It also suggest that CFME may contain compound(s) with anti-histaminic properties. The significance of these findings is discussed.
  16. Tew WY, Tan CS, Asmawi MZ, Yam MF
    Eur J Pharmacol, 2020 Aug 05;880:173123.
    PMID: 32335091 DOI: 10.1016/j.ejphar.2020.173123
    Morin (3,5,7,2',4'-pentahydroxyflavone) is a yellow coloured natural flavonoid found in plants of the Moraceae family. This favonoid is easily sources from readily available fruits, vegetables and eve certain beverages. Among the sources that was identified, it is clear that morin is most abundantly found in almond, old fustic, Indian guava, and Osage orange. Multiple studies have suggested that morin has multiple therapeutic actions and possess potential to be a functional potent drug. Previous studies demonstrated that morin is capable of resolving deoxycorticosterone acetate-salt-induced hypertension and possess strong vasorelaxant properties. However, the exact mechanisms remains unknown. Therefore, this study is designed to investigate the in vitro mechanism of morin-induced vasorelaxant effects. The underlying mechanisms of morin's vasorelaxant activities were evaluated on thoracic aortic rings isolated from Sprague-Dawley rats. Results from the study demonstrated morin causing vasodilatory reaction in phenylephrine and potassium chloride pre-contracted endothelium-intact aortic rings with the effect being significantly affected in endothelium-denuded aortic rings. Pre-incubation of the aortic rings with ODQ (selective cGMP-independent sGC inhibitor), indomethacin (nonselective COX inhibitor), L-NAME (endothelial nitric oxide inhibitor), propranolol (β2-adrenegic receptors blocker), and atropine (muscarinic receptors blocker) significantly reduced the vasorelaxant effect of morin. It was also found to be able to reduce the intracellular calcium level by blocking VOCC and calcium intake from the extracellular environment and the intracellular release of calcium from the sarcoplasmic reticulum. The present study showed that the vasorelaxant effect of morin potentially involves the NO/sGC, muscarinic receptors, β2-adrenegic receptors, and calcium channels.
  17. Al-Akwaa AA, Asmawi MZ, Dewa A, Mahmud R
    Heliyon, 2020 Jul;6(7):e04588.
    PMID: 32775735 DOI: 10.1016/j.heliyon.2020.e04588
    Background: Vitex pubescens has been used traditionally in hypertension treatment but not yet scientifically assessed. The objective of the study is to investigate the antihypertensive and vasorelaxant activities of V. pubescens, study its underlying pharmacological mechanisms, and identify the relevant vasoactive compounds.

    Methods: Successive extractions of V. pubescens leaf were carried out to produce petroleum ether (VPPE), chloroform (VPCE), methanol (VPME), and water (VPWE) extracts. Spontaneously hypertensive rats (SHRs) received a daily oral administration of the extracts (500 mg/kg/day; n = 6) or verapamil (15 mg/kg/day; n = 6) for 2 weeks, while the systolic and diastolic blood pressures were measured using non-invasive tail-cuff method. Vasorelaxation assays of the extracts were later conducted using phenylephrine (PE, 1 μM) pre-contracted aortic ring preparation. Mechanisms of vasorelaxation by the most potent fraction were studied using vasorelaxation assays with selected blockers/inhibitors. GC-MS was conducted to determine the active compounds.

    Results: VPPE elicited the most significant diminution in systolic and diastolic blood pressure of treated SHRs and produced the most significant vasorelaxation in the aortic rings. Vasorelaxant effects of F2-VPPE were significantly reduced in endothelium-denuded aortic rings by glibenclamide (1 μM), whereas calcium chloride and PE-induced contractions were significantly suppressed. Endothelium removal of the aortic rings or incubation with indomethacin (10 μM), atropine (1 μM), methylene blue (10 μM), propranolol (1μM) and L-NAME (10 μM) did not significantly alter F2-VPPE-induced vasorelaxation. Seven compounds were identified using GC-MS, including spathulenol.

    Conclusion: F2-VPPE exerted its endothelium-independent vasorelaxation by inhibition of vascular smooth muscle contraction induced by extracellular Ca+2 influx through trans-membrane Ca+2 channels and/or Ca+2 release from intracellular stores, and by activation of KATP channels. The vasorelaxation effects of V. pubescens could be mediated by the compound, spathulenol.

  18. Christapher PV, Parasuraman S, Asmawi MZ, Murugaiyah V
    Regul Toxicol Pharmacol, 2017 Jun;86:33-41.
    PMID: 28229903 DOI: 10.1016/j.yrtph.2017.02.005
    Medicinal plant preparations may contain high levels of toxic chemical constituents to potentially cause serious harm to animals and/or humans. Thus, toxicity studies are important to assess the toxic effects of plant derived products. Polygonum minus is used traditionally for different ailments in Southeast Asia. This study was conducted to establish the acute and subchronic toxicity profile of the methanol extract of P. minus leaves. The acute toxicity study showed that the methanol extract of P. minus is safe even at the highest dose tested of 2000 mg/kg in female Sprague Dawley rats. There were no behavioural or physiological changes and gross pathological abnormalities observed. The subchronic toxicity study of methanol extract of P. minus at 250, 500, 1000 and 2000 mg/kg were conducted in both sexes of Sprague Dawley rats. There were no changes observed in the extract treated animal's body weight, food and water intake, motor coordination, behaviour and mental alertness. The values of haematological and biochemical parameters were not different between the treated and control animals. The relative organ weights of extract-treated animals did not differ with that of control animals. Based on the present findings, the methanol extract of P. minus leaves could be considered safe up to the dose of 2000 mg/kg.
  19. Irfan HM, Khan NAK, Asmawi MZ
    Arch Physiol Biochem, 2020 May 15.
    PMID: 32412306 DOI: 10.1080/13813455.2020.1762661
    Background:Moringa oleifera Lam. has been used traditionally for the treatment of different cardio-metabolic disorders. So, the aim was to assess its leaf extracts in metabolic syndrome rat model.Methods: Out of the total 36-rats, 6 rats were given normal matched diet (NMD) while the rest were provided high-fat diet and 20% fructose (HFD-20%F). Moringa oleifera leaf extracts were administered orally for 30 days. Body weight, blood glucose, BMI, blood pressure, lipids, insulin, insulin resistance, MCP-1, visceral fat and liver weight were evaluated.Results: Sixty-days feeding with HFD-20%F produced the metabolic syndrome features like hyperinsulinemia, insulin resistance, and increase in low-density lipoprotein (LDL), visceral fat, and liver weight significantly (p
  20. Yam MF, Basir R, Asmawi MZ, Ismail Z
    Am J Chin Med, 2007;35(1):115-26.
    PMID: 17265556
    Orthosiphon stamineus (OS), Benth. (Lamiaceae) is widely used in Malaysia for treatments of various kidney and liver ailments. In the experiment, DPPH* radicals scavenging, Fe(3+)-induced lipid peroxidation inhibiting activities and trolox equivalent antioxidant capacity (TEAC) of methanol/water extract of Orthosiphon stamineus (SEOS) were determined. The results indicated that SEOS exhibited antioxidant, lipid peroxidation inhibition and free radical scavenging activities. The hepatoprotective activity of the SEOS was studied using CCl(4)-induced liver toxicity in rats. The activity was assessed by monitoring liver function tests through the measurement of alanine transaminase (ALT) and aspartate transaminase (AST). Furthermore, hepatic tissues were also subjected to histopathological studies. Pretreatment of SEOS (125, 250, 500 and 1000 mg/kg p.o.) dose-dependently reduced the necrotic changes in rat liver and inhibited the increase of serum ALT and AST activities. The results of the present study indicated that the hepatoprotective effect of Orthosiphon stamineus might be ascribable to its antioxidant and free radical scavenging property.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links