Displaying publications 61 - 80 of 225 in total

Abstract:
Sort:
  1. Lau YL, Cheong FW, Chin LC, Mahmud R, Chen Y, Fong MY
    Trop Biomed, 2014 Dec;31(4):749-59.
    PMID: 25776601 MyJurnal
    Malaria causes high global mortality and morbidity annually. Plasmodium knowlesi has been recognised as the fifth human Plasmodium sp. and its infection is widely distributed in Southeast Asia. Merozoite surface protein-119 (MSP-119) appears as a potential candidate for malaria blood stage vaccine as it could induce protective immunity. In this study, codon optimized P. knowlesi MSP-119 (pkMSP-119) was expressed and purified in yeast Pichia pastoris expression system. The purified recombinant protein was further evaluated using Western blot assay using knowlesi malaria, non-knowlesi human malaria, non-malarial parasitic infections and healthy serum samples (n = 50). The sensitivity of purified pkMSP-119 towards detection of knowlesi infection was as 28.6% (2/7). pkMSP-119 did not react with all non-malarial parasitic infections and healthy donor sera, yet reacted with some non-knowlesi human malaria sera, therefore lead to a specificity of 86.0% (37/43).
  2. Citartan M, Gopinath SCB, Chen Y, Lakshmipriya T, Tang TH
    Biosens Bioelectron, 2015 Jan 15;63:86-98.
    PMID: 25058943 DOI: 10.1016/j.bios.2014.06.068
    The illegal administration of recombinant human erythropoietin (rHuEPO) among athletes is largely preferred over blood doping to enhance stamina. The advent of recombinant DNA technology allowed the expression of EPO-encoding genes in several eukaryotic hosts to produce rHuEPO, and today these performance-enhancing drugs are readily available. As a mimetic of endogenous EPO (eEPO), rHuEPO augments the oxygen carrying capacity of blood. Thus, monitoring the illicit use of rHuEPO among athletes is crucial in ensuring an even playing field and maintaining the welfare of athletes. A number of rHuEPO detection methods currently exist, including measurement of hematologic parameters, gene-based detection methods, glycomics, use of peptide markers, electrophoresis, isoelectric focusing (IEF)-double immunoblotting, aptamer/antibody-based methods, and lateral flow tests. This review gleans these different strategies and highlights the leading molecular recognition elements that have potential roles in rHuEPO doping detection.
  3. Chen Y, Chan CK, Kerishnan JP, Lau YL, Wong YL, Gopinath SC
    BMC Infect. Dis., 2015;15:49.
    PMID: 25656928 DOI: 10.1186/s12879-015-0786-2
    Plasmodium knowlesi was identified as the fifth major malaria parasite in humans. It presents severe clinical symptoms and leads to mortality as a result of hyperparasitemia in a short period of time. This study aimed to improve the current understanding of P. knowlesi and identify potential biomarkers for knowlesi malaria.
  4. Gopinath SC, Tang TH, Citartan M, Chen Y, Lakshmipriya T
    Biosens Bioelectron, 2014 Jul 15;57:292-302.
    PMID: 24607580 DOI: 10.1016/j.bios.2014.02.029
    Sensing applications can be used to report biomolecular interactions in order to elucidate the functions of molecules. The use of an analyte and a ligand is a common set-up in sensor development. For several decades, antibodies have been considered to be potential analytes or ligands for development of so-called "immunosensors." In an immunosensor, formation of the complex between antibody and antigen transduces the signal, which is measurable in various ways (e.g., both labeled and label-free based detection). Success of an immunosensor depends on various factors, including surface functionalization, antibody orientation, density of the antibody on the sensor platform, and configuration of the immunosensor. Careful optimization of these factors can generate clear-cut results for any immunosensor. Herein, current aspects, involved in the generated immunosensors, are discussed.
  5. Vijayarathna S, Oon CE, Jothy SL, Chen Y, Kanwar JR, Sasidharan S
    Curr Gene Ther, 2014;14(2):112-20.
    PMID: 24588707
    For years researchers have exerted every effort to improve the influential roles of microRNA (miRNA) in regulating genes that direct mammalian cell development and function. In spite of numerous advancements, many facets of miRNA generation remain unresolved due to the perplexing regulatory networks. The biogenesis of miRNA, eminently endures as a mystery as no universal pathway defines or explicates the variegation in the rise of miRNAs. Early evidence in biogenesis ignited specific steps of being omitted or replaced that eventuate in the individual miRNAs of different mechanisms. Understanding the basic foundation concerning how miRNAs are generated and function will help with diagnostic tools and therapeutic strategies. This review encompasses the canonical and the non-canonical pathways involved in miRNA biogenesis, while elucidating how miRNAs regulate genes at the nuclear level and also the mechanism that lies behind circulating miRNAs.
  6. Chen Y, Azman SN, Kerishnan JP, Zain RB, Chen YN, Wong YL, et al.
    PLoS ONE, 2014;9(10):e109012.
    PMID: 25272005 DOI: 10.1371/journal.pone.0109012
    One of the most common cancers worldwide is oral squamous cell carcinoma (OSCC), which is associated with a significant death rate and has been linked to several risk factors. Notably, failure to detect these neoplasms at an early stage represents a fundamental barrier to improving the survival and quality of life of OSCC patients. In the present study, serum samples from OSCC patients (n = 25) and healthy controls (n = 25) were subjected to two-dimensional gel electrophoresis (2-DE) and silver staining in order to identify biomarkers that might allow early diagnosis. In this regard, 2-DE spots corresponding to various up- and down-regulated proteins were sequenced via high-resolution MALDI-TOF mass spectrometry and analyzed using the MASCOT database. We identified the following differentially expressed host-specific proteins within sera from OSCC patients: leucine-rich α2-glycoprotein (LRG), alpha-1-B-glycoprotein (ABG), clusterin (CLU), PRO2044, haptoglobin (HAP), complement C3c (C3), proapolipoprotein A1 (proapo-A1), and retinol-binding protein 4 precursor (RBP4). Moreover, five non-host factors were detected, including bacterial antigens from Acinetobacter lwoffii, Burkholderia multivorans, Myxococcus xanthus, Laribacter hongkongensis, and Streptococcus salivarius. Subsequently, we analyzed the immunogenicity of these proteins using pooled sera from OSCC patients. In this regard, five of these candidate biomarkers were found to be immunoreactive: CLU, HAP, C3, proapo-A1 and RBP4. Taken together, our immunoproteomics approach has identified various serum biomarkers that could facilitate the development of early diagnostic tools for OSCC.
  7. Kavitha N, Vijayarathna S, Jothy SL, Oon CE, Chen Y, Kanwar JR, et al.
    Asian Pac. J. Cancer Prev., 2014;15(18):7489-97.
    PMID: 25292018
    MicroRNAs (miRNAs) are short non-coding RNAs of 20-24 nucleotides that play important roles in carcinogenesis. Accordingly, miRNAs control numerous cancer-relevant biological events such as cell proliferation, cell cycle control, metabolism and apoptosis. In this review, we summarize the current knowledge and concepts concerning the biogenesis of miRNAs, miRNA roles in cancer and their potential as biomarkers for cancer diagnosis and prognosis including the regulation of key cancer-related pathways, such as cell cycle control and miRNA dysregulation. Moreover, microRNA molecules are already receiving the attention of world researchers as therapeutic targets and agents. Therefore, in-depth knowledge of microRNAs has the potential not only to identify their roles in cancer, but also to exploit them as potential biomarkers for cancer diagnosis and identify therapeutic targets for new drug discovery.
  8. Sumathy V, Zakaria Z, Jothy SL, Gothai S, Vijayarathna S, Yoga Latha L, et al.
    Microb. Pathog., 2014 Dec;77:7-12.
    PMID: 25457794 DOI: 10.1016/j.micpath.2014.10.004
    Invasive aspergillosis (IA) in immunocompromised host is a major infectious disease leading to reduce the survival rate of world population. Aspergillus niger is a causative agent causing IA. Cassia surattensis plant is commonly used in rural areas to treat various types of disease. C. surattensis flower extract was evaluated against the systemic aspergillosis model in this study. Qualitative measurement of fungal burden suggested a reduction pattern in the colony forming unit (CFU) of lung, liver, spleen and kidney for the extract treated group. Galactomannan assay assessment showed a decrease of fungal load in the treatment and positive control group with galactomannan index (GMI) value of 1.27 and 0.25 on day 28 but the negative control group showed high level of galactomannan in the serum with GMI value of 3.58. Histopathology examinations of the tissues featured major architecture modifications in the tissues of negative control group. Tissue reparation and recovery from infection were detected in extract treated and positive control group. Time killing fungicidal study of A. niger revealed dependence of the concentration of C. surattensis flower extract.
  9. Mu AK, Chan YS, Kang SS, Azman SN, Zain RB, Chai WL, et al.
    J Immunoassay Immunochem, 2014;35(2):183-93.
    PMID: 24295181 DOI: 10.1080/15321819.2013.836535
    The main purpose of this article is to develop a new and reliable saliva-based clinical diagnostic method for the early detection of oral squamous cell carcinoma (OSCC). This study used an immunoproteomic approach which allowed the detection of immunogenic host proteins in patients' samples using pooled human antibodies. In an attempt to investigate potential biomarkers of OSCC, two-dimensional electrophoresis (2-DE) followed by immunoblotting of saliva from patients and controls were compared. The protein spots of interest were analyzed using 2-DE image analyzer and subsequently subjected to MALDI-TOF/TOF and then matched against NCBI database. The result showed that four protein clusters, namely Human Pancreatic Alpha-amylase (HPA), Human Salivary Amylase (sAA), keratin-10 (K-10), and Ga Module Complexed with Human Serum Albumin (GA-HSA), had exhibited immunoreactivity in western blot. The results are suggestive of the potential use of the differentially expressed saliva protein as tumor biomarkers for the detection of OSCC. However, further studies are recommended to validate this finding.
  10. Velusamy P, Su CH, Venkat Kumar G, Adhikary S, Pandian K, Gopinath SC, et al.
    PLoS ONE, 2016;11(6):e0157612.
    PMID: 27304672 DOI: 10.1371/journal.pone.0157612
    In the current study, facile synthesis of carboxymethyl cellulose (CMC) and sodium alginate capped silver nanoparticles (AgNPs) was examined using microwave radiation and aniline as a reducing agent. The biopolymer matrix embedded nanoparticles were synthesized under various experimental conditions using different concentrations of biopolymer (0.5, 1, 1.5, 2%), volumes of reducing agent (50, 100, 150 μL), and duration of heat treatment (30 s to 240 s). The synthesized nanoparticles were analyzed by scanning electron microscopy, UV-Vis spectroscopy, X-ray diffraction, and Fourier transform infrared spectroscopy for identification of AgNPs synthesis, crystal nature, shape, size, and type of capping action. In addition, the significant antibacterial efficacy and antibiofilm activity of biopolymer capped AgNPs were demonstrated against different bacterial strains, Staphylococcus aureus MTCC 740 and Escherichia coli MTCC 9492. These results confirmed the potential for production of biopolymer capped AgNPs grown under microwave irradiation, which can be used for industrial and biomedical applications.
  11. Phang WM, Tan AA, Gopinath SC, Hashim OH, Kiew LV, Chen Y
    Int J Med Sci, 2016;13(5):330-9.
    PMID: 27226773 DOI: 10.7150/ijms.14341
    Breast cancer is one of the most common cancers that affect women globally and accounts for ~23% of all cancers diagnosed in women. Breast cancer is also one of the leading causes of death primarily due to late stage diagnoses and a lack of effective treatments. Therefore, discovering protein expression biomarkers is mandatory for early detection and thus, critical for successful therapy. Two-dimensional electrophoresis (2D-E) coupled with lectin-based analysis followed by mass spectrometry were applied to identify potential biomarkers in the secretions of a murine mammary carcinoma cell line. Comparisons of the protein profiles of the murine 4T1 mammary carcinoma cell line and a normal murine MM3MG mammary cell line indicated that cadherin-1 (CDH), collagenase 3 (MMP-13), Viral envelope protein G7e (VEP), Gag protein (GAG) and Hypothetical protein LOC433182 (LOC) were uniquely expressed by the 4T1 cells, and pigment epithelium-derived factor (PEDF) was exclusively secreted by the MM3MG cells. Further analysis by a lectin-based study revealed that aberrant O-glycosylated CDH, N-glycosylated MMP-13 and LOC were present in the 4T1 medium. These differentially expressed N- and O-linked glycoprotein candidates, which were identified by combining lectin-based analysis with 2D-E, could serve as potential diagnostic and prognostic markers for breast cancer.
  12. Sia SF, Zhao X, Li R, Zhang Y, Chong W, He L, et al.
    Proc Inst Mech Eng H, 2016 Nov;230(11):1051-1058.
    PMID: 28095764 DOI: 10.1177/0954411916671752
    BACKGROUND: Internal carotid artery stenosis requires an accurate risk assessment for the prevention of stroke. Although the internal carotid artery area stenosis ratio at the common carotid artery bifurcation can be used as one of the diagnostic methods of internal carotid artery stenosis, the accuracy of results would still depend on the measurement techniques. The purpose of this study is to propose a novel method to estimate the effect of internal carotid artery stenosis on the blood flow based on the concept of minimization of energy loss.

    METHODS: Eight internal carotid arteries from different medical centers were diagnosed as stenosed internal carotid arteries, as plaques were found at different locations on the vessel. A computational fluid dynamics solver was developed based on an open-source code (OpenFOAM) to test the flow ratio and energy loss of those stenosed internal carotid arteries. For comparison, a healthy internal carotid artery and an idealized internal carotid artery model have also been tested and compared with stenosed internal carotid artery in terms of flow ratio and energy loss.

    RESULTS: We found that at a given common carotid artery bifurcation, there must be a certain flow distribution in the internal carotid artery and external carotid artery, for which the total energy loss at the bifurcation is at a minimum; for a given common carotid artery flow rate, an irregular shaped plaque at the bifurcation constantly resulted in a large value of minimization of energy loss. Thus, minimization of energy loss can be used as an indicator for the estimation of internal carotid artery stenosis.

  13. Dyari HRE, Rawling T, Chen Y, Sudarmana W, Bourget K, Dwyer JM, et al.
    FASEB J., 2017 12;31(12):5246-5257.
    PMID: 28798154 DOI: 10.1096/fj.201700033R
    A saturated analog of the cytochrome P450-mediated ω-3-17,18-epoxide of ω-3-eicosapentaenoic acid (C20E) activated apoptosis in human triple-negative MDA-MB-231 breast cancer cells. This study evaluated the apoptotic mechanism of C20E. Increased cytosolic cytochrome c expression and altered expression of pro- and antiapoptotic B-cell lymphoma-2 proteins indicated activation of the mitochondrial pathway. Caspase-3 activation by C20E was prevented by pharmacological inhibition and silencing of the JNK and p38 MAP kinases (MAPK), upstream MAPK kinases MKK4 and MKK7, and the upstream MAPK kinase kinase apoptosis signal-regulating kinase 1 (ASK1). Silencing of the death receptor TNF receptor 1 (TNFR1), but not Fas, DR4, or DR5, and the adapters TRADD and TNF receptor-associated factor 2, but not Fas-associated death domain, prevented C20E-mediated apoptosis. B-cell lymphoma-2 homology 3-interacting domain death agonist (Bid) cleavage by JNK/p38 MAPK linked the extrinsic and mitochondrial pathways of apoptosis. In further studies, an antibody against the extracellular domain of TNFR1 prevented apoptosis by TNF-α but not C20E. These findings suggest that C20E acts intracellularly at TNFR1 to activate ASK1-MKK4/7-JNK/p38 MAPK signaling and to promote Bid-dependent mitochondrial disruption and apoptosis. Inin vivostudies, tumors isolated from C20E-treated nu/nu mice carrying MDA-MB-231 xenografts showed increased TUNEL staining and decreased Ki67 staining, reflecting increased apoptosis and decreased proliferation, respectively. ω-3-Epoxy fatty acids like C20E could be incorporated into treatments for triple-negative breast cancers.-Dyari, H. R. E., Rawling, T., Chen, Y., Sudarmana, W., Bourget, K., Dwyer, J. M., Allison, S. E., Murray, M. A novel synthetic analogue of ω-3 17,18-epoxyeicosatetraenoic acid activates TNF receptor-1/ASK1/JNK signaling to promote apoptosis in human breast cancer cells.
  14. Chu RX, Lin J, Wu CQ, Zheng J, Chen YL, Zhang J, et al.
    Nanoscale, 2017 Jun 23.
    PMID: 28644506 DOI: 10.1039/c7nr02423a
    Lithium-sulfur (Li-S) batteries have attracted great attention owing to their excellent electrochemical properties, such as the high discharge voltage of 2.3 V, specific capacity of 1675 mA h g(-1) and energy density of 2600 Wh kg(-1). The widely used slurry made electrodes of Li-S batteries are plagued by the serious shuttle effect and insulating nature of sulfur. Herein, a reduced graphene oxide coated porous carbon nanofiber flexible paper (rGO@S-PCNP) was fabricated and directly used as an additive-free cathode for Li-S batteries. The results show that the rGO@S-PCNP is certified to be effective at relieving the shuttle effect and improving the conductivity, thus achieving high electrochemical performance. The rGO@S-PCNP composite with a sulfur content of 58.4 wt% delivers a high discharge capacity of 623.7 mA h g(-1) after 200 cycles at 0.1 C (1 C = 1675 mA g(-1)) with the average Coulombic efficiency of 97.1%. The excellent cyclability and high Coulombic efficiency indicate that the as-prepared rGO@S-PCNP composite paper can be a promising cathode for lithium-sulfur batteries, and is envisioned to have great potential in high energy density flexible power devices. This facile strategy brings great significance for large-scale industrial fabrication of flexible lithium-sulfur batteries.
  15. Shanmugapriya, Huda HA, Vijayarathna S, Oon CE, Chen Y, Kanwar JR, et al.
    Adv. Exp. Med. Biol., 2018 9 28;1087:95-105.
    PMID: 30259360 DOI: 10.1007/978-981-13-1426-1_8
    Circular RNAs characterize a class of widespread and diverse endogenous RNAs which are non-coding RNAs that are made by back-splicing events and have covalently closed loops with no polyadenylated tails. Various indications specify that circular RNAs (circRNAs) are plentiful in the human transcriptome. However, their participation in biological processes remains mostly undescribed. To date thousands of circRNAs have been revealed in organisms ranging from Drosophila melanogaster to Homo sapiens. Functional studies specify that these transcripts control expression of protein-coding linear transcripts and thus encompass a key component of gene expression regulation. This chapter provide a comprehensive overview on functional validation of circRNAs. Furthermore, we discuss the recent modern methodologies for the functional validation of circRNAs such as RNA interference (RNAi) gene silencing assay, luciferase reporter assays, circRNA gain-of-function investigation via overexpression of circular transcript assay, RT-q-PCR quantification, and other latest applicable assays. The methods described in this chapter are demonstrated on the cellular model.
  16. Chen Y, Ge D, Zhang J, Chu R, Zheng J, Wu C, et al.
    Nanoscale, 2018 Sep 20;10(36):17378-17387.
    PMID: 30203824 DOI: 10.1039/c8nr01195h
    Tin-based materials have been intensively studied as attractive candidates for high-capacity and long-cycle-life anodes in Li-ion batteries (LIBs) owing to their low cost and high energy density. However, they all suffer from severe structural decay during the lithium ion insertion/extraction process, which results in deterioration in the overall performance of the batteries. To mitigate this problem, we have synthesized a Mo-doped SnO2 nanostructure via a facile hydrothermal method, which then fragmented into ultrafine particles after dozens of cycles. The fracture-resistant size and ample contact with Super-P and Li2O greatly improved the electrochemical kinetics and cyclability to deliver a reversible capacity of 670 mA h g-1 after 700 cycles, which demonstrated the potential suitability of Mo-doped SnO2 nanoparticles as a long-cycle-life anode material. Then, the compounds were uniformly dispersed in carbon nanofibers and reduced in situ to prepare a free-standing anode via electrospinning and carbonization. When used directly as an anode in LIBs (without a polymeric binder or conductive agent, as well as a current collector), the nanofiber membrane anode delivered comparable cycling performance and capacity to that of a slurry-coated electrode.
  17. Murphy S, Hansen M, Elklit A, Yong Chen Y, Raudzah Ghazali S, Shevlin M
    Psychiatry Res, 2018 04;262:378-383.
    PMID: 28917443 DOI: 10.1016/j.psychres.2017.09.011
    The factor structure of DSM-5 posttraumatic stress disorder (PTSD) has been extensively debated with evidence supporting the recently proposed seven-factor Hybrid model. However, despite myriad studies examining PTSD symptom structure few have assessed the diagnostic implications of these proposed models. This study aimed to generate PTSD prevalence estimates derived from the 7 alternative factor models and assess whether pre-established risk factors associated with PTSD (e.g., transportation accidents and sexual victimisation) produce consistent risk estimates. Seven alternative models were estimated within a confirmatory factor analytic framework using the PTSD Checklist for DSM-5 (PCL-5). Data were analysed from a Malaysian adolescent community sample (n = 481) of which 61.7% were female, with a mean age of 17.03 years. The results indicated that all models provided satisfactory model fit with statistical superiority for the Externalising Behaviours and seven-factor Hybrid models. The PTSD prevalence estimates varied substantially ranging from 21.8% for the DSM-5 model to 10.0% for the Hybrid model. Estimates of risk associated with PTSD were inconsistent across the alternative models, with substantial variation emerging for sexual victimisation. These findings have important implications for research and practice and highlight that more research attention is needed to examine the diagnostic implications emerging from the alternative models of PTSD.
  18. Kavitha N, Vijayarathna S, Shanmugapriya, Oon CE, Chen Y, Kanwar JR, et al.
    J Ethnopharmacol, 2018 Mar 01;213:118-131.
    PMID: 29154802 DOI: 10.1016/j.jep.2017.11.009
    ETHNOPHARMACOLOGICAL RELEVANCE: Phaleria macrocarpa (Scheff) Boerl, is a famous traditional medicinal plant which exhibited cytotoxicity against various cancerous cells. Traditionally, P. macrocarpa has been used to control cancer, impotency, hemorrhoids, diabetes mellitus, allergies, liver and heart disease, kidney disorders, blood diseases, acne, stroke, migraine, and various skin diseases.

    AIM OF THE STUDY: Recent studies have demonstrated a potent anticancer potential of P. macrocarpa, especially against HeLa cell. The objective of this study was to investigate the regulation of miRNAs on MDA-MB-231 treated with P. macrocarpa ethyl acetate fraction (PMEAF).

    MATERIALS AND METHODS: The regulation of miRNAs on MDA-MB-231 cells treated with PMEAF was studied through IIlumina, Hi-Seq. 2000 platform of Next Generation Sequencing (NGS) and various in silico bioinformatics tools.

    RESULTS: The PMEAF treatment against MDA-MB-231 cells identified 10 upregulated and 10 downregulated miRNAs. A set of 606 target genes of 10 upregulated miRNAs and 517 target genes of 10 downregulated miRNAs were predicted based on computational and validated databases by using miRGate DB Query. Meanwhile, results from DAVID Bioinformatics Resources 6.8 specified the functional annotation of the upregulated miRNAs involvement in cancer pathway by suppressing the oncogenes and downregulating miRNAs by expressing the tumour suppressor genes in the regulation of apoptosis pathway.

    CONCLUSION: In conclusion, the results of this study proved that PMEAF is a promising anticancer agent with high cytotoxicity against MDA-MB-231 breast cancer cells and it induced apoptotic cell death mechanism through the regulation of miRNAs. PMEAF might be the best candidate for developing more potent anticancer drugs or chemo preventive supplements.

  19. She S, Yu J, Tang W, Zhu Y, Chen Y, Sunarso J, et al.
    ACS Appl Mater Interfaces, 2018 Apr 11;10(14):11715-11721.
    PMID: 29546981 DOI: 10.1021/acsami.8b00682
    Perovskite oxide is an attractive low-cost alternative catalyst for oxygen evolution reaction (OER) relative to the precious metal oxide-based electrocatalysts (IrO2 and RuO2). In this work, a series of Sr-doped La-based perovskite oxide catalysts with compositions of La1- xSr xFeO3-δ ( x = 0, 0.2, 0.5, 0.8, and 1) are synthesized and characterized. The OER-specific activities in alkaline solution increase in the order of LaFeO3-δ (LF), La0.8Sr0.2FeO3-δ (LSF-0.2), La0.5Sr0.5FeO3-δ (LSF-0.5), SrFeO3-δ (SF), and La0.2Sr0.8FeO3-δ (LSF-0.8). We establish a direct correlation between the enhancement in the specific activity and the amount of surface oxygen vacancies as well as the surface Fe oxidation states. The improved specific activity for LSF-0.8 is clearly linked to the optimum amount of surface oxygen vacancies and surface Fe oxidation states. We also find that the OER performance stability is a function of the crystal structure and the deviation in the surface La and/or Sr composition(s) from their bulk stoichiometric compositions. The cubic structure and lower deviation, as is the case for LSF-0.8, led to a higher OER performance stability. These surface performance relations provide a promising guideline for constructing efficient water oxidation.
  20. Szpak M, Mezzavilla M, Ayub Q, Chen Y, Xue Y, Tyler-Smith C
    Genome Biol., 2018 01 17;19(1):5.
    PMID: 29343290 DOI: 10.1186/s13059-017-1380-2
    We present a new method, Fine-Mapping of Adaptive Variation (FineMAV), which combines population differentiation, derived allele frequency, and molecular functionality to prioritize positively selected candidate variants for functional follow-up. We calibrate and test FineMAV using eight experimentally validated "gold standard" positively selected variants and simulations. FineMAV has good sensitivity and a low false discovery rate. Applying FineMAV to the 1000 Genomes Project Phase 3 SNP dataset, we report many novel selected variants, including ones in TGM3 and PRSS53 associated with hair phenotypes that we validate using available independent data. FineMAV is widely applicable to sequence data from both human and other species.
Filters
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links