Displaying publications 61 - 80 of 86 in total

Abstract:
Sort:
  1. Samsudin MH, Hassan MA, Idris J, Ramli N, Mohd Yusoff MZ, Ibrahim I, et al.
    Waste Manag Res, 2019 May;37(5):551-555.
    PMID: 30727859 DOI: 10.1177/0734242X18823953
    A one-step self-sustained carbonization of coconut shell biomass, carried out in a brick reactor at a relatively low temperature of 300-500°C, successfully produced a biochar-derived adsorbent with 308 m2/g surface area, 2 nm pore diameter, and 0.15 cm3/g total pore volume. The coconut shell biochar qualifies as a nano-adsorbent, supported by scanning electron microscope images, which showed well-developed nano-pores on the surface of the biochar structure, even though there was no separate activation process. This is the first report whereby coconut shell can be converted to biochar-derived nano-adsorbent at a low carbonization temperature, without the need of the activation process. This is superior to previous reports on biochar produced from oil palm empty fruit bunch.
  2. Shazleen SS, Yasim-Anuar TAT, Ibrahim NA, Hassan MA, Ariffin H
    Polymers (Basel), 2021 Jan 27;13(3).
    PMID: 33513688 DOI: 10.3390/polym13030389
    Polylactic acid (PLA), a potential alternative material for single use plastics, generally portrays a slow crystallization rate during melt-processing. The use of a nanomaterial such as cellulose nanofibers (CNF) may affect the crystallization rate by acting as a nucleating agent. CNF at a certain wt.% has been evidenced as a good reinforcement material for PLA; nevertheless, there is a lack of information on the correlation between the amount of CNF in PLA that promotes its functionality as reinforcement material, and its effect on PLA nucleation for improving the crystallization rate. This work investigated the nucleation effect of PLA incorporated with CNF at different fiber loading (1-6 wt.%) through an isothermal and non-isothermal crystallization kinetics study using differential scanning calorimetry (DSC) analysis. Mechanical properties of the PLA/CNF nanocomposites were also investigated. PLA/CNF3 exhibited the highest crystallization onset temperature and enthalpy among all the PLA/CNF nanocomposites. PLA/CNF3 also had the highest crystallinity of 44.2% with an almost 95% increment compared to neat PLA. The highest crystallization rate of 0.716 min-1 was achieved when PLA/CNF3 was isothermally melt crystallized at 100 °C. The crystallization rate was 65-fold higher as compared to the neat PLA (0.011 min-1). At CNF content higher than 3 wt.%, the crystallization rate decreased, suggesting the occurrence of agglomeration at higher CNF loading as evidenced by the FESEM micrographs. In contrast to the tensile properties, the highest tensile strength and Young's modulus were recorded by PLA/CNF4 at 76.1 MPa and 3.3 GPa, respectively. These values were, however, not much different compared to PLA/CNF3 (74.1 MPa and 3.3 GPa), suggesting that CNF at 3 wt.% can be used to improve both the crystallization rate and the mechanical properties. Results obtained from this study revealed the dual function of CNF in PLA nanocomposite, namely as nucleating agent and reinforcement material. Being an organic and biodegradable material, CNF has an increased advantage for use in PLA as compared to non-biodegradable material and is foreseen to enhance the potential use of PLA in single use plastics applications.
  3. Shazleen SS, Foong Ng LY, Ibrahim NA, Hassan MA, Ariffin H
    Polymers (Basel), 2021 Sep 23;13(19).
    PMID: 34641040 DOI: 10.3390/polym13193226
    This work investigated the combined effects of CNF nucleation (3 wt.%) and PLA-g-MA compatibilization at different loadings (1-4 wt.%) on the crystallization kinetics and mechanical properties of polylactic acid (PLA). A crystallization kinetics study was done through isothermal and non-isothermal crystallization kinetics using differential scanning calorimetry (DSC) analysis. It was shown that PLA-g-MA had some effect on nucleation as exhibited by the value of crystallization half time and crystallization rate of the PLA/PLA-g-MA, which were increased by 180% and 172%, respectively, as compared to neat PLA when isothermally melt crystallized at 100 °C. Nevertheless, the presence of PLA-g-MA in PLA/PLA-g-MA/CNF3 nanocomposites did not improve the crystallization rate compared to that of uncompatibilized PLA/CNF3. Tensile strength was reduced with the increased amount of PLA-g-MA. Contrarily, Young's modulus values showed drastic increment compared to the neat PLA, showing that the addition of the PLA-g-MA contributed to the rigidity of the PLA nanocomposites. Overall, it can be concluded that PLA/CNF nanocomposite has good performance, whereby the addition of PLA-g-MA in PLA/CNF may not be necessary for improving both the crystallization kinetics and tensile strength. The addition of PLA-g-MA may be needed to produce rigid nanocomposites; nevertheless, in this case, the crystallization rate of the material needs to be compromised.
  4. Suhaimi SN, Phang LY, Maeda T, Abd-Aziz S, Wakisaka M, Shirai Y, et al.
    Braz J Microbiol, 2012 Apr;43(2):506-16.
    PMID: 24031858 DOI: 10.1590/S1517-83822012000200011
    Bioconverting glycerol into various valuable products is one of glycerol's promising applications due to its high availability at low cost and the existence of many glycerol-utilizing microorganisms. Bioethanol and biohydrogen, which are types of renewable fuels, are two examples of bioconverted products. The objectives of this study were to evaluate ethanol production from different media by local microorganism isolates and compare the ethanol fermentation profile of the selected strains to use of glucose or glycerol as sole carbon sources. The ethanol fermentations by six isolates were evaluated after a preliminary screening process. Strain named SS1 produced the highest ethanol yield of 1.0 mol: 1.0 mol glycerol and was identified as Escherichia coli SS1 Also, this isolated strain showed a higher affinity to glycerol than glucose for bioethanol production.
  5. Tang SN, Fakhru'l-Razi A, Hassan MA, Karim MI
    PMID: 10595441
    Rubber latex effluent is a polluting source that has a high biochemical oxygen demand (BOD). It is estimated that about 100 million liters of effluent are discharged daily from rubber processing factories. Utilization of this effluent such as the use of a coupled system not only can reduce the cost of treatment but also yield a fermentation feedstock for the production of bioplastic. This study initially was carried out to increase the production of organic acids by anaerobic treatment of rubber latex effluent. It was found that through anaerobic treatment the concentration of organic acids did not increase. Consequently, separation of organic acids from rubber latex effluent by anion exchange resin was examined as a preliminary study of recovering acetic and propionic acids. However, the suspended solids (SS) content in the raw effluent was rather high which partially blocked the ion-exchange columns. Lime was used to remove the SS in the rubber latex effluent. After the lime precipitation process, organic acids were found to adsorb strongly onto the anion exchange resin. Less adsorption of organic acids onto the resin was observed before the lime precipitation. This was probably due to more sites being occupied by colloidal particles on the resin thus inhibiting the adsorption of organic acids. The initial concentration of organic acids in the raw effluent was 3.9 g/L. After ion exchange, the concentration of the organic acids increased to 27 g/L, which could be utilized for production of polyhydroxyalkanoates (PHA). For PHA accumulation stage, concentrated rubber latex effluent obtained from ion exchange resins and synthetic acetic acid were used as the carbon source. Quantitative analyses from fed batch culture via HPLC showed that the accumulation of PHA in Alcaligenes eutrophus was maximum with a concentration of 1.182 g/L when cultivated on synthetic acetic acid, corresponding to a yield of 87% based on its cell dry weight. The dry cell weight increased from 0.71 to 1.67 g/L. On the other hand, using concentrated rubber latex effluent containing acetic and propionic acids resulted in reduced PHA content by dry weight (14%) but the dry cell weight increased from 0.49 to 1.30 g/L. The results clearly indicated that the cells grow well in rubber latex effluent but no PHA was accumulated. This could be due to the high concentration of propionic acid in culture broth or other factors such as heavy metals. Thus further work is required before rubber latex effluent can be utilized as a substrate for PHA production industrially.
  6. Ujang FA, Roslan AM, Osman NA, Norman A, Idris J, Farid MAA, et al.
    Sci Rep, 2021 Sep 14;11(1):18257.
    PMID: 34521938 DOI: 10.1038/s41598-021-97789-0
    The reason for such enormous efforts in palm oil mill effluent research would be what has been singled out as one of the major sources of pollution in Malaysia, and perhaps the most costly and complex waste to manage. Palm oil mill final discharge, which is the treated effluent, will usually be discharged to nearby land or river since it has been the least costly way to dispose of. Irrefutably, the quality level of the treated effluent does not always satisfy the surface water quality in conformity to physicochemical characteristics. To work on improving the treated effluent quality, a vertical surface-flow constructed wetland system was designed with Pennisetum purpureum (Napier grass) planted on the wetland floor. The system effectively reduced the level of chemical oxygen demand by 62.2 ± 14.3%, total suspended solid by 88.1 ± 13.3%, ammonia by 62.3 ± 24.8%, colour by 66.6 ± 13.19%, and tannin and lignin by 57.5 ± 22.3%. Heat map depicted bacterial diversity and relative abundance in life stages from the wetland soil, whereby bacterial community associated with the pollutant removal was found to be from the families Anaerolineaceae and Nitrosomonadaceae, and phyla Cyanobacteria and Acidobacteria.
  7. Yacob S, Hassan MA, Shirai Y, Wakisaka M, Subash S
    Chemosphere, 2005 Jun;59(11):1575-81.
    PMID: 15894045
    Anthropogenic release of greenhouse gases, especially CO2 and CH4 has been recognized as one of the main causes of global warming. Several measures under the Kyoto Protocol 1997 have been drawn up to reduce the greenhouse gases emission. One of the measures is Clean Development Mechanisms (CDM) that was created to enable developed countries to cooperate with developing countries in emission reduction activities. In Malaysia, palm oil industry particularly from palm oil mill effluent (POME) anaerobic treatment has been identified as an important source of CH4. However, there is no study to quantify the actual CH4 emission from the commercial scale wastewater treatment facility. Hence, this paper shall address the CH4 emission from the open digesting tanks in Felda Serting Hilir Palm Oil Mill. CH4 emission pattern was recorded for 52 weeks from 3600 m3 open digesting tanks. The findings indicated that the CH4 content was between 13.5% and 49.0% which was lower than the value of 65% reported earlier. The biogas flow rate ranged between 0.8l min(-1)m(-2) and 9.8l min(-1)m(-2). Total CH4 emission per open digesting tank was 518.9 kgday(-1). Relationships between CH4 emission and total carbon removal and POME discharged were also discussed. Fluctuation of biogas production was observed throughout the studies as a result of seasonal oil palm cropping, mill activities, variation of POME quality and quantity discharged from the mill. Thus only through long-term field measurement CH4 emission can be accurately estimated.
  8. Yahya I, Hassan MA, Maidin NNM, Mohamed MA
    Sensors (Basel), 2022 Oct 26;22(21).
    PMID: 36365910 DOI: 10.3390/s22218212
    A thin film of single-walled carbon nanotube (SWCNT) network field-effect transistor (FET) was fabricated by a simple, fast, and reliable deposition method for electronic applications. This study aims to develop a method for fabricating a thin film of random SWCNTs to be used as a transducer to detect human serum albumin (HSA) in biosensor applications. The random SWCNT network was deposited using the airbrush technique. The morphology of the CNT network was examined by utilising atomic force microscopy (AFM) and field-emission scanning electron microscopy (FESEM), while electrical characteristics were analysed using three-terminal IV measurements. The thin film (SWCNT network) was applied as a transducer to detect human serum albumin (HSA) based on its covalent interaction with antibodies. HSA plays a significant part in the physiological functions of the human body. The surface alteration of the SWCNTs was verified using Fourier transform infrared (FTIR) spectroscopy. Electrical current-voltage measurements validated the surface binding and HSA detection. The biosensor linearly recorded a 0.47 fg/mL limit of detection (LOD) and a high sensitivity of 3.44 μA (g/mL)-1 between 1 fg/mL and 10 pg/mL. This device can also be used to identify a genuine HSA despite interference from other biomolecules (i.e., bovine serum albumin (BSA)), thus demonstrating the random SWCNT-FET immunosensor ability to quantify HSA in a complex biological environment.
  9. Yasim-Anuar TAT, Ariffin H, Norrrahim MNF, Hassan MA, Andou Y, Tsukegi T, et al.
    Polymers (Basel), 2020 Apr 17;12(4).
    PMID: 32316664 DOI: 10.3390/polym12040927
    Two different liquid assisted processing methods: internal melt-blending (IMB) and twin-screw extrusion (TWS) were performed to fabricate polyethylene (PE)/cellulose nanofiber (CNF) nanocomposites. The nanocomposites consisted maleic anhydride-grafted PE (PEgMA) as a compatibilizer, with PE/PEgMA/CNF ratio of 97/3/0.5-5 (wt./wt./wt.), respectively. Morphological analysis exhibited that CNF was well-dispersed in nanocomposites prepared by liquid-assisted TWS. Meanwhile, a randomly oriented and agglomerated CNF was observed in the nanocomposites prepared by liquid-assisted IMB. The nanocomposites obtained from liquid-assisted TWS exhibited the best mechanical properties at 3 wt.% CNF addition with an increment in flexural strength by almost 139%, higher than that of liquid-assisted IMB. Results from this study indicated that liquid feeding of CNF assisted the homogenous dispersion of CNF in PE matrix, and the mechanical properties of the nanocomposites were affected by compounding method due to the CNF dispersion and alignment.
  10. Yasin NH, Mumtaz T, Hassan MA, Abd Rahman N
    J Environ Manage, 2013 Nov 30;130:375-85.
    PMID: 24121591 DOI: 10.1016/j.jenvman.2013.09.009
    Food waste and food processing wastes which are abundant in nature and rich in carbon content can be attractive renewable substrates for sustainable biohydrogen production due to wide economic prospects in industries. Many studies utilizing common food wastes such as dining hall or restaurant waste and wastes generated from food processing industries have shown good percentages of hydrogen in gas composition, production yield and rate. The carbon composition in food waste also plays a crucial role in determining high biohydrogen yield. Physicochemical factors such as pre-treatment to seed culture, pH, temperature (mesophilic/thermophilic) and etc. are also important to ensure the dominance of hydrogen-producing bacteria in dark fermentation. This review demonstrates the potential of food waste and food processing waste for biohydrogen production and provides a brief overview of several physicochemical factors that affect biohydrogen production in dark fermentation. The economic viability of biohydrogen production from food waste is also discussed.
  11. Yee LN, Chuah JA, Chong ML, Phang LY, Raha AR, Sudesh K, et al.
    Microbiol Res, 2012 Oct 12;167(9):550-7.
    PMID: 22281521 DOI: 10.1016/j.micres.2011.12.006
    In this study, PHA biosynthesis operon of Comamonas sp. EB172, an acid-tolerant strain, consisting of three genes encoding acetyl-CoA acetyltransferase (phaA(Co) gene, 1182 bp), acetoacetyl-CoA reductase (phaB(Co) gene, 738 bp) and PHA synthase, class I (phaC(Co) gene, 1694 bp) were identified. Sequence analysis of the phaA(Co), phaB(Co) and phaC(Co) genes revealed that they shared more than 85%, 89% and 69% identity, respectively, with orthologues from Delftia acidovorans SPH-1 and Acidovorax ebreus TPSY. The PHA biosynthesis genes (phaC(Co) and phaAB(Co)) were successfully cloned in a heterologous host, Escherichia coli JM109. E. coli JM109 transformants harbouring pGEM'-phaC(Co)AB(Re) and pGEM'-phaC(Re)AB(Co) were shown to be functionally active synthesising 33 wt.% and 17 wt.% of poly(3-hydroxybutyrate) [P(3HB)]. E. coli JM109 transformant harbouring the three genes from the acid-tolerant Comamonas sp. EB172 (phaCAB(Co)) under the control of native promoter from Cupriavidus necator, in vivo polymerised P(3HB) when fed with glucose and volatile mixed organic acids (acetic acid:propionic acid:n-butyric acid) in ration of 3:1:1, respectively. The E. coli JM109 transformant harbouring phaCAB(Co) could accumulate P(3HB) at 2g/L of propionic acid. P(3HB) contents of 40.9% and 43.6% were achieved by using 1% of glucose and mixed organic acids, respectively.
  12. Yusof N, Hassan MA, Yee PL, Tabatabaei M, Othman MR, Mori M, et al.
    Waste Manag Res, 2011 Jun;29(6):602-11.
    PMID: 21447612 DOI: 10.1177/0734242X10397581
    Nitrification of mature sanitary landfill leachate with high-strength of N-NH(4) + (1080-2350 mg L(-1)) was performed in a 10 L continuous nitrification activated sludge reactor. The nitrification system was acclimatized with synthetic leachate during feed batch operation to avoid substrate inhibition before being fed with actual mature leachate. Successful nitrification was achieved with an approximately complete ammonium removal (99%) and 96% of N-NH(4) + conversion to N-NO(-) (3) . The maximum volumetric and specific nitrification rates obtained were 2.56 kg N-NH(4) (+) m(-3) day(-1) and 0.23 g N-NH(4) ( +) g(-1) volatile suspended solid (VSS) day(-1), respectively, at hydraulic retention time (HRT) of 12.7 h and solid retention time of 50 days. Incomplete nitrification was encountered when operating at a higher nitrogen loading rate of 3.14 kg N-NH(4) (+) m(-3) day(-1). The substrate overloading and nitrifiers competition with heterotrophs were believed to trigger the incomplete nitrification. Fluorescence in situ hybridization (FISH) results supported the syntrophic association between the ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria. FISH results also revealed the heterotrophs as the dominant and disintegration of some AOB cell aggregates into single cells which further supported the incomplete nitrification phenomenon.
  13. Yusof N, Haraguchi A, Hassan MA, Othman MR, Wakisaka M, Shirai Y
    Waste Manag, 2009 Oct;29(10):2666-80.
    PMID: 19564103 DOI: 10.1016/j.wasman.2009.05.022
    Since landfilling is the common method of waste disposal in Malaysia, river water is greatly exposed to the risk of contamination from leachate unless proper leachate management is carried out. In this study, leachates from three different types of landfills, namely active uncontrolled, active controlled and closed controlled, were characterized, and their relationships with river water chemistry were examined monthly for a year. The influence of leachate on river water chemistry from each type of landfill depended on many factors, including the presence of a leachate control mechanism, leachate characteristics, precipitation, surface runoff and the applied treatment. The impact of leachate from an active uncontrolled landfill was the highest, as the organic content, NH(4)(+)-N, Cd and Mn levels appeared high in the river. At the same time, influences of leachate were also observed from both types of controlled landfills in the form of inorganic nitrogen (NH(4)(+)-N, NO(3)(-)-N and NO(2)(-)-N) and heavy metals (Fe, Cr, Ni and Mn). Improper treatment practice led to high levels of some contaminants in the stream near the closed controlled landfill. Meanwhile, the active controlled landfill, which was located near the coastline, was exposed to the risk of contamination resulting from the pyrite oxidation of the surrounding area.
  14. Zahari MA, Zakaria MR, Ariffin H, Mokhtar MN, Salihon J, Shirai Y, et al.
    Bioresour Technol, 2012 Apr;110:566-71.
    PMID: 22342083 DOI: 10.1016/j.biortech.2012.01.119
    In this paper, we report that pressed juice from oil palm frond (OPF) contained renewable sugars such as glucose, sucrose and fructose. By using a simple sugarcane press, 50% (wt/wt) of OPF juice was obtained from fresh OPF. The glucose content in the juice was 53.95±2.86g/l, which accounts for 70% of the total free sugars. We have examined the effect of various OPF juice concentrations on the production of poly(3-hydroxybutyrate), P(3HB) by Cupriavidus necator CCUG 52238(T). The cell dry mass in shake flask experiment reached 8.42g/l, with 32wt.% of P(3HB) at 30% (v/v) of OPF juice, comparable with using technical grade sugars. The biopolymer had a molecular mass, M(w) of 812kDa, with a low polydispersity index of 1.61. This result indicates that OPF juice can be used as an alternative renewable carbon source for P(3HB) production and has potential as a renewable carbon source.
  15. Zainudin MHM, Hassan MA, Tokura M, Shirai Y
    Bioresour Technol, 2013 Nov;147:632-635.
    PMID: 24012093 DOI: 10.1016/j.biortech.2013.08.061
    The composting of lignocellulosic oil palm empty fruit bunch (OPEFB) with continuous addition of palm oil mill (POME) anaerobic sludge which contained nutrients and indigenous microbes was studied. In comparison to the conventional OPEFB composting which took 60-90 days, the rapid composting in this study can be completed in 40 days with final C/N ratio of 12.4 and nitrogen (2.5%), phosphorus (1.4%), and potassium (2.8%), respectively. Twenty-seven cellulolytic bacterial strains of which 23 strains were closely related to Bacillus subtilis, Bacillus firmus, Thermobifida fusca, Thermomonospora spp., Cellulomonas sp., Ureibacillus thermosphaericus, Paenibacillus barengoltzii, Paenibacillus campinasensis, Geobacillus thermodenitrificans, Pseudoxanthomonas byssovorax which were known as lignocellulose degrading bacteria and commonly involved in lignocellulose degradation. Four isolated strains related to Exiguobacterium acetylicum and Rhizobium sp., with cellulolytic and hemicellulolytic activities. The rapid composting period achieved in this study can thus be attributed to the naturally occurring cellulolytic and hemicellulolytic strains identified.
  16. Zainudin MHM, Mustapha NA, Hassan MA, Bahrin EK, Tokura M, Yasueda H, et al.
    Sci Rep, 2019 09 19;9(1):13526.
    PMID: 31537863 DOI: 10.1038/s41598-019-50126-y
    A thermophilic Thermobifida fusca strain UPMC 901, harboring highly thermostable cellulolytic activity, was successfully isolated from oil palm empty fruit bunch compost. Its endoglucanase had the highest activity at 24 hours of incubation in carboxymethyl-cellulose (CMC) and filter paper. A maximum endoglucanase activity of 0.9 U/mL was achieved at pH 5 and 60 °C using CMC as a carbon source. The endoglucanase properties were further characterized using crude enzyme preparations from the culture supernatant. Thermal stability indicated that the endoglucanase activity was highly stable at 70 °C for 24 hours. Furthermore, the activity was found to be completely maintained without any loss at 50 °C and 60 °C for 144 hours, making it the most stable than other endoglucanases reported in the literature. The high stability of the endoglucanase at an elevated temperature for a prolonged period of time makes it a suitable candidate for the biorefinery application.
  17. Zainudin MHM, Ramli N, Hassan MA, Shirai Y, Tashiro K, Sakai K, et al.
    J Ind Microbiol Biotechnol, 2017 06;44(6):869-877.
    PMID: 28197796 DOI: 10.1007/s10295-017-1916-1
    A recently developed rapid co-composting of oil palm empty fruit bunch (OPEFB) and palm oil mill effluent (POME) anaerobic sludge is beginning to attract attention from the palm oil industry in managing the disposal of these wastes. However, a deeper understanding of microbial diversity is required for the sustainable practice of the co-compositing process. In this study, an in-depth assessment of bacterial community succession at different stages of the pilot scale co-composting of OPEFB-POME anaerobic sludge was performed using 454-pyrosequencing, which was then correlated with the changes of physicochemical properties including temperature, oxygen level and moisture content. Approximately 58,122 of 16S rRNA gene amplicons with more than 500 operational taxonomy units (OTUs) were obtained. Alpha diversity and principal component analysis (PCoA) indicated that bacterial diversity and distributions were most influenced by the physicochemical properties of the co-composting stages, which showed remarkable shifts of dominant species throughout the process. Species related to Devosia yakushimensis and Desemzia incerta are shown to emerge as dominant bacteria in the thermophilic stage, while Planococcus rifietoensis correlated best with the later stage of co-composting. This study proved the bacterial community shifts in the co-composting stages corresponded with the changes of the physicochemical properties, and may, therefore, be useful in monitoring the progress of co-composting and compost maturity.
  18. Zainudin MHM, Mustapha NA, Hassan MA, Bahrin EK, Tokura M, Yasueda H, et al.
    Sci Rep, 2020 Jan 27;10(1):1513.
    PMID: 31988396 DOI: 10.1038/s41598-020-58488-4
    An amendment to this paper has been published and can be accessed via a link at the top of the paper.
  19. Zakaria MA, Mohd Yusoff MZ, Zakaria MR, Hassan MA, Wood TK, Maeda T
    3 Biotech, 2018 Oct;8(10):435.
    PMID: 30306004 DOI: 10.1007/s13205-018-1461-2
    Pseudogenes in the Escherichia coli genome are assumed to be non-functional. In this study, Keio collection BW25113∆yqiG and YqiG-producing strain (BW25113/pCA24N-YqiG) were used to evaluate the importance of pseudogene yqiG in hydrogen metabolism. Our results show pseudogene protein YqiG was identified as an essential protein in the production of biohydrogen from glucose. The mutant yqiG decreased biohydrogen production from 37 µmol mg-1 protein to 6 µmol mg-1 protein compared to the wild-type strain, and glucose consumption was reduced by 80%. Through transcriptional analysis, we found that the yqiG mutation represses pflB transcription tenfold; pflB encodes pyruvate-formate lyase, one of the key enzymes in the anaerobic metabolism of E. coli. Moreover, production of YqiG stimulated glycolysis and increased biohydrogen productivity 1.5-fold compared to that of the wild-type strain. Thus, YqiG is important for the central glycolysis reaction and is able to influence hydrogen metabolism activity in E. coli.
  20. Zakaria MR, Norrrahim MN, Hirata S, Hassan MA
    Bioresour Technol, 2015 Apr;181:263-9.
    PMID: 25659104 DOI: 10.1016/j.biortech.2015.01.072
    Eco-friendly pretreatment methods for lignocellulosic biomass are being developed as alternatives to chemical based methods. Superheated steam (SHS), hot compressed water (HCW) and wet disk milling (WDM) were used individually and with combination to partially remove hemicellulose and alter the lignin composition of recalcitrant structure of oil palm mesocarp fiber (OPMF). The efficiency of the pretreatment methods was evaluated based on the chemical compositions altered, SEM analysis, power consumption and degree of enzymatic digestibility. Hemicellulose removal (94.8%) was more pronounced under HCW compared to SHS, due to maximal contact of water and production of acetic acid which enhanced further degradation of hemicellulose. Subsequent treatment with WDM resulted in defibrillation of OPMF and expansion of the specific surface area thus increasing the conversion of cellulose to glucose. The highest glucose yield was 98.1% (g/g-substrate) when pretreated with HCW (200 °C, 20 min) and WDM which only consumed 9.6 MJ/kg of OPMF.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links