Displaying publications 61 - 80 of 129 in total

Abstract:
Sort:
  1. Michael FM, Khalid M, Raju G, Ratnam CT, Walvekar R, Mubarak NM
    Molecules, 2021 Sep 27;26(19).
    PMID: 34641395 DOI: 10.3390/molecules26195852
    We studied the reinforcing effects of treated and untreated nanohydroxyapatite (NHA) on poly-lactic acid (PLA). The NHA surface was treated with three different types of chemicals; 3-aminopropyl triethoxysilane (APTES), sodium n-dodecyl sulfate (SDS) and polyethylenimine (PEI). The nanocomposite samples were prepared using melt mixing techniques by blending 5 wt% untreated NHA and 5 wt% surface-treated NHA (mNHA). Based on the FESEM images, the interfacial adhesion between the mNHA filler and PLA matrix was improved upon surface treatment in the order of mNHA (APTES) > mNHA (SDS) > mNHA (PEI). As a result, the PLA-5wt%mNHA (APTES) nanocomposite showed increased viscoelastic properties such as storage modulus, damping parameter, and creep permanent deformation compared to pure PLA. Similarly, PLA-5wt%mNHA (APTES) thermal properties improved, attaining higher Tc and Tm than pure PLA, reflecting the enhanced nucleating effect of the mNHA (APTES) filler.
  2. Walvekar S, Anwar A, Anwar A, Lai NJY, Yow YY, Khalid M, et al.
    J Parasitol, 2021 07 01;107(4):537-546.
    PMID: 34265050 DOI: 10.1645/21-41
    Nanomedicine has the potential in enhancing the efficacy and bioavailability of anti-infective agents. Here we determined whether conjugation of the Malaysian cultivated seaweed Kappaphycus alvarezii with silver-conjugated nanoparticles enhanced anti-acanthamoebic properties. Silver-conjugated K. alvarezii were successfully synthesized, followed by characterization with Fourier transform infrared spectroscopy, ultraviolet-visible spectrophotometry, and transmission electron microscopy. Amoebicidal effects were evaluated against Acanthamoeba castellanii, and cytotoxicity assays were performed using HaCaT cells. Viability assays revealed that silver nanoparticles conjugated with K. alvarezii extract exhibited significant antiamoebic properties (P < 0.05). Nano-conjugates induced the production of reactive oxygen species. Importantly, silver-conjugated extract inhibited amoeba-mediated host cell damage as established by lactate dehydrogenase release. Neither the nano-conjugates nor the extract showed cytotoxicity against human cells in vitro. Liquid chromatography and mass spectroscopy revealed several molecules, including 2,6-nonadien-1-ol, N-desmethyl trifluoperazine, dulciol B, lucidumol A, acetoxolone, 2-[4,6-bis(2,4-dimethylphenyl)-1,3,5-triazin-2-yl]-5-(octyloxy)phenol, C16 sphinganine, 22-tricosenoic acid, and β-dihydrorotenone, of which dulciol B and C16 sphinganine are known to possess antimicrobial activities. In summary, marine organisms are an important source of bioactive molecules with anti-acanthamoebic properties that can be enhanced by conjugating with silver nanoparticles. Natural products combined with nanotechnology using multifunctional nanoparticle complexes can deliver therapeutic agents effectively and hold promise in the development of new formulations of anti-acanthamoebic agents.
  3. Numan A, Singh S, Zhan Y, Li L, Khalid M, Rilla K, et al.
    Mikrochim Acta, 2021 12 14;189(1):27.
    PMID: 34905090 DOI: 10.1007/s00604-021-05127-y
    Change in the level of human prostate-specific antigen (PSA) is a major element in the development and progression of prostate cancer (PCa). Most of the methodologies are currently restricted to their application in routine clinical screening due to the scarcity of adequate screening tools, false reading, long assay time, and cost. Innovative techniques and the integration of knowledge from a variety of domains, such as materials science and engineering, are needed to provide sustainable solutions. The convergence of precision point-of-care (POC) diagnostic techniques, which allow patients to respond in real time to changes in PSA levels, provides promising possibilities for quantitative and quantitative detection of PSA. This solution could be interesting and relevant for use in PCa diagnosis at the POC. The approaches enable low-cost real-time detection and are simple to integrate into user-friendly sensor devices. This review focuses on the investigations, prospects, and challenges associated with integrating engineering sciences with cancer biology to develop nanotechnology-based tools for PCa diagnosis. This article intends to encourage the development of new nanomaterials to construct high-performance POC devices for PCa detection. Finally, the review concludes with closing remarks and a perspective forecast.
  4. Zamiri G, Haseeb ASMA, Jagadish P, Khalid M, Kong I, Krishnan SG
    ACS Omega, 2022 Dec 06;7(48):43981-43991.
    PMID: 36506175 DOI: 10.1021/acsomega.2c05343
    Ternary nanocomposites synergistically combine the material characteristics of three materials, altering the desired charge storage properties such as electrical conductivity, redox states, and surface area. Therefore, to improve the energy synergistic of SnO2, TiO2, and three-dimensional graphene, herein, we report a facile hydrothermal technique to synthesize a ternary nanocomposite of three-dimensional graphene-tin oxide-titanium dioxide (3DG-SnO2-TiO2). The synthesized ternary nanocomposite was characterized using material characterization techniques such as XRD, Raman spectroscopy, FTIR spectroscopy, FESEM, and EDXS. The surface area and porosity of the material were studied using Brunauer-Emmett-Teller (BET) studies. XRD studies showed the crystalline nature of the characteristic peaks of the individual materials, and FESEM studies revealed the deposition of SnO2-TiO2 on 3DG. The BET results show that incorporating 3DG into the SnO2-TiO2 binary nanocomposite increased its surface area compared to the binary composite. A three-electrode system compared the electrochemical performances of both the binary and ternary composites as a battery-type supercapacitor electrode in different molar KOH (1, 3, and 6 M) electrolytes. It was determined that the ternary nanocomposite electrode in 6 M KOH delivered a maximum specific capacitance of 232.7 C g-1 at 1 A g-1. An asymmetric supercapacitor (ASC) was fabricated based on 3DG-SnO2-TiO2 as a positive electrode and commercial activated carbon as a negative electrode (3DG-SnO2-TiO2//AC). The ASC delivered a maximum energy density of 28.6 Wh kg-1 at a power density of 367.7 W kg-1. Furthermore, the device delivered a superior cycling stability of ∼97% after 5000 cycles, showing its prospects as a commercial ASC electrode.
  5. Chang YS, Au PI, Mubarak NM, Khalid M, Jagadish P, Walvekar R, et al.
    Environ Sci Pollut Res Int, 2020 Sep;27(26):33270-33296.
    PMID: 32529626 DOI: 10.1007/s11356-020-09423-7
    Two superior adsorbents, namely bentonite and graphene oxide (GO), were hybridised to study the removal of copper and nickel ions from synthetic and industrial wastewater. The as-synthesised GO, bentonite/GO and bentonite were characterised by Fourier transform infrared spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy and N2 adsorption-desorption analysis. The factors influencing the adsorption behaviours including contact time, initial solution pH, ionic strength, initial concentration of metal ions, temperature and adsorbent dosage were systematically investigated by batch equilibrium method. The adsorption equilibrium for copper and nickel onto bentonite was attained in 90 min while equilibrium was reached in 60 min on bentonite/GO. The adsorption of copper and nickel was pH-dependent in the range from pH 2 to pH 7 and from pH 2 to pH 8. Pseudo-first-order kinetic model excellently described the adsorption of copper and nickel onto bentonite and bentonite/GO. The equilibrium adsorption data was well described by the Langmuir isotherm model and the maximum adsorption capacity was 248.9 mg/g, 558.4 mg/g, 215.8 mg/g and 402.5 mg/g for bentonite-copper, bentonite/GO-copper, bentonite-nickel and bentonite/GO-nickel adsorption systems, respectively. The bentonite/GO composite exhibited a higher adsorption capacity of both cations from synthetic wastewater than pure bentonite owning to the synergistic effect between bentonite and GO. In all adsorption studies, copper was more efficiently removed than nickel due to its higher tendency to form bond with adsorbent surfaces. The adsorption of copper and nickel on bentonite/GO was mainly due to cation exchange, intermolecular and electrostatic interactions and physisorption dominated the adsorption processes. The practical application of bentonite/GO on adsorption of copper was investigated using real wastewater and its removal efficiency was beyond 98%. The excellent adsorption performances of composites for the copper and nickel removal from wastewater demonstrated its significant potential for pollution mitigations.
  6. Hairuddin MN, Mubarak NM, Khalid M, Abdullah EC, Walvekar R, Karri RR
    Environ Sci Pollut Res Int, 2019 Dec;26(34):35183-35197.
    PMID: 31691169 DOI: 10.1007/s11356-019-06524-w
    The pollution of water resources due to the disposal of industrial wastes that have organic material like phenol is causing worldwide concern because of their toxicity towards aquatic life, human beings and the environment. Phenol causes nervous system damage, renal kidney disease, mental retardation, cancer and anaemia. In this study, magnetic palm kernel biochar is used for removal of phenol from wastewater. The effect of parameters such as pH, agitation speed, contact time and magnetic biochar dosage are validated using design of experiments. The statistical analysis reveals that the optimum conditions for the highest removal (93.39%) of phenol are obtained at pH of 8, magnetic biochar dosage of 0.6 g, agitation speed at 180 rpm and time of 60 min with the initial concentration of 10 mg/L. The maximum adsorption capacities of phenol were found to be 10.84 mg/g and Langmuir and Freundlich isotherm models match the experimental data very well and adsorption kinetic obeys a pseudo-second order. Hence, magnetic palm kernel can be a potential candidate for phenol removal from wastewater.
  7. Dewika M, Markandan K, Irfan NA, Mohd Abdah MAA, Ruwaida JN, Sara YY, et al.
    Chemosphere, 2023 May;324:138270.
    PMID: 36878370 DOI: 10.1016/j.chemosphere.2023.138270
    The emergence of microplastics (MPs) pollution as a global environmental concern has attracted significant attention in the last decade. The majority of the human population spends most of their time indoors, leading to increased exposure to MPs contamination through various sources such as settled dust, air, drinking water and food. Although research on indoor MPs has intensified significantly in recent years, comprehensive reviews on this topic remain limited. Therefore, this review comprehensively analyses the occurrence, distribution, human exposure, potential health impact and mitigation strategies of MPs in the indoor air environment. Specifically, we focus on the risks associated with finer MPs that can translocate into the circulatory system and other organs, emphasizing the need for continued research to develop effective strategies to mitigate the risks associated with MPs exposure. Our findings suggest that indoor MPs impose potential risk to human health, and strategies for mitigating exposure should be further explored.
  8. Mohammed Zayan J, Rasheed AK, John A, Khalid M, Ismail AF, Aabid A, et al.
    Materials (Basel), 2021 Dec 21;15(1).
    PMID: 35009170 DOI: 10.3390/ma15010028
    This study presents the rheological behavior of water-based GO-TiO2-Ag and rGO-TiO2-Ag ternary-hybrid nanofluids. The impact of nanoparticles' volumetric concentration and temperature on the rheological properties were studied. All experiments were performed under temperatures ranging from 25 to 50 °C in the solid volume concentration range of 0.5-0.00005%. The data optimization technique was adopted using the Taguchi method. The types of nanomaterials, concentration, temperature, and shear rate were chosen to optimize the viscosity and shear stress. The effect of shear stress, angular sweep, frequency sweep, and damping factor ratio is plotted. The experimental results demonstrated that the rheological properties of the ternary hybrid nanofluid depend on the ternary hybrid nanofluid's temperature. The viscosity of ternary hybrid nanofluids (THNf) change by 40% for GO-TiO2-Ag and 33% for rGO-TiO2-Ag when temperature and shear rates are increased. All the ternary hybrid nanofluids demonstrated non-Newtonian behavior at lower concentrations and higher shear stress, suggesting a potential influence of nanoparticle aggregation on the viscosity. The dynamic viscosity of ternary hybrid nanofluid increased with enhancing solid particles' volume concentration and temperature.
  9. Lan X, Huang W, Sun B, Waiho K, Song H, Hu M, et al.
    Aquat Toxicol, 2024 May;270:106900.
    PMID: 38537436 DOI: 10.1016/j.aquatox.2024.106900
    Marine nano-titanium dioxide (nano-TiO2) and pentachlorophenol (PCP) pollution are escalating concerns in coastal areas. This study investigated the combined effects of continuous exposure to nano-TiO2 (25 nm, 100 nm) and PCP (0, 1, 10 μg/L) for 28 days on the antioxidant, digestive, and immune abilities of the swimming crab Portunus trituberculatus. Compared with the control group, the interaction between nano-TiO2 and PCP was significantly higher than exposure to a single stressor, with a pronounced decrease in amylase activity observed due to the reducing nano-TiO2 particle sizes. Resulting in increased MDA and SOD activity. The expression levels of Toll4, CSP3, and SER genes in crab hemolymph showed perturbations following exposure to nano-TiO2 and PCP. In summary, according to the results of CAT, GPX, PES and AMS enzyme activities, it was concluded that compared to the larger particle size (100 nm), the single stress of nano-TiO2 at a smaller particle size (25 nm) and co-stress with PCP have more significant impacts on P. trituberculatus. However, the potential physiological regulation mechanism of the interaction between these pollutants remains elusive and requires further study.
  10. Gerard O, Ramesh S, Ramesh K, Numan A, Norhaffis Mustafa M, Khalid M, et al.
    J Colloid Interface Sci, 2024 Aug;667:585-596.
    PMID: 38657542 DOI: 10.1016/j.jcis.2024.04.101
    Binary metal phosphate electrodes have been widely studied for energy storage applications due to the synergistic effects of two different transition elements that able to provide better conductivity and stability. Herein, the battery-type binder-free nickel-manganese phosphate (NiMn-phosphate) electrodes were fabricated with different Ni:Mn precursor ratios via microwave-assisted hydrothermal technique for 5 min at 90 °C. Overall, NiMn3P electrode (Ni:Mn = 1:3) showed an outstanding electrochemical performance, displaying the highest specific (areal) capacity at 3 A/g of 1262.4 C/g (0.44 C/cm2), and the smallest charge transfer resistance of 108.8 Ω. The enhanced performance of NiMn3P electrode can be ascribed to the fully grown amorphous nature and small-sized flake and flower structures of NiMn3P electrode material on the nickel foam (NF) surface. This configuration offered a higher number of active sites and a larger exposed area, facilitating efficient electrochemical reactions with the electrolyte. Consequently, the NiMn3P//AC electrode combination was chosen to further investigate its performance in supercapattery. The NiMn3P//AC supercapattery exhibited remarkable energy density of 105.4 Wh/kg and excellent cyclic stability with 84.7% retention after 3000 cycles. These findings underscored the superior electrochemical performance of the battery-type binder-free NiMn3P electrode, and highlight its potential for enhancing the overall performance of supercapattery.
  11. Gholap AD, Pardeshi SR, Hatvate NT, Dhorkule N, Sayyad SF, Faiyazuddin M, et al.
    Chemosphere, 2024 May 03;358:142235.
    PMID: 38705416 DOI: 10.1016/j.chemosphere.2024.142235
    Ultraviolet (UV) radiation is a major contributor to skin aging, cancer, and other detrimental health effects. Sunscreens containing FDA-approved UV filters, like avobenzone, offer protection but suffer from photodegradation and potential phototoxicity. Encapsulation, antioxidants, and photostabilizers are strategies employed to combat these drawbacks. Octocrylene, an organic UV filter, utilizes nanotechnology to enhance sun protection factor (SPF). This review examines recent literature on octocrylene-enriched sunscreens, exploring the interplay between environmental impact, nanotechnological advancements, and clinical trial insights. A critical focus is placed on the environmental consequences of sunscreen use, particularly the potential hazards UV filters pose to marine ecosystems. Research in the Mediterranean Sea suggests bacterial sensitivity to these filters, raising concerns about their integration into the food chain. This review aims to guide researchers in developing effective strategies for photostabilization of UV filters. By combining encapsulation, photostabilizers, and antioxidants, researchers can potentially reduce phototoxic effects and contribute to developing more environmentally friendly sunscreens.
  12. Nagarajan T, Vilosamy K, Raju G, Shanmugan S, Walvekar R, Rustagi S, et al.
    Chemosphere, 2024 Apr 11;358:141936.
    PMID: 38614393 DOI: 10.1016/j.chemosphere.2024.141936
    This study presents the adsorption of methylene blue (MB) dye using latex char derived from pyrolysis of latex gloves. The adsorption process was investigated systematically using Response Surface Methodology (RSM) with a Central Composite Design (CCD). The effects of four key variables, namely pH, time, temperature, and adsorbent dosage, were studied using a factorial design enriched with center points and axial points. Experimental data were analyzed using a second-order polynomial regression model to construct a response surface model, which elucidated the relationship between the variables and MB removal efficiency. The study found that the char obtained at 800 °C exhibited the highest adsorption capacity due to its increased carbonization, expanded surface area, and diverse pore structure. Analysis of Variance (ANOVA) confirmed the significance of the quadratic model, with remarkable agreement between predicted and experimental outcomes. Diagnostic plots validated the model's reliability, while 3D contour graphs illustrated the combined effects of variables on MB removal efficiency. Optimization using DoE software identified optimal conditions resulting in a 99% removal efficiency, which closely matched experimental results. Additionally, adsorption isotherms revealed that the Freundlich model best described the adsorption behavior, indicating heterogeneous surface adsorption with multilayer adsorption. This comprehensive study provides valuable insights into the adsorption process of MB dye using latex char, with implications for wastewater treatment and environmental remediation.
  13. Yee MJ, Mubarak NM, Khalid M, Abdullah EC, Jagadish P
    Sci Rep, 2018 Nov 23;8(1):17295.
    PMID: 30470825 DOI: 10.1038/s41598-018-35638-3
    Buckypaper (BP)/polymer composites are viewed as a viable option to improve the strain transfer across the buckypaper strain sensor by means of providing better interfacial bonding between the polymer and carbon nanotubes (CNTs). Multiwall carbon nanotubes (MWCNTs) BP/polyvinyl alcohol (PVA) composites were fabricated by a sequence of vacuum filtration and polymer intercalation technique. The optimized conditions for achieving a uniform and stable dispersion of MWCNTs were found to be using ethanol as a dispersion medium, 54 μm ultrasonic amplitude and 40 min sonication time. FTIR analysis and SEM spectra further confirmed the introduction of oxygenated groups (-COOH) on the surface of MWCNTs BP and the complete infiltration of PVA into the porous MWCNTs network. At MWCNTs content of 65 wt. %, the tensile strength, Young's modulus and elongation-at-break of PVA-infiltrated MWCNTs BP achieved a maximum value of 156.28 MPa, 4.02 GPa and 5.85%, improved by 189%, 443% and 166% respectively, as compared to the MWCNTs BP. Electrical characterization performed using both two-point probe method and Hall effect measurement showed that BP/PVA composites exhibited reduced electrical conductivity. From the electromechanical characterization, the BP/PVA composites showed improved sensitivity with a gauge factor of about 1.89-2.92. The cyclic uniaxial tensile test validated the high reproducibility and hysteresis-free operation of 65-BP/PVA composite under 3 loading-unloading cycles. Characterization results confirmed that the flexible BP/PVA composite (65 wt. %) with improved mechanical and electromechanical properties is suitable for strain sensing applications in structural health monitoring and wearable technology, as an alternative choice to the fragile nature of conventional metallic strain sensors.
  14. Xiong S, Zuo L, Chen Q, Zeliang Z, Nor Akmal Khalid M
    JMIR Serious Games, 2024 Feb 26;12:e45546.
    PMID: 38407954 DOI: 10.2196/45546
    BACKGROUND: Health rumors arbitrarily spread in mainstream social media on the internet. Health rumors emerged in China during the outbreak of COVID-19 in early 2020. Many midelders/elders (age over 40 years) who lived in Wuhan believed these rumors.

    OBJECTIVE: This study focused on designing a serious game as an experimental program to prevent and control health rumors. The focus of the study was explicitly on the context of the social networking service for midelders/elders.

    METHODS: This research involved 2 major parts: adopting the Transmission Control Protocol model for games and then, based on the model, designing a game named "Fight With Virus" as an experimental platform and developing a cognitive questionnaire with a 5-point Likert scale. The relevant variables for this experimental study were defined, and 10 hypotheses were proposed and tested with an empirical study. In total, 200 participants were selected for the experiments. By collecting relevant data in the experiments, we conducted statistical observations and comparative analysis to test whether the experimental hypotheses could be proved.

    RESULTS: We noted that compared to traditional media, serious games are more capable of inspiring interest in research participants toward their understanding of the knowledge and learning of health commonsense. In judging and recognizing the COVID-19 health rumor, the test group that used game education had a stronger ability regarding identification of the rumor and a higher accuracy rate of identification. Results showed that the more educated midelders/elders are, the more effective they are at using serious games.

    CONCLUSIONS: Compared to traditional media, serious games can effectively improve midelders'/elders' cognitive abilities while they face a health rumor. The gameplay effect is related to the individual's age and educational background, while income and gender have no impact.

  15. Adeoye JB, Tan YH, Lau SY, Tan YY, Chiong T, Mubarak NM, et al.
    J Environ Manage, 2024 Feb 27;353:120170.
    PMID: 38308991 DOI: 10.1016/j.jenvman.2024.120170
    The stress of pharmaceutical and personal care products (PPCPs) discharging to water bodies and the environment due to increased industrialization has reduced the availability of clean water. This poses a potential health hazard to animals and human life because water contamination is a great issue to the climate, plants, humans, and aquatic habitats. Pharmaceutical compounds are quantified in concentrations ranging from ng/Lto μg/L in aquatic environments worldwide. According to (Alsubih et al., 2022), the concentrations of carbamazepine, sulfamethoxazole, Lutvastatin, ciprofloxacin, and lorazepam were 616-906 ng/L, 16,532-21635 ng/L, 694-2068 ng/L, 734-1178 ng/L, and 2742-3775 ng/L respectively. Protecting and preserving our environment must be well-driven by all sectors to sustain development. Various methods have been utilized to eliminate the emerging pollutants, such as adsorption and biological and advanced oxidation processes. These methods have their benefits and drawbacks in the removal of pharmaceuticals. Successful wastewater treatment can save the water bodies; integrating green initiatives into the main purposes of actor firms, combined with continually periodic awareness of the current and potential implications of environmental/water pollution, will play a major role in water conservation. This article reviews key publications on the adsorption, biological, and advanced oxidation processes used to remove pharmaceutical products from the aquatic environment. It also sheds light on the pharmaceutical adsorption capability of adsorption, biological and advanced oxidation methods, and their efficacy in pharmaceutical concentration removal. A research gap has been identified for researchers to explore in order to eliminate the problem associated with pharmaceutical wastes. Therefore, future study should focus on combining advanced oxidation and adsorption processes for an excellent way to eliminate pharmaceutical products, even at low concentrations. Biological processes should focus on ideal circumstances and microbial processes that enable the simultaneous removal of pharmaceutical compounds and the effects of diverse environments on removal efficiency.
  16. Khosla A, Sonu, Awan HTA, Singh K, Gaurav, Walvekar R, et al.
    Adv Sci (Weinh), 2022 Dec;9(36):e2203527.
    PMID: 36316226 DOI: 10.1002/advs.202203527
    The continuous deterioration of the environment due to extensive industrialization and urbanization has raised the requirement to devise high-performance environmental remediation technologies. Membrane technologies, primarily based on conventional polymers, are the most commercialized air, water, solid, and radiation-based environmental remediation strategies. Low stability at high temperatures, swelling in organic contaminants, and poor selectivity are the fundamental issues associated with polymeric membranes restricting their scalable viability. Polymer-metal-carbides and nitrides (MXenes) hybrid membranes possess remarkable physicochemical attributes, including strong mechanical endurance, high mechanical flexibility, superior adsorptive behavior, and selective permeability, due to multi-interactions between polymers and MXene's surface functionalities. This review articulates the state-of-the-art MXene-polymer hybrid membranes, emphasizing its fabrication routes, enhanced physicochemical properties, and improved adsorptive behavior. It comprehensively summarizes the utilization of MXene-polymer hybrid membranes for environmental remediation applications, including water purification, desalination, ion-separation, gas separation and detection, containment adsorption, and electromagnetic and nuclear radiation shielding. Furthermore, the review highlights the associated bottlenecks of MXene-Polymer hybrid-membranes and its possible alternate solutions to meet industrial requirements. Discussed are opportunities and prospects related to MXene-polymer membrane to devise intelligent and next-generation environmental remediation strategies with the integration of modern age technologies of internet-of-things, artificial intelligence, machine-learning, 5G-communication and cloud-computing are elucidated.
  17. Yap XY, Khalid M, Raju G, Gew LT, Yow YY
    Int J Biol Macromol, 2024 Sep 07.
    PMID: 39256129 DOI: 10.1016/j.ijbiomac.2024.135205
    Rising concerns around plastic pollution from single-use plastic (SUPs), especially food packaging, have driven interest in sustainable alternatives. As such, algae biomass has gained attention for bioplastic production due to algae's rapid growth and abundant polysaccharides. This research focuses on extracting carrageenan from Kappaphycus alvarezii, extensively cultivated in Sabah, Malaysia, and utilizing it in combination with starch and glycerol to develop algae-based films. The physicochemical properties and degradation rate of these films were evaluated, revealing that the addition of carrageenan enhanced overall thermal stability meanwhile increasing water solubility, water content but reducing the degradation rate and swelling degree. This is primarily due to the crystalline structures of carrageenan, which provide a more rigid arrangement compared to the network of starch polymers. However, the incorporation of starch into the blends has enhanced the elongation and surface morphology, resulting in more balanced properties. Overall, these carrageenan films displayed impressive thermal, mechanical, and biodegradability characteristics, establishing their viability as substitutes for conventional plastics.
  18. Nagarajan T, Binti Mohd Fekeri NH, Raju G, Shanmugan S, Jeppu G, Walvekar R, et al.
    Chemosphere, 2024 Sep 02;364:143242.
    PMID: 39233300 DOI: 10.1016/j.chemosphere.2024.143242
    This study investigates the potential of spent coffee ground biochar (SCGB) as a sustainable and cost-effective adsorbent for the removal of methylene blue (MB), a hazardous dye commonly used in the textile and printing industries. A response surface methodology (RSM) approach with central composite design (CCD) was employed to systematically investigate the effects of key process parameters, including adsorbent dosage, solution pH, contact time and temperature, on MB removal efficiency. The analysis revealed that adsorbent dosage and temperature as critical factors influencing MB removal, with a linear model providing a strong correlation. Optimal conditions for MB removal were determined to be 0.99 g of SCGB, 30 min of contact time, 30 °C temperature, and a solution pH of 7. Under these conditions, MB removal reached 99.99%, with a desirability of 1.000. The experimental results closely matched the predicted values, differing by only 0.02%, thus validating the accuracy of the model. Kinetic studies indicated a rapid adsorption process, well-described by both pseudo-first and pseudo-second order models. Isotherm analysis confirmed the applicability of the Freundlich model, suggesting favorable adsorption with increasing MB concentration. The high adsorption capacity of SCGB is attributed to its carbonaceous and porous structure, highlighting its potential as an effective adsorbent for dye removal in wastewater treatment applications.
  19. Chaudhary V, Bhadola P, Kaushik A, Khalid M, Furukawa H, Khosla A
    Sci Rep, 2022 Jul 28;12(1):12949.
    PMID: 35902653 DOI: 10.1038/s41598-022-16781-4
    Amid ongoing devastation due to Serve-Acute-Respiratory-Coronavirus2 (SARS-CoV-2), the global spatial and temporal variation in the pandemic spread has strongly anticipated the requirement of designing area-specific preventive strategies based on geographic and meteorological state-of-affairs. Epidemiological and regression models have strongly projected particulate matter (PM) as leading environmental-risk factor for the COVID-19 outbreak. Understanding the role of secondary environmental-factors like ammonia (NH3) and relative humidity (RH), latency of missing data structuring, monotonous correlation remains obstacles to scheme conclusive outcomes. We mapped hotspots of airborne PM2.5, PM10, NH3, and RH concentrations, and COVID-19 cases and mortalities for January, 2021-July,2021 from combined data of 17 ground-monitoring stations across Delhi. Spearmen and Pearson coefficient correlation show strong association (p-value  0.60) and PM10 (r > 0.40), respectively. Interestingly, the COVID-19 spread shows significant dependence on RH (r > 0.5) and NH3 (r = 0.4), anticipating their potential role in SARS-CoV-2 outbreak. We found systematic lockdown as a successful measure in combatting SARS-CoV-2 outbreak. These outcomes strongly demonstrate regional and temporal differences in COVID-19 severity with environmental-risk factors. The study lays the groundwork for designing and implementing regulatory strategies, and proper urban and transportation planning based on area-specific environmental conditions to control future infectious public health emergencies.
  20. Numan A, Singh PS, Alam A, Khalid M, Li L, Singh S
    ACS Omega, 2022 Aug 09;7(31):27079-27089.
    PMID: 35967060 DOI: 10.1021/acsomega.2c03645
    Efficient and simple detection of chemical warfare agents (CWAs) is an essential step in minimizing the potentially lethal consequences of chemical weapons. CWAs are a family of organic chemicals that are used as chemical weapons because of their enormous severity and lethal effects when faced with unforeseen challenges. To stop the spread of CWAs, it is critical to develop a platform that detects them in a sensitive, timely, selective, and minimally invasive manner. Rapid advances in the demand for on-site sensors, metal nanoparticles, and biomarker identification for CWAs have made it possible to use fluorescence as a precise real-time and point-of-care (POCT) testing technique. For POCT-based applications, the new capabilities of micro- and nanomotors offer enormous prospects. In recent decades, significant progress has been made in the design of fluorescent sensors and the further development of noble metal nanoparticles for the detection of organophosphorus CWAs, as described in this review. Through this work, recent attempts to fabricate sensors that can detect organophosphorus CWAs through changes in their fluorescence properties have been summarized. Finally, an integrated outlook on how noble metal nanoparticles could be used to develop smart sensors for organophosphorus CWAs that communicate with and control electronic devices to monitor and improve the health of individuals.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links