Displaying publications 61 - 80 of 82 in total

Abstract:
Sort:
  1. Tanil GB, Radu S, Nishibuchi M, Rahim RA, Napis S, Maurice L, et al.
    PMID: 16295549
    Twenty-one Vibrio parahaemolyticus isolates representing 21 samples of coastal seawater from three beaches in peninsular Malaysia were found to be sensitive to streptomycin, norfloxacin and chloramphenicol. Resistance was observed to penicillin (100%), ampicillin (95.2%), carbenicilin (95.2%), erythromycin (95.2%), bacitracin (71.4%), cephalothin (28.6%), moxalactam (28.6%), kanamycin (19.1%), tetracycline (14.3%), nalidixic acid (9.5%) and gentamicin (9.5%). Plasmids of 2.6 to 35.8 mDa were detected among plasmid-containing isolates. All isolates carried the Vp-toxR gene specific to V. parahaemolyticus and were negative for the tdh gene, but only one isolate was positive for the trh gene. DNA fingerprinting of the isolates using ERIC-PCR and PFGE showed that the isolates belong to two major clonal groups, with several isolates from different locations in the same group, indicating the presence of similar strains in the different locations.
  2. Ming LC, Halim M, Rahim RA, Wan HY, Ariff AB
    Food Sci Biotechnol, 2016;25(5):1393-1398.
    PMID: 30263421 DOI: 10.1007/s10068-016-0217-1
    The potential use of fed-batch cultivation (FBC) for improvement of the production of Lactobacillus salivarius I 24 biomass for subsequent use as probiotics was studied using a 2-L stirredtank bioreactor. Three different constant feeding rates (0.1, 0.05, and 0.033 L/h) were applied in FBCs and their effect on carbon metabolism was evaluated. The carbon flux for cell built-up with reduction in lactic acid synthesis was observed in the fed-batch as compared to the batch cultivation mode. The viable cell number obtained in the constant FBC (CFBC) operated at a feeding rate of 0.05 L/h was 8 times higher (10.7×1010 CFU/mL) than that recorded in the batch cultivation. This gave the viable cell yield based on glucose consumed for CFBC of 26 times higher (11.3×1012 CFU/gGlucose) than the batch cultivation. This study demonstrated CFBC, which is simple with minimal use of process control equipment, has an industrial potential for improvement of probiotic production.
  3. Baharum H, Morita H, Tomitsuka A, Lee FC, Ng KY, Rahim RA, et al.
    Mar Biotechnol (NY), 2011 Oct;13(5):845-56.
    PMID: 21181422 DOI: 10.1007/s10126-010-9344-5
    Type III polyketide synthases (PKSs) produce an array of metabolites with diverse functions. In this study, we have cloned the complete reading frame encoding type III PKS (SbPKS) from a brown seaweed, Sargassum binderi, and characterized the activity of its recombinant protein biochemically. The deduced amino acid sequence of SbPKS is 414 residues in length, sharing a higher sequence similarity with bacterial PKSs (38% identity) than with plant PKSs. The Cys-His-Asn catalytic triad of PKS is conserved in SbPKS with differences in some of the residues lining the active and CoA binding sites. The wild-type SbPKS displayed broad starter substrate specificity to aliphatic long-chain acyl-CoAs (C(6)-C(14)) to produce tri- and tetraketide pyrones. Mutations at H(331) and N(364) caused complete loss of its activity, thus suggesting that these two residues are the catalytic residues for SbPKS as in other type III PKSs. Furthermore, H227G, H227G/L366V substitutions resulted in increased tetraketide-forming activity, while wild-type SbPKS produces triketide α-pyrone as a major product. On the other hand, mutant H227G/L366V/F93A/V95A demonstrated a dramatic decrease of tetraketide pyrone formation. These observations suggest that His(227) and Leu(366) play an important role for the polyketide elongation reaction in SbPKS. The conformational changes in protein structure especially the cavity of the active site may have more significant effect to the activity of SbPKS compared with changes in individual residues.
  4. Toosa H, Radu S, Rusul G, Latif AR, Rahim RA, Ahmad N, et al.
    Malays J Med Sci, 2001 Jan;8(1):53-8.
    PMID: 22973157
    Twenty-eight isolates of E. faecalis and 5 isolates of E. hirae were isolated from chicken samples obtained from markets in Sri Serdang, Selangor. They were tested for susceptibility to vancomycin and other antimicrobial agents. All of the isolates showed multiple resistance to the antibiotic tested. All Enterococcus spp. were resistant (100%) to ceftaxidime, cephalothin, erythromycin, gentamicin, kanamycin, nalidixic acid and streptomycin. Resistance was also observed to norfloxacin (97%), tetracycline (91%), penicillin (85%), bacitracin (82%), chloramphenicol (61%) and the least resistance was to ampicillin (27%). High prevalence to vancomycin resistance was detected among the E. faecalis (27of 28) and E. hirae (4 of 5) isolates. The multiple antibiotic resistance index ranging between 0.64 to 1.0 showed that all strains tested originated from high-risk contamination. Plasmid profile analysis of Enterococcus spp. revealed plasmid DNA bands ranging in size from 1.3 to 35.8 megadalton but some isolates were plasmidless. No correlation could be made between plasmid patterns and antibiotic resistance.
  5. Yap TW, Rabu A, Abu Bakar FD, Rahim RA, Mahadi NM, Illias RM, et al.
    ScientificWorldJournal, 2014;2014:642891.
    PMID: 24982972 DOI: 10.1155/2014/642891
    Lactococcus lactis is the most studied mesophilic fermentative lactic acid bacterium. It is used extensively in the food industry and plays a pivotal role as a cell factory and also as vaccine delivery platforms. The proteome of the Malaysian isolated L. lactis M4 dairy strain, obtained from the milk of locally bred cows, was studied to elucidate the physiological changes occurring between the growth phases of this bacterium. In this study, ultraperformance liquid chromatography nanoflow electrospray ionization tandem mass spectrometry (UPLC- nano-ESI-MS(E)) approach was used for qualitative proteomic analysis. A total of 100 and 121 proteins were identified from the midexponential and early stationary growth phases, respectively, of the L. lactis strain M4. During the exponential phase, the most important reaction was the generation of sufficient energy, whereas, in the early stationary phase, the metabolic energy pathways decreased and the biosynthesis of proteins became more important. Thus, the metabolism of the cells shifted from energy production in the exponential phase to the synthesis of macromolecules in the stationary phase. The resultant proteomes are essential in providing an improved view of the cellular machinery of L. lactis during the transition of growth phases and hence provide insight into various biotechnological applications.
  6. Jonet MA, Mahadi NM, Murad AM, Rabu A, Bakar FD, Rahim RA, et al.
    PMID: 22456489 DOI: 10.1159/000336524
    A heterologous signal peptide (SP) from Bacillus sp. G1 was optimized for secretion of recombinant cyclodextrin glucanotransferase (CGTase) to the periplasmic and, eventually, extracellular space of Escherichia coli. Eight mutant SPs were constructed using site-directed mutagenesis to improve the secretion of recombinant CGTase. M5 is a mutated SP in which replacement of an isoleucine residue in the h-region to glycine created a helix-breaking or G-turn motif with decreased hydrophobicity. The mutant SP resulted in 110 and 94% increases in periplasmic and extracellular recombinant CGTase, respectively, compared to the wild-type SP at a similar level of cell lysis. The formation of intracellular inclusion bodies was also reduced, as determined by sodium dodecyl sulfate-polyacrylamyde gel electrophoresis, when this mutated SP was used. The addition of as low as 0.08% glycine at the beginning of cell growth improved cell viability of the E. coli host. Secretory production of other proteins, such as mannosidase, also showed similar improvement, as demonstrated by CGTase production, suggesting that the combination of an optimized SP and a suitable chemical additive leads to significant improvements of extracellular recombinant protein production and cell viability. These findings will be valuable for the extracellular production of recombinant proteins in E. coli.
  7. Bilung LM, Radu S, Bahaman AR, Rahim RA, Napis S, Ling MW, et al.
    FEMS Microbiol Lett, 2005 Nov 1;252(1):85-8.
    PMID: 16216442
    This study aimed to determine the occurrence of Vibrio parahaemolyticus in cockles (Anadara granosa) at a harvesting area and to detect the presence of virulent strains carrying the thermostable direct hemolysin (tdh) and TDH-related hemolysin genes (trh) using PCR. Of 100 samples, 62 were positive for the presence of V. parahaemolyticus with an MPN (most probable number) value greater than 3.0 (>1100 MPN per g). The PCR analysis revealed 2 samples to be positive for the tdh gene and 11 to be positive for the trh gene. Hence, these results demonstrate the presence of pathogenic V. parahaemolyticus in cockles harvested in the study area and reveal the potential risk of illness associated with their consumption.
  8. Perumal V, Hashim U, Gopinath SC, Rajintra Prasad H, Wei-Wen L, Balakrishnan SR, et al.
    Nanoscale Res Lett, 2016 Dec;11(1):31.
    PMID: 26787050 DOI: 10.1186/s11671-016-1245-8
    Generation of hybrid nanostructures has been attested as a promising approach to develop high-performance sensing substrates. Herein, hybrid zinc oxide (ZnO) nanorod dopants with different gold (Au) thicknesses were grown on silicon wafer and studied for their impact on physical, optical and electrical characteristics. Structural patterns displayed that ZnO crystal lattice is in preferred c-axis orientation and proved the higher purities. Observations under field emission scanning electron microscopy revealed the coverage of ZnO nanorods by Au-spots having diameters in the average ranges of 5-10 nm, as determined under transmission electron microscopy. Impedance spectroscopic analysis of Au-sputtered ZnO nanorods was carried out in the frequency range of 1 to 100 MHz with applied AC amplitude of 1 V RMS. The obtained results showed significant changes in the electrical properties (conductance and dielectric constant) with nanostructures. A clear demonstration with 30-nm thickness of Au-sputtering was apparent to be ideal for downstream applications, due to the lowest variation in resistance value of grain boundary, which has dynamic and superior characteristics.
  9. Low KO, Mahadi NM, Rahim RA, Rabu A, Abu Bakar FD, Murad AM, et al.
    J Ind Microbiol Biotechnol, 2011 Sep;38(9):1587-97.
    PMID: 21336875 DOI: 10.1007/s10295-011-0949-0
    Direct transport of recombinant protein from cytosol to extracellular medium offers great advantages, such as high specific activity and a simple purification step. This work presents an investigation on the potential of an ABC (ATP-binding cassette) transporter system, the hemolysin transport system, for efficient protein secretion in Escherichia coli (E. coli). A higher secretory production of recombinant cyclodextrin glucanotransferase (CGTase) was achieved by a new plasmid design and subsequently by optimization of culture conditions via central composite design. An improvement of at least fourfold extracellular recombinant CGTase was obtained using the new plasmid design. The optimization process consisted of 20 experiments involving six star points and six replicates at the central point. The predicted optimum culture conditions for maximum recombinant CGTase secretion were found to be 25.76 μM IPTG, 1.0% (w/v) arabinose and 34.7°C post-induction temperature, with a predicted extracellular CGTase activity of 68.76 U/ml. Validation of the model gave an extracellular CGTase activity of 69.15 ± 0.71 U/ml, resulting in a 3.45-fold increase compared to the initial conditions. This corresponded to an extracellular CGTase yield of about 0.58 mg/l. We showed that a synergistic balance of transported protein and secretory pathway is important for efficient protein transport. In addition, we also demonstrated the first successful removal of the C-terminal secretion signal from the transported fusion protein by thrombin proteolytic cleavage.
  10. Oh YM, Kim M, Lee-Cruz L, Lai-Hoe A, Go R, Ainuddin N, et al.
    Microb Ecol, 2012 Nov;64(4):1018-27.
    PMID: 22767122 DOI: 10.1007/s00248-012-0082-2
    It is known that the microbial community of the rhizosphere is not only influenced by factors such as root exudates, phenology, and nutrient uptake but also by the plant species. However, studies of bacterial communities associated with tropical rainforest tree root surfaces, or rhizoplane, are lacking. Here, we analyzed the bacterial community of root surfaces of four species of native trees, Agathis borneensis, Dipterocarpus kerrii, Dyera costulata, and Gnetum gnemon, and nearby bulk soils, in a rainforest arboretum in Malaysia, using 454 pyrosequencing of the 16S rRNA gene. The rhizoplane bacterial communities for each of the four tree species sampled clustered separately from one another on an ordination, suggesting that these assemblages are linked to chemical and biological characteristics of the host or possibly to the mycorrhizal fungi present. Bacterial communities of the rhizoplane had various similarities to surrounding bulk soils. Acidobacteria, Alphaproteobacteria, and Betaproteobacteria were dominant in rhizoplane communities and in bulk soils from the same depth (0-10 cm). In contrast, the relative abundance of certain bacterial lineages on the rhizoplane was different from that in bulk soils: Bacteroidetes and Betaproteobacteria, which are known as copiotrophs, were much more abundant in the rhizoplane in comparison to bulk soil. At the genus level, Burkholderia, Acidobacterium, Dyella, and Edaphobacter were more abundant in the rhizoplane. Burkholderia, which are known as both pathogens and mutualists of plants, were especially abundant on the rhizoplane of all tree species sampled. The Burkholderia species present included known mutualists of tropical crops and also known N fixers. The host-specific character of tropical tree rhizoplane bacterial communities may have implications for understanding nutrient cycling, recruitment, and structuring of tree species diversity in tropical forests. Such understanding may prove to be useful in both tropical forestry and conservation.
  11. Abbasiliasi S, Tan JS, Ibrahim TA, Ramanan RN, Vakhshiteh F, Mustafa S, et al.
    BMC Microbiol, 2012;12:260.
    PMID: 23153191 DOI: 10.1186/1471-2180-12-260
    Lactic acid bacteria (LAB) can be isolated from traditional milk products. LAB that secrete substances that inhibit pathogenic bacteria and are resistant to acid, bile, and pepsin but not vancomycin may have potential in food applications.
  12. Dakheel KH, Rahim RA, Neela VK, Al-Obaidi JR, Hun TG, Isa MNM, et al.
    BMC Microbiol, 2019 05 28;19(1):114.
    PMID: 31138130 DOI: 10.1186/s12866-019-1484-9
    BACKGROUND: Methicillin-resistant Staphylococcus aureus (MRSA) biofilm producers represent an important etiological agent of many chronic human infections. Antibiotics and host immune responses are largely ineffective against bacteria within biofilms. Alternative actions and novel antimicrobials should be considered. In this context, the use of phages to destroy MRSA biofilms presents an innovative alternative mechanism.

    RESULTS: Twenty-five MRSA biofilm producers were used as substrates to isolate MRSA-specific phages. Despite the difficulties in obtaining an isolate of this phage, two phages (UPMK_1 and UPMK_2) were isolated. Both phages varied in their ability to produce halos around their plaques, host infectivity, one-step growth curves, and electron microscopy features. Furthermore, both phages demonstrated antagonistic infectivity on planktonic cultures. This was validated in an in vitro static biofilm assay (in microtiter-plates), followed by the visualization of the biofilm architecture in situ via confocal laser scanning microscopy before and after phage infection, and further supported by phages genome analysis. The UPMK_1 genome comprised 152,788 bp coding for 155 putative open reading frames (ORFs), and its genome characteristics were between the Myoviridae and Siphoviridae family, though the morphological features confined it more to the Siphoviridae family. The UPMK_2 has 40,955 bp with 62 putative ORFs; morphologically, it presented the features of the Podoviridae though its genome did not show similarity with any of the S. aureus in the Podoviridae family. Both phages possess lytic enzymes that were associated with a high ability to degrade biofilms as shown in the microtiter plate and CLSM analyses.

    CONCLUSIONS: The present work addressed the possibility of using phages as potential biocontrol agents for biofilm-producing MRSA.

  13. Munikanan T, Midin M, Daud TIM, Rahim RA, Bakar AKA, Jaafar NRN, et al.
    Compr Psychiatry, 2017 05;75:94-102.
    PMID: 28342379 DOI: 10.1016/j.comppsych.2017.02.009
    OBJECTIVE: To understand the needs of patients with schizophrenia for recovery, this study examined the type and level of social support and its association with quality of life (QOL) among this group of patients in the city of Kuala Lumpur.

    METHOD: A cross-sectional study was conducted on 160 individuals with schizophrenia receiving community psychiatric services in Hospital Kuala Lumpur (HKL). The WHOQOL-BREF, Brief Psychiatric Rating Scale (BPRS) and Multidimensional Scale of Perceived Social Support (MSPSS) were used to assess QOL, severity of symptoms and social support, respectively. The study respondents were predominantly Malay, aged less than 40, males, single, unmarried, had lower education levels and unemployed.

    RESULTS: About 72% of the respondents had poor perceived social support, with support from significant others being the lowest, followed by friends and family. From multiple regression analysis, social support (total, friend and family) significantly predicted better QOL in all domains; [B=0.315 (p<0.001), B=0.670 (p<0.001), B=0.257 (p<0.031)] respectively in Physical Domain; [B=0.491 (p<0.001), B=0.735 (p<0.001), B=0.631 (p<0.001)] in Psychological Domain; [B=1.065 (p<0.001), B=0.670 (p<0.017), B=2.076 (p<0.001)] in Social Domain and; [B=0.652 (p<0.001), B=1.199 (p<0.001), B=0.678 (p<0.001)] in Environmental Domain. Being married and having shorter duration of illness, lower BPRS (total) scores, female gender and smoking, were also found to significantly predict higher QOL.

    CONCLUSION: Social support is an important missing component among people with schizophrenia who are already receiving formal psychiatric services in Malaysia.

  14. Zainol Abidin AS, Rahim RA, Md Arshad MK, Fatin Nabilah MF, Voon CH, Tang TH, et al.
    Sensors (Basel), 2017 May 22;17(5).
    PMID: 28531146 DOI: 10.3390/s17051180
    Anxiety is a psychological problem that often emerges during the normal course of human life. The detection of anxiety often involves a physical exam and a self-reporting questionnaire. However, these approaches have limitations, as the data might lack reliability and consistency upon application to the same population over time. Furthermore, there might be varying understanding and interpretations of the particular question by the participant, which necessitating the approach of using biomarker-based measurement for stress diagnosis. The most prominent biomarker related to stress, hormone cortisol, plays a key role in the fight-or-flight situation, alters the immune response, and suppresses the digestive and the reproductive systems. We have taken the endeavour to review the available aptamer-based biosensor (aptasensor) for cortisol detection. The potential point-of-care diagnostic strategies that could be harnessed for the aptasensing of cortisol were also envisaged.
  15. Jalilsood T, Baradaran A, Song AA, Foo HL, Mustafa S, Saad WZ, et al.
    Microb Cell Fact, 2015;14:96.
    PMID: 26150120 DOI: 10.1186/s12934-015-0283-8
    Bacterial biofilms are a preferred mode of growth for many types of microorganisms in their natural environments. The ability of pathogens to integrate within a biofilm is pivotal to their survival. The possibility of biofilm formation in Lactobacillus communities is also important in various industrial and medical settings. Lactobacilli can eliminate the colonization of different pathogenic microorganisms. Alternatively, new opportunities are now arising with the rapidly expanding potential of lactic acid bacteria biofilms as bio-control agents against food-borne pathogens.
  16. Rahman NA, Zon EM, Ismail EHE, Abdullah NAN, Wan Mohammad WMZ, Rahim RA, et al.
    PMID: 39224531 DOI: 10.18332/ejm/191737
    INTRODUCTION: Maternal positioning during labor significantly influences maternal comfort. This study aims to identify the preferred maternal lateral position during the latent phase and examine the impact of alignment between maternal lateralization and fetal spine positioning during the active phase of the first stage of labor on maternal comfort.

    METHODS: Pregnant women in the first stage of labor beyond 37 weeks of gestation were recruited over six months from March to August 2020 for this prospective cohort study at Hospital Raja Perempuan Zainab II, Kota Bharu, Kelantan, Malaysia. Eligible individuals were randomly allocated to align with the fetal spine (n=180) or oppose it (n=180). Fetal spine positions were confirmed via transabdominal ultrasound. Maternal mean comfort scores were assessed using the established Maternal Comfort Assessment Tool. Statistical analysis was performed using IBM SPSS version 27, with a p<0.05 considered significant.

    RESULTS: There was a significant association between the preferred maternal position during the latent phase and concordance with the same maternal lateralization-fetal spine alignment (p<0.001). Higher mean comfort scores were observed when the maternal lateral position matched the fetal spine alignment during the active phase of labor. There was a significant association of normal CTG tracings when the maternal position was aligned with the fetal spine (p<0.001).

    CONCLUSIONS: Parturients preferred lying in alignment with the fetal spine lateralization during the latent phase. This position also offers increased comfort during the active phase of labor. It highlights the importance of considering maternal-fetal alignment as a critical factor in intrapartum care.

  17. Abbasiliasi S, Tan JS, Ibrahim TA, Kadkhodaei S, Ng HS, Vakhshiteh F, et al.
    Food Chem, 2014 May 15;151:93-100.
    PMID: 24423507 DOI: 10.1016/j.foodchem.2013.11.019
    A polymer-salt aqueous two-phase system (ATPS) consisting of polyethylene-glycol (PEG) with sodium citrate was developed for direct recovery of a bacteriocin-like inhibitory substance (BLIS) from a culture of Pediococcus acidilactici Kp10. The influences of phase composition, tie-line length (TLL), volume ratio (VR), crude sample loading, pH and sodium chloride (NaCl) on the partition behaviour of BLIS was investigated. Under optimum conditions of ATPS, the purification of BLIS was achieved at 26.5% PEG (8000)/11% sodium citrate with a TLL of 46.38% (w/w), VR of 1.8, and 1.8% crude load at pH 7 without the presence of NaCl. BLIS from P. acidilactici Kp10 was successfully purified by the ATPS up to 8.43-fold with a yield of 81.18%. Given that the operation of ATPS is simple, environmentally friendly and cost-effective, as it requires only salts and PEG, it may have potential for industrial applications in the recovery of BLIS from fermentation broth.
  18. Tang PW, Chua PS, Chong SK, Mohamad MS, Choon YW, Deris S, et al.
    Recent Pat Biotechnol, 2015;9(3):176-97.
    PMID: 27185502
    BACKGROUND: Predicting the effects of genetic modification is difficult due to the complexity of metabolic net- works. Various gene knockout strategies have been utilised to deactivate specific genes in order to determine the effects of these genes on the function of microbes. Deactivation of genes can lead to deletion of certain proteins and functions. Through these strategies, the associated function of a deleted gene can be identified from the metabolic networks.

    METHODS: The main aim of this paper is to review the available techniques in gene knockout strategies for microbial cells. The review is done in terms of their methodology, recent applications in microbial cells. In addition, the advantages and disadvantages of the techniques are compared and discuss and the related patents are also listed as well.

    RESULTS: Traditionally, gene knockout is done through wet lab (in vivo) techniques, which were conducted through laboratory experiments. However, these techniques are costly and time consuming. Hence, various dry lab (in silico) techniques, where are conducted using computational approaches, have been developed to surmount these problem.

    CONCLUSION: The development of numerous techniques for gene knockout in microbial cells has brought many advancements in the study of gene functions. Based on the literatures, we found that the gene knockout strategies currently used are sensibly implemented with regard to their benefits.

  19. Tripathi BM, Kim M, Singh D, Lee-Cruz L, Lai-Hoe A, Ainuddin AN, et al.
    Microb Ecol, 2012 Aug;64(2):474-84.
    PMID: 22395784 DOI: 10.1007/s00248-012-0028-8
    The dominant factors controlling soil bacterial community variation within the tropics are poorly known. We sampled soils across a range of land use types--primary (unlogged) and logged forests and crop and pasture lands in Malaysia. PCR-amplified soil DNA for the bacterial 16S rRNA gene targeting the V1-V3 region was pyrosequenced using the 454 Roche machine. We found that land use in itself has a weak but significant effect on the bacterial community composition. However, bacterial community composition and diversity was strongly correlated with soil properties, especially soil pH, total carbon, and C/N ratio. Soil pH was the best predictor of bacterial community composition and diversity across the various land use types, with the highest diversity close to neutral pH values. In addition, variation in phylogenetic structure of dominant lineages (Alphaproteobacteria, Beta/Gammaproteobacteria, Acidobacteria, and Actinobacteria) is also significantly correlated with soil pH. Together, these results confirm the importance of soil pH in structuring soil bacterial communities in Southeast Asia. Our results also suggest that unlike the general diversity pattern found for larger organisms, primary tropical forest is no richer in operational taxonomic units of soil bacteria than logged forest, and agricultural land (crop and pasture) is actually richer than primary forest, partly due to selection of more fertile soils that have higher pH for agriculture and the effects of soil liming raising pH.
  20. Mokhtar NFK, Hashim AM, Hanish I, Zulkarnain A, Raja Nhari RMH, Abdul Sani AA, et al.
    Front Microbiol, 2020;11:960.
    PMID: 32714281 DOI: 10.3389/fmicb.2020.00960
    The inhibitory properties of novel antimicrobial proteins against food-borne pathogens such as Listeria monocytogenes offer extensive benefits to the food and medical industries. In this study, we have identified antimicrobial proteins from a milk curd-derived bacterial isolate that exhibits antilisterial activity using genome mining and mass spectrometry analysis. The analysis of the draft genome sequence identified the isolate as Paenibacillus polymyxa Kp10, and predicted the presence of antimicrobial paenibacillin, paenilan, paeninodin, sactipeptides, thiazole-oxazole modified microcin, and histone-like DNA binding protein HU encoded in its genome. Interestingly, nanoLC-MS/MS analysis identified two histone-like DNA binding proteins HU as predicted in silico earlier, exhibiting antilisterial activity. Additionally, translation initiation factor IF-1 and 50S ribosomal protein L29 were also discovered by the mass spectrometry in the active fractions. The antilisterial activity of the four proteins was verified through heterologous protein expression and antimicrobial activity assay in vitro. This study has identified structural regulatory proteins from Paenibacillus possessing antilisterial activity with potential future application in the food and medical industries.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links