Displaying publications 61 - 80 of 238 in total

Abstract:
Sort:
  1. Daniel-Jambun D, Ong KS, Lim YY, Tan JBL, Yap SW, Lee SM
    J Appl Microbiol, 2019 Jul;127(1):59-67.
    PMID: 31006174 DOI: 10.1111/jam.14287
    AIMS: The aim of this study was to investigate the antimicrobial activities of Etlingera pubescens, and to isolate and identify the antimicrobial compound.

    METHODS AND RESULTS: The crude extracts of E. pubescens were obtained through methanol extraction, and evaluated for antimicrobial activities. From this extract, 1,7-bis(3,4-dihydroxyphenyl)heptan-3-yl acetate (etlingerin) was isolated. When compared to curcumin (a compound with a similar chemical structure), etlingerin showed twofold lower minimum inhibitory concentration values while also being bactericidal. Through time kill assay, etlingerin showed rapid killing effects (as fast as 60 min) against the Gram-positive bacteria (Staphylococcus aureus ATCC 43300 and Bacillus subtilis ATCC 8188). Further assessment revealed that etlingerin caused leakage of intracellular materials, therefore suggesting alteration in membrane permeability as its antimicrobial mechanism. Cytotoxicity study demonstrated that etlingerin exhibited approximately 5- to 12-fold higher IC50 values against several cell lines, as compared to curcumin.

    CONCLUSIONS: Etlingerin isolated from E. pubescens showed better antibacterial and cytotoxic activities when compared to curcumin. Etlingerin could be safe for human use, though further cytotoxicity study using animal models is needed.

    SIGNIFICANCE AND IMPACT OF THE STUDY: Etlingerin has a potential to be used in treating bacterial infections due to its good antimicrobial activity, while having potentially low cytotoxicity.

    Matched MeSH terms: Gram-Positive Bacteria/drug effects*
  2. Sahibzada MUK, Sadiq A, Faidah HS, Khurram M, Amin MU, Haseeb A, et al.
    Drug Des Devel Ther, 2018;12:303-312.
    PMID: 29491706 DOI: 10.2147/DDDT.S156123
    BACKGROUND: Berberine is an isoquinoline alkaloid widely used in Ayurveda and traditional Chinese medicine to treat illnesses such as hypertension and inflammatory conditions, and as an anticancer and hepato-protective agent. Berberine has low oral bioavailability due to poor aqueous solubility and insufficient dissolution rate, which can reduce the efficacy of drugs taken orally. In this study, evaporative precipitation of nanosuspension (EPN) and anti-solvent precipitation with a syringe pump (APSP) were used to address the problems of solubility, dissolution rate and bioavailability of berberine.

    METHODS: Semi-crystalline nanoparticles (NPs) of 90-110 nm diameter for APSP and 65-75 nm diameter for EPN were prepared and then characterized using differential scanning calorimetry (DSC) and X-ray powder diffractometry (XRD). Thereafter, drug content solubility and dissolution studies were undertaken. Berberine and its NPs were evaluated for their antibacterial activity.

    RESULTS: The results indicate that the NPs have significantly increased solubility and dissolution rate due to conversion of the crystalline structure to a semi-crystalline form.

    CONCLUSION: Berberine NPs produced by both APSP and EPN methods have shown promising activities against Gram-positive and Gram-negative bacteria, and yeasts, with NPs prepared through the EPN method showing superior results compared to those made with the APSP method and the unprocessed drug.

    Matched MeSH terms: Bacteria/drug effects*
  3. Rozman NAS, Tong WY, Leong CR, Anuar MR, Karim S, Ong SK, et al.
    Sci Rep, 2020 02 24;10(1):3307.
    PMID: 32094395 DOI: 10.1038/s41598-020-60364-0
    Essential oil of Homalomena pineodora inhibits diabetic pathogens; however, the activity was not sustainable when applied as wound dressing. This study aims to synthesise the essential oil nanoparticle using chitosan. The nanoparticles were synthesised with ion gelation method, confirmed by spectroscopic analysis. The spherical nanoparticles display a size of 70 nm, with strong surface charge of +24.10 mV. The nanoparticles showed an initial burst release followed by a slow release pattern for 72 h, following the first order of kinetic. The release behaviour was ideal for wound dressing. The antimicrobial activity was broad spectrum. The formation of nanoparticle enhanced the antimicrobial efficacy of the essential oil. The nanoparticle also showed a concentration-dependent killing behaviour on time-kill assay. In the 3D collagen wound models, the nanoparticles reduced the microbial growth by 60-80%. In conclusion, H. pineodora nanoparticles showed pharmaceutical potential in inhibiting microbial growth on diabetic ulcers.
    Matched MeSH terms: Bacteria/drug effects
  4. Pachiyappan S, Shanmuganatham Selvanantham D, Kuppa SS, Chandrasekaran S, Samrot AV
    IET Nanobiotechnol, 2019 Jun;13(4):416-427.
    PMID: 31171747 DOI: 10.1049/iet-nbt.2018.5053
    In this study, polyhydroxybutyrate (PHB) nanoparticles were synthesised following nanoprecipitation method having different solvents and surfactant (Tween 80) concentrations. In this study, PHB nanoparticles were encapsulated with curcumin and subjected for sustained curcumin delivery. Both the curcumin loaded and unloaded PHB nanoparticles were characterised using FTIR, SEM, and AFM. Sizes of the particles were found to be between 60 and 300 nm. The drug encapsulation efficiency and in vitro drug release of the nanoparticles were analysed. Antibacterial activity and anticancer activity were also evaluated. The LC50 values of most of the nanoparticles were found to be between 10 and 20 µg/100 µl, anticancer activity of curcumin loaded PHB nanoparticles were further confirmed by AO/PI staining and mitochondrial depolarisation assay.
    Matched MeSH terms: Bacteria/drug effects
  5. Shami AM, Philip K, Muniandy S
    BMC Complement Altern Med, 2013 Dec 16;13:360.
    PMID: 24330547 DOI: 10.1186/1472-6882-13-360
    BACKGROUND: A plant mixture containing indigenous Australian plants was examined for synergistic antimicrobial activity using selected test microorganisms. This study aims to investigate antibacterial activities, antioxidant potential and the content of phenolic compounds in aqueous, ethanolic and peptide extracts of plant mixture.

    METHODS: Well diffusion, minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) assays were used to test antibacterial activity against four pathogenic bacteria namely Staphylococcus aureus, Escherichia coli, Bacillus cereus, and Pseudomonas aeruginosa. DPPH (2, 2-diphenyl-1- picrylhydrazyl) and superoxide dismutase (SOD) assays were used to evaluate antioxidant activity. HPLC and gel filtration were used for purification of the peptides. Scanning electron microscope was applied to investigate the mode of attachment of the peptides on target microbial membranes.

    RESULTS: Aqueous extraction of the mixture showed no inhibition zones against all the test bacteria. Mean diameter of inhibition zones for ethanol extraction of this mixture attained 8.33 mm, 7.33 mm, and 6.33 mm against S. aureus at corresponding concentrations of 500, 250 and 125 mg/ml while E .coli showed inhibition zones of 9.33 mm, 8.00 mm and 6.66 mm at the same concentrations. B. cereus exhibited inhibition zones of 11.33 mm, 10.33 mm and 10.00 mm at concentrations of 500, 250 and 125 mg/ml respectively. The peptide extract demonstrated antibacterial activity against S. aureus, E. coli and B. cereus. The MIC and MBC values for ethanol extracts were determined at 125 mg/ml concentration against S. aureus and E. coli and B. cereus value was 31.5 mg/ml. MIC and MBC values showed that the peptide extract was significantly effective at low concentration of the Australian plant mixture (APM). Phenolic compounds were detected in hot aqueous and ethanolic extracts of the plant mixture. Hot aqueous, ethanol and peptides extracts also exhibited antioxidant activities.

    CONCLUSIONS: It was concluded that APM possessed good antibacterial and antioxidant activities following extraction with different solvents. The results suggest that APM provide a new source with antibacterial agents and antioxidant activity for nutraceutical or medical applications.

    Matched MeSH terms: Bacteria/drug effects
  6. Deris ZZ, Akter J, Sivanesan S, Roberts KD, Thompson PE, Nation RL, et al.
    J Antibiot (Tokyo), 2014 Feb;67(2):147-51.
    PMID: 24169795 DOI: 10.1038/ja.2013.111
    Polymyxin B and colistin were examined for their ability to inhibit the type II NADH-quinone oxidoreductases (NDH-2) of three species of Gram-negative bacteria. Polymyxin B and colistin inhibited the NDH-2 activity in preparations from all of the isolates in a concentration-dependent manner. The mechanism of NDH-2 inhibition by polymyxin B was investigated in detail with Escherichia coli inner membrane preparations and conformed to a mixed inhibition model with respect to ubiquinone-1 and a non-competitive inhibition model with respect to NADH. These suggest that the inhibition of vital respiratory enzymes in the bacterial inner membrane represents one of the secondary modes of action for polymyxins.
    Matched MeSH terms: Gram-Negative Bacteria/drug effects*
  7. Nagappan T, Ramasamy P, Wahid ME, Segaran TC, Vairappan CS
    Molecules, 2011 Nov 21;16(11):9651-64.
    PMID: 22105714 DOI: 10.3390/molecules16119651
    A total of three carbazole alkaloids and essential oil from the leaves of Murraya koenigii (Rutaceae) were obtained and examined for their effects on the growth of five antibiotic resistant pathogenic bacteria and three tumor cell lines (MCF-7, P 388 and Hela). The structures of these carbazoles were elucidated based on spectroscopy data and compared with literature data, hence, were identified as mahanine (1), mahanimbicine (2) and mahanimbine (3). The chemical constituents of the essential oil were identified using Gas Chromatography-Mass Spectroscopy (GCMS). These compounds exhibited potent inhibition against antibiotic resistant bacteria such as Staphylococcus aureus (210P JTU), Psedomonas aeruginosa (ATCC 25619), Klebsiella pneumonia (SR1-TU), Escherchia coli (NI23 JTU) and Streptococcus pneumoniae (SR16677-PRSP) with significant minimum inhibition concentration (MIC) values (25.0-175.0 mg/mL) and minimum bacteriacidal concentrations (MBC) (100.0-500.0 mg/mL). The isolated compounds showed significant antitumor activity against MCF-7, Hela and P388 cell lines. Mahanimbine (3) and essential oil in particular showed potent antibacteria and cytotoxic effect with dose dependent trends (≤5.0 μg/mL). The findings from this investigation are the first report of carbazole alkaloids' potential against antibiotic resistant clinical bacteria, MCF-7 and P388 cell lines.
    Matched MeSH terms: Bacteria/drug effects*
  8. Rennukka M, Sipaut CS, Amirul AA
    Biotechnol Prog, 2014 Nov-Dec;30(6):1469-79.
    PMID: 25181613 DOI: 10.1002/btpr.1986
    This work aims to shed light in the fabrication of poly(3-hydroxybutyrate-co-44%-4-hydroxybutyrate)[P(3HB-co-44%4HB)]/chitosan-based silver nanocomposite material using different contents of silver nanoparticle (SNP); 1-9 wt%. Two approaches were applied in the fabrication; namely solvent casting and chemical crosslinking via glutaraldehyde (GA). A detailed characterization was conducted in order to yield information regarding the nanocomposite material. X-ray diffraction analysis exhibited the nature of the three components that exist in the nanocomposite films: P(3HB-co-4HB), chitosan, and SNP. In term of mechanical properties, tensile strength, and elongation at break were significantly improved up to 125% and 22%, respectively with the impregnation of the SNP. The melting temperature of the nanocomposite materials was increased whereas their thermal stability was slightly changed. Scanning electron microscopy images revealed that incorporation of 9 wt% of SNP caused agglomeration but the surface roughness of the material was significantly improved with the loading. Staphylococcus aureus and Escherichia coli were completely inhibited by the nanocomposite films with 7 and 9 wt% of SNP, respectively. On the other hand, degradation of the nanocomposite materials outweighed the degradation of the pure copolymer. These bioactive and biodegradable materials stand a good chance to serve the vast need of biomedical applications namely management and care of wound as wound dressing.
    Matched MeSH terms: Bacteria/drug effects
  9. Perumal S, Mahmud R
    PMID: 24321370 DOI: 10.1186/1472-6882-13-346
    The frequent occurrences of antibiotic-resistant biofilm forming pathogens have become global issue since various measures that had been taken to curb the situation led to failure. Euphorbia hirta, is a well-known ethnomedicinal plant of Malaysia with diverse biological activities. This plant has been used widely in traditional medicine for the treatment of gastrointestinal, bronchial and respiratory ailments caused by infectious agents.
    Matched MeSH terms: Bacteria/drug effects
  10. Chandrakantha B, Isloor AM, Shetty P, Fun HK, Hegde G
    Eur J Med Chem, 2014 Jan;71:316-23.
    PMID: 24321835 DOI: 10.1016/j.ejmech.2013.10.056
    A new series of N-[5-(4-(alkyl/aryl)-3-nitro-phenyl)-[1,3,4-thiadiazol-2-yl]-2,2-dimethyl-propionamide 4 (a-l) and 6-(4-Methoxy-phenyl)-2-(4-alkyl/aryl)-3-nitro-phenyl)-Imidazo [2,1-b] [1,3,4] thiadiazole 6 (a-l) were synthesized starting from 5-(4-Fluoro-3-nitro-phenyl)-[1,3,4] thiadiazole-2-ylamine. The synthesized compounds were characterized by IR, NMR, mass spectral and elemental analysis. All the compounds were tested for antibacterial and antifungal activities. The antimicrobial activities of the compounds were assessed by well plate method (zone of inhibition). Compounds 4a, 4c and 6e, 6g displayed appreciable activity at the concentration 0.5-1.0 mg/mL.
    Matched MeSH terms: Bacteria/drug effects
  11. Kamazeri TS, Samah OA, Taher M, Susanti D, Qaralleh H
    Asian Pac J Trop Med, 2012 Mar;5(3):202-9.
    PMID: 22305785 DOI: 10.1016/S1995-7645(12)60025-X
    OBJECTIVE: To analyze the chemical composition of the essential oils of Curcuma aeruginosa (C. aeruginosa), Curcuma mangga (C. mangga), and Zingiber cassumunar (Z. cassumunar), and study their antimicrobial activity.

    METHODS: Essential oils obtained by steam distillation were analyzed by gas chromatography-mass spectrometry (GC-MS). The antimicrobial activity of the essential oils was evaluated against four bacteria: Bacillus cereus (B. cereus), Staphylococcus aureus (S. aureus), Escherichia coli (E. coli), and Pseudomonas aeruginosa (P. aeruginosa); and two fungi: Candida albicans (C. albicans) and Cyptococcus neoformans (C. neoformans), using disc-diffusion and broth microdilution methods.

    RESULTS: Cycloisolongifolene, 8,9-dehydro formyl (35.29%) and dihydrocostunolide (22.51%) were the major compounds in C. aeruginosa oil; whereas caryophyllene oxide (18.71%) and caryophyllene (12.69%) were the major compounds in C. mangga oil; and 2,6,9,9-tetramethyl-2,6,10-cycloundecatrien-1-one (60.77%) and α-caryophyllene (23.92%) were abundant in Z. cassumunar oil. The essential oils displayed varying degrees of antimicrobial activity against all tested microorganisms. C. mangga oil had the highest and most broad-spectrum activity by inhibiting all microorganisms tested, with C. neoformans being the most sensitive microorganism by having the lowest minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) values of 0.1 μL/mL. C. aeruginosa oil showed mild antimicrobial activity, whereas Z. cassumunar had very low or weak activity against the tested microorganisms.

    CONCLUSIONS: The preliminary results suggest promising antimicrobial properties of C. mangga and C. aeruginosa, which may be useful for food preservation, pharmaceutical treatment and natural therapies.

    Matched MeSH terms: Bacteria/drug effects*
  12. Ariffin N, Hasan H, Ramli N, Ibrahim NR, Taib F, Rahman AA, et al.
    Am J Infect Control, 2012 Aug;40(6):572-5.
    PMID: 22854380 DOI: 10.1016/j.ajic.2012.02.032
    Intrahospital variations in antimicrobial profiles may be related to many factors. This study compared causative agents of nosocomial bloodstream infections between a neonatal intensive care unit (NICU) that adopted a ward-tailored antibiotic policy and adult intensive care units (ICUs). Data on organisms from blood cultures obtained from the respective wards between 2005 and 2009 were analyzed. Compared with the adult ICUs, the NICU had a higher frequency of Enterobacteriacae and lower frequencies of typical hospital-acquired pathogens (eg, Klebsiella pneumoniae, 17.4% vs 10.0% [P < .001]; Acinetobacter baumannii, 3.9% vs 11.6% [P < .001]). Antibiotic resistance of gram-negative organisms was also significantly lower in the NICU, including resistance to imipenem (5.7% vs 32.1%; P < .001), amikacin (8.8% vs 30.3%), and ceftriaxone (36.1% vs 74.6%; P < .001). This could possibly be due to the ward-tailored antibiotic policy adopted by the NICU but not by the other ICUs.
    Matched MeSH terms: Bacteria/drug effects*
  13. Hossain MI, El-Harbawi M, Alitheen NB, Noaman YA, Lévêque JM, Yin CY
    Ecotoxicol Environ Saf, 2013 Jan;87:65-9.
    PMID: 23107478 DOI: 10.1016/j.ecoenv.2012.09.020
    Three 1-(2-hydroxyethyl)-3-alkylimidazolium chloride room temperature ionic liquids (ILs) [2OHimC(n)][Cl]; (n=0, 1, 4) have been synthesized from the appropriate imidazole precursors and characterized by IR and NMR spectroscopies and elemental analysis. Their anti-microbial activities were investigated using the well-diffusion method. The viabilities of Escherichia coli, Aeromonas hydrophila, Listeria monocytogenes and Salmonella enterica as a function of IL concentrations were studied. The minimal inhibitory concentrations (MICs) and EC₅₀ values for the present ILs were within the concentration range from 60 to 125 mM and 23 to 73 mM. The anti-microbial potencies of the present ILs were compared to a standard antibiotic, gentamicin. The finding affords additional perspective on the level of ILs toxicity to aquatic lifeforms and yet, this characteristic can be readily harnessed to detect microbial growth and activity.
    Matched MeSH terms: Bacteria/drug effects*
  14. Hashim NM, Rahmani M, Ee GC, Sukari MA, Yahayu M, Amin MA, et al.
    Molecules, 2012;17(5):6071-82.
    PMID: 22614861 DOI: 10.3390/molecules17056071
    One of the most promising plants in biological screening test results of thirteen Artocarpus species was Artocarpus obtusus FM Jarrett and detailed phytochemical investigation of powdered dried bark of the plant has led to the isolation and identification of three xanthones; pyranocycloartobiloxanthone A (1), dihydroartoindonesianin C (2) and pyranocycloartobiloxanthone B (3). These compounds were screened for antioxidant, antimicrobial and tyrosinase inhibitory activities. Pyranocycloartobiloxanthone A (1) exhibited a strong free radical scavenger towards DPPH free radicals with IC50 value of 2 µg/mL with prominent discoloration observed in comparison with standard ascorbic acid, α-tocopherol and quercetin, The compound also exhibited antibacterial activity against methicillin resistant Staphylococcus aureus (ATCC3359) and Bacillus subtilis (clinically isolated) with inhibition zone of 20 and 12 mm, respectively. However the other two xanthones were found to be inactive. For the tyrosinase inhibitory activity, again compound (1) displayed strong activity comparable with the standard kojic acid.
    Matched MeSH terms: Bacteria/drug effects
  15. Othman M, Genapathy S, Liew PS, Ch'ng QT, Loh HS, Khoo TJ, et al.
    Nat Prod Res, 2011 Nov;25(19):1857-64.
    PMID: 21838540 DOI: 10.1080/14786419.2010.537274
    The world's rainforests hold untold potential for drug discovery. Rainforest plants are thought to contain evolved defensive active metabolites of greater diversity compared to plants from temperate regions. In recent years, the interest and overall output from pharmaceutical companies on novel antibacterial agents has diminished at a time when there is a critical need for them to fight the threat of resistance. In this study, we have investigated the antimicrobial properties of 21 flowering plants from 16 different families against six bacterial strains consisting of two Gram negative and four Gram positive. Using the pour plate disc diffusion technique, almost all extracts from these plants were found to be active against some of the bacterial strains tested. The most interesting and active plants with broad spectrum activities include Duabanga grandiflora, Acalypha wilkesiana and Pseuduvaria macrophylla where the minimum inhibitory concentration, minimum bactericidal concentration and phytochemical analysis were carried out. This is the first report describing the antimicrobial and phytochemical properties of D. grandiflora and P. macrophylla. Our findings support the utilisation of higher plant species in the search for new antimicrobial molecules to combat new emerging infective diseases and the problem of drug resistant pathogens.
    Matched MeSH terms: Bacteria/drug effects*
  16. Chew YL, Chan EW, Tan PL, Lim YY, Stanslas J, Goh JK
    PMID: 21306653 DOI: 10.1186/1472-6882-11-12
    Many medicinal plants from Leguminosae family can be found easily in Malaysia. These plants have been used as traditional medicines by local ethnic groups, where they are prepared as decoction, pastes for wound infections, and some have been eaten as salad. This paper focused on the assessment of antioxidant potential, antibacterial activity and classes of phytochemicals of nine plants from the Leguminosae family.
    Matched MeSH terms: Bacteria/drug effects*
  17. Tan HT, Rahman RA, Gan SH, Halim AS, Hassan SA, Sulaiman SA, et al.
    PMID: 19754926 DOI: 10.1186/1472-6882-9-34
    Antibiotic resistance of bacteria is on the rise, thus the discovery of alternative therapeutic agents is urgently needed. Honey possesses therapeutic potential, including wound healing properties and antimicrobial activity. Although the antimicrobial activity of honey has been effectively established against an extensive spectrum of microorganisms, it differs depending on the type of honey. To date, no extensive studies of the antibacterial properties of tualang (Koompassia excelsa) honey on wound and enteric microorganisms have been conducted. The objectives of this study were to conduct such studies and to compare the antibacterial activity of tualang honey with that of manuka honey.
    Matched MeSH terms: Bacteria/drug effects*
  18. Parthasarathy S, Bin Azizi J, Ramanathan S, Ismail S, Sasidharan S, Said MI, et al.
    Molecules, 2009;14(10):3964-74.
    PMID: 19924042 DOI: 10.3390/molecules14103964
    Studies on the antioxidant and antimicrobial activities of Mitragyna speciosa leaf extracts are lacking. In this study the antioxidant properties of water, methanolic and alkaloid M. speciosa leaf extracts were evaluated using the DPPH (2,2-diphenyl-1- picrylhydrazyl) radical scavenging method. The amount of total phenolics and flavanoid contents were also estimated. The DPPH IC(50) values of the aqueous, alkaloid and methanolic extracts were 213.4, 104.81 and 37.08 microg/mL, respectively. The total phenolic content of the aqueous, alkaloid and methanolic extracts were 66.0 mg, 88.4, 105.6 mg GAE/g, respectively, while the total flavanoid were 28.2, 20.0 and 91.1 mg CAE/g respectively. The antioxidant activities were correlated with the total phenolic content. This result suggests that the relatively high antioxidant activity of the methanolic extract compared to aqueous and alkaloid extract could be possibly be due to its high phenolic content. The aqueous, alkaloid and methanolic extracts were screened for antimicrobial activity. The extracts showed antimicrobial activity against Salmonella typhi and Bacillus subtilis. The minimum inhibitory concentrations (MICs) of extracts determined by the broth dilution method ranged from 3.12 to 6.25 mg/mL. The alkaloid extract was found to be most effective against all of the tested organisms.
    Matched MeSH terms: Bacteria/drug effects
  19. Sasidharan S, Zuraini Z, Yoga Latha L, Sangetha S, Suryani S
    Foodborne Pathog Dis, 2008 Jun;5(3):303-9.
    PMID: 18767977 DOI: 10.1089/fpd.2007.0078
    Consecutive chloroform, ethanol, and ethyl acetate partitions of extracts from winged bean [Psophocarpus tetragonolobus (L.) DC] root, stem, leaf, and pod extracts were tested for their antimicrobial activity against 19 microbial species, including 11 bacterial pathogens, four yeasts, and four molds using the disk diffusion assay technique. The pod extract was found to be most effective against all of the tested organisms, followed by the stem, root, and leaf extracts, and the ethanol fraction showed the most significant (p < 0.05) antimicrobial activity against all of the tests among three soluble fractions of extract, followed by the ethyl acetate and chloroform fractions. The minimum inhibitory concentrations (MICs) of extracts determined by the broth dilution method ranged from 1.25 to 10.0 mg/mL. The MIC of ethanol fraction of pod extracts was the lowest by comparison with the other two extracts. The MIC for fungi was at or below 2.5 mg/mL and for bacteria was at or above 2.5 mg/mL.
    Matched MeSH terms: Bacteria/drug effects*
  20. Zin NM, Sarmin NI, Ghadin N, Basri DF, Sidik NM, Hess WM, et al.
    FEMS Microbiol Lett, 2007 Sep;274(1):83-8.
    PMID: 17608698
    Three novel endophytic streptomycetes have been isolated and characterized from plants with ethnobotanical uses on the Malay Peninsula including: Thottea grandiflora (family -Aristolochiaceae), Polyalthia spp. (family -Annonaceae), and Mapania sp. (family -Cyperaceae). Each isolate, as studied by scanning electron microscopy, has small hyphae, and produces typical barrel-shaped spores arising by hyphal fragmentation. Interestingly, although none has any detectable antibacterial killing properties, each has demonstrable killing activity against one or more pathogenic fungi including organisms such as Phytophthora erythroseptica, Pythium ultimum, Sclerotinia sclerotiorum, Mycosphaerella fijiensis and Rhizoctonia solani. Molecular biological studies on the rRNA gene sequence of each isolate revealed that it is distinct from all other genetic accessions of streptomyectes in GenBank, and each bears some genetic similarity to other streptomycetes. The bioactivity of each microbe was extractable in various organic solvents.
    Matched MeSH terms: Bacteria/drug effects
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links