Displaying publications 61 - 80 of 157 in total

Abstract:
Sort:
  1. Bakar AJA, Azam NSM, Sevakumaran V, Ismail WIW, Razali MH, Razak SIA, et al.
    Int J Biol Macromol, 2023 Aug 01;245:125494.
    PMID: 37348586 DOI: 10.1016/j.ijbiomac.2023.125494
    The demand for advanced wound care products is rapidly increasing nowadays. In this study, gellan gum/collagen (GG/C) hydrogel films containing gatifloxacin (GAT) were developed to investigate their properties as wound dressing materials. ATR-FTIR, swelling, water content, water vapor transmission rate (WVTR), and thermal properties were investigated. The mechanical properties of the materials were tested in dry and wet conditions to understand the performance of the materials after exposure to wound exudate. Drug release by Franz diffusion was measured with all samples showing 100 % cumulative drug release after 40 min. Strong antibacterial activities against Staphylococcus aureus and Staphylococcus epidermis were observed for Gram-positive bacteria, while Escherichia coli and Pseudomonas aeruginosa were observed for Gram-negative bacteria. The in-vivo cytotoxicity of GG/C-GAT was assessed by wound contraction in rats, which was 95 % for GG/C-GAT01. Hematoxylin and eosin and Masson's trichrome staining revealed the appearance of fresh full epidermis and granulation tissue, indicating that all wounds had passed through the proliferation phase. The results demonstrate the promising properties of the materials to be used as dressing materials.
    Matched MeSH terms: Bandages/microbiology
  2. Ooi HK, Chai SC, Kadar M
    Clin Rehabil, 2020 Apr;34(4):515-523.
    PMID: 32037862 DOI: 10.1177/0269215520905050
    OBJECTIVE: To investigate the effects of pressure (Lycra) garment on the spasticity and function of the arm in the early stages after stroke.

    DESIGN: A randomized controlled trial.

    SETTING: Occupational therapy unit of a public hospital.

    SUBJECTS: A total of 46 adults with stroke.

    INTERVENTION: After random assignment, for six weeks, both intervention group and control group received a 2 hour/week conventional occupational therapy program, with the intervention group receiving an extra 6 hour/day pressure garment application (long glove).

    MAIN MEASURES: Modified Modified Ashworth Scale, Disabilities of Arm, Shoulder and Hand Outcome Measure, and Jebsen-Taylor Hand Function Test. Eligibility measures: Mini Mental State Examination and Modified Modified Ashworth Scale. Assessments were performed at baseline and six weeks postintervention.

    RESULTS: There were 21 participants with the mean age of 51.19 (8.28) years in the intervention group and 22 participants with the mean (SD) age of 52.82 (8.71) years in the control group. The intervention group had median (interquartile range (IQR)) post-stroke duration of 1 (1) month, while for the control group, they were 2 (2) months. There was no difference in spasticity, and both perceived and actual arm functions between the groups at six weeks after baseline.

    CONCLUSION: Wearing a pressure garment on the arm for 6 hours daily had no effect in controlling spasticity or on improving arm function in the early stages after stroke.

    Matched MeSH terms: Compression Bandages*
  3. Nair HKR, Lew X, Liew KY, Kamis SA, Nik Kub NMH, Zakaria AM, et al.
    Int J Low Extrem Wounds, 2023 Dec;22(4):759-766.
    PMID: 34806457 DOI: 10.1177/15347346211058273
    Background: Venous leg ulcers severely affect patients' quality of life due to its high morbidity and recurrent nature. Currently, compression therapy is the first-line treatment for venous leg ulcers. Aim: This study sought to evaluate the efficacy of the Mobiderm® technology developed by Thuasne in a prospective case series of venous leg ulcers. Methods: Nine patients (N  =  9) with venous leg ulcers were enrolled into this case series. Mobiderm® bandage was applied on to the affected limbs of the patients in the multi-component bandages system. The bandages were changed as frequent as the patients had their wound dressing for their standard treatment in a 12-week duration. Wound size and calf circumference were measured at week 0 and week 12. Paired sample t-test was used to compare the mean values of wound size and calf circumference pre- and post-treatment. Results: Reductions in wound size and calf circumference were observed in all nine patients (100%). Five patients were evaluable at week 12. The wound sizes significantly reduced by 27.2% to 53.2% (p  =  0.02), and the calf circumferences significantly reduced by 3.2% to 26.0% (p  =  0.02) after 12 weeks (N  =  5). Safety was unremarkable, with no occurrence of treatment-emergent-related adverse event. Conclusion: Mobiderm® bandage was reported to be effective in promoting wound healing and reducing swelling, suggesting it to be integrated in the compression therapy for the management of venous leg ulcers.
    Matched MeSH terms: Bandages
  4. Halim AS, Nor FM, Mat Saad AZ, Mohd Nasir NA, Norsa'adah B, Ujang Z
    J Taibah Univ Med Sci, 2018 Dec;13(6):512-520.
    PMID: 31435371 DOI: 10.1016/j.jtumed.2018.10.004
    Objectives: Chitosan, the N-deacetylated derivative of chitin, has useful biological properties that promote haemostasis, analgesia, wound healing, and scar reduction; chitosan is bacteriostatic, biocompatible, and biodegradable. This study determined the efficacy of chitosan derivative film as a superficial wound dressing.

    Methods: This multicentre randomised controlled trial included 244 patients, of whom 86 were treated with chitosan derivative film and 84 with hydrocolloid. The percentage of epithelisation, as well as patient comfort, clinical signs, and patient convenience in application and removal of the dressings were assessed.

    Results: The primary outcome of this study was the percentage of epithelisation. Except for race (p = 0.04), there were no significant differences between groups in sex, age, antibiotic usage, or initial wound size (p > 0.05). There was no significant difference in the mean epithelisation percentage between groups (p = 0.29). Patients using chitosan derivative film experienced more pain during removal of dressing than those in the hydrocolloid group (p = 0.007). The chitosan derivative film group showed less exudate (p = 0.036) and less odour (p = 0.024) than the control group. Furthermore, there were no significant differences between groups in terms of adherence, ease of removal, wound drainage, erythema, itchiness, pain, and tenderness. No oedema or localised warmth was observed during the study.

    Conclusion: This study concluded that chitosan derivative film is equivalent to hydrocolloid dressing and can be an option in the management of superficial and abrasion wounds.

    Clinical trial No: NMRR-11-948-10565.

    Matched MeSH terms: Bandages, Hydrocolloid
  5. Sawalmeh A, Othman NS, Shakhatreh H
    Sensors (Basel), 2018 Oct 26;18(11).
    PMID: 30373204 DOI: 10.3390/s18113640
    In this paper, the efficient 3D placement of UAV as an aerial base station in providing wireless coverage for users in a small and large coverage area is investigated. In the case of providing wireless coverage for outdoor and indoor users in a small area, the Particle Swarm Optimization (PSO) and K-means with Ternary Search (KTS) algorithms are invoked to find an efficient 3D location of a single UAV with the objective of minimizing its required transmit power. It was observed that a single UAV at the 3D location found using the PSO algorithm requires less transmit power, by a factor of 1/5 compared to that when using the KTS algorithm. In the case of providing wireless coverage for users in three different shapes of a large coverage area, namely square, rectangle and circular regions, the problems of finding an efficient placement of multiple UAVs equipped with a directional antenna are formulated with the objective to maximize the coverage area and coverage density using the Circle Packing Theory (CPT). Then, the UAV efficient altitude placement is formulated with the objective of minimizing its required transmit power. It is observed that the large number of UAVs does not necessarily result in the maximum coverage density. Based on the simulation results, the deployment of 16, 19 and 26 UAVs is capable of providing the maximum coverage density of 78.5%, 82.5% and 80.3% for the case of a square region with the dimensions of 2 km × 2 km, a rectangle region with the dimensions of 6 km × 1.8 km and a circular region with the radius of 1.125 km, respectively. These observations are obtained when the UAVs are located at the optimum altitude, where the required transmit power for each UAV is reasonably small.
    Matched MeSH terms: Bandages
  6. Jaganathan SK, Mani MP, Khudzari AZM
    Polymers (Basel), 2019 Apr 01;11(4).
    PMID: 30960571 DOI: 10.3390/polym11040586
    The ultimate goal in tissue engineering is to fabricate a scaffold which could mimic the native tissue structure. In this work, the physicochemical and biocompatibility properties of electrospun composites based on polyurethane (PU) with added pepper mint (PM) oil and copper sulphate (CuSO₄) were investigated. Field Emission Electron microscope (FESEM) study depicted the increase in mean fiber diameter for PU/PM and decrease in fiber diameter for PU/PM/CuSO₄ compared to the pristine PU. Fourier transform infrared spectroscopy (FTIR) analysis revealed the formation of a hydrogen bond for the fabricated composites as identified by an alteration in PU peak intensity. Contact angle analysis presented the hydrophobic nature of pristine PU and PU/PM while the PU/PM/CuSO₄ showed hydrophilic behavior. Atomic force microscopy (AFM) analysis revealed the increase in the surface roughness for the PU/PM while PU/PM/CuSO₄ showed a decrease in surface roughness compared to the pristine PU. Blood compatibility studies showed improved blood clotting time and less toxic behavior for the developed composites than the pristine PU. Finally, the cell viability of the fabricated composite was higher than the pristine PU as indicated in the MTS assay. Hence, the fabricated wound dressing composite based on PU with added PM and CuSO₄ rendered a better physicochemical and biocompatible nature, making it suitable for wound healing applications.
    Matched MeSH terms: Bandages
  7. Tracey Anastacia Jeckson, Sreenivas Patro Sisinthy, Neo Yun Ping
    MyJurnal
    Introduction: Diabetic foot ulcer (DFU) is the most distressing complication of diabetes mellitus and often associated with risk of non-traumatic lower extremity amputations. Available formulations and wound dressings for DFU treatment are unfortunately less effective both on controlling and healing DFU. Issues commonly found are associated with providing an optimum environment which facilitates healing process; moist environment, effective oxygen exchange, preventing infection, controlling exudate and also patients compliance. The challenge is therefore to develop a novel drug delivery which address this unmet medical need for better wound treatment of chronic and slow healing DFU. This study aimed to develop a biomaterial based nanofibrous wound dressing formulation containing deferoxamine (DFO), which reported as a potential therapeutic approach to improve wound healing. Deferoxamine regulates the expression and increase stability of hypoxia-inducible factor-1α (HIF-1 α), growthfactor that crucial in wound repair, and thus increase neovascularization. Preparation and characterization of chosen polymers; chitosan/ alginate/polyvinyl alcohol (PVA) for nanofiber formulation will be carried out. Such biodegradable polymer nanofiber is a great benefit for drug delivery owing to its high surface area to volume ratio and high porosity which creates ideal environment to aid in wound healing. Methods: Nanofibers loaded DFO will be fabricated by electrospinning
    method that utilizes electrostatic force to produce fine fibers from the polymeric solution. Results: Various polymers concentrations and ratios are investigated to obtain the desired fibers characteristics. The selected optimized DFO nanofibers will be studied for its efficacy in wound healing through in-vivo animal studies. Conclusion: The proposed formulation would be an ideal low cost novel wound dressing with improved healing potential for efficient treatment
    of diabetic foot ulcer.
    Matched MeSH terms: Bandages
  8. Jaganathan SK, Mani MP
    3 Biotech, 2018 Aug;8(8):327.
    PMID: 30073112 DOI: 10.1007/s13205-018-1356-2
    In this study, a wound dressing based on polyurethane (PU) blended with copper sulphate nanofibers was developed using an electrospinning technique. The prepared PU and PU nanocomposites showed smooth fibers without any bead defects. The prepared nanocomposites showed smaller fiber (663 ± 156.30 nm) and pore (888 ± 70.93 nm) diameter compared to the pristine PU (fiber diameter 1159 ± 147.48 nm and pore diameter 1087 ± 62.51 nm). The interaction of PU with copper sulphate was evident in the infrared spectrum through hydrogen-bond formation. Thermal analysis displayed enhanced weight residue at higher temperature suggesting interaction of PU with copper sulphate. The contact angle measurements revealed the hydrophilic nature of the prepared nanocomposites (71° ± 2.309°) compared with pure PU (100° ± 0.5774°). The addition of copper sulphate into the PU matrix increased the surface roughness, as revealed in the atomic force microscopy (AFM) analysis. Mechanical testing demonstrated the enhanced tensile strength behavior of the fabricated nanocomposites (18.58 MPa) compared with the pristine PU (7.12 MPa). The coagulation assays indicated the enhanced blood compatibility of the developed nanocomposites [activated partial thromboplastin time (APTT)-179 ± 3.606 s and partial thromboplastin time (PT)-105 ± 2.646 s] by showing a prolonged blood clotting time compared with the pristine PU (APTT-147.7 ± 3.512 s and PT-84.67 ± 2.517 s). Furthermore, the hemolysis and cytotoxicity studies suggested a less toxicity nature of prepared nanocomposites by displaying low hemolytic index and enhanced cell viability rates compared with the PU membrane. It was observed that the fabricated novel wound dressing possesses better physicochemical and enhanced blood compatibility properties, and may be utilized for wound-healing applications.
    Matched MeSH terms: Bandages
  9. Shao M, Hussain Z, Thu HE, Khan S, de Matas M, Silkstone V, et al.
    Crit Rev Ther Drug Carrier Syst, 2017;34(5):387-452.
    PMID: 29256838 DOI: 10.1615/CritRevTherDrugCarrierSyst.2017016957
    Chronic wounds which include diabetic foot ulcer (DFU), pressure ulcer, and arterial or venous ulcers compel a significant burden to the patients, healthcare providers, and the healthcare system. Chronic wounds are characterized by an excessive persistent inflammatory phase, prolonged infection, and the failure of defense cells to respond to environmental stimuli. Unlike acute wounds, chronic nonhealing wounds pose a substantial challenge to conventional wound dressings, and the development of novel and advanced wound healing modalities is needed. Toward this end, numerous conventional wound-healing modalities have been evaluated in the management of nonhealing wounds, but a multifaceted approach is lacking. Therefore, this review aims to compile and explore the wide therapeutic algorithm of current and advanced wound healing approaches to the treatment of chronic wounds. The algorithm of chronic wound healing techniques includes conventional wound dressings; approaches based on autografts, allografts, and cultured epithelial autografts; and recent modalities based on natural, modified or synthetic polymers and biomaterials, processed mutually in the form of hydrogels, films, hydrocolloids, and foams. Moreover, this review also explores the promising potential of advanced drug delivery systems for the sustained delivery of growth factors, curcumin, aloe vera, hyaluronic acid, and other bioactive substances as well as stem cell therapy. The current review summarizes the convincing evidence for the clinical dominance of polymer-based chronic wound healing modalities as well as the latest and innovative therapeutic strategies for the treatment of chronic wounds.
    Matched MeSH terms: Bandages/trends
  10. Mushahar L, Mei LW, Yusuf WS, Sivathasan S, Kamaruddin N, Idzham NJ
    Perit Dial Int, 2015 09 15;36(2):135-9.
    PMID: 26374836 DOI: 10.3747/pdi.2014.00195

    OBJECTIVE: Peritoneal dialysis (PD)-related infection is a common cause of catheter loss and the main reason for PD drop-out. Exit-site infection (ESI) is a pathway to developing tunnel infection and peritonitis, hence rigorous exit-site care has always been emphasized in PD therapy. The aim of this study was to evaluate the effect of exit-site dressing vs non-dressing on the rate of PD-related infection. ♦

    METHODS: A prospective randomized controlled study was conducted in prevalent PD patients at the Hospital Tuanku Jaafar Seremban, Negeri Sembilan, Malaysia, from April 2011 until April 2013. All patients were required to perform daily washing of the exit site with antibacterial soap during a shower. In the dressing group (n = 54), patients were required to clean their exit site using povidone-iodine after drying, followed by topical mupirocin antibiotic application to the exit site. The exit site was then covered with a sterile gauze dressing and the catheter immobilized with tape. In the non-dressing group (n = 54), patients were not required to do any further dressing after drying. They were only required to apply mupirocin cream to the exit site and then left the exit site uncovered. The catheter was immobilized with tape. The primary outcome was ESI. The secondary outcomes were evidence of tunnel infection or peritonitis. ♦

    RESULTS: A total of 97 patients completed the study. There were a total of 12 ESI episodes: 4 episodes in 4 patients in the dressing group vs 8 episodes in 4 patients in the non-dressing group. This corresponds to 1 episode per 241.3 patient-months vs 1 episode per 111.1 patient-months in the dressing and non-dressing groups respectively. Median time to first ESI episode was shorter in the non-dressing than in the dressing group, but not significant (p = 0.25). The incidence of gram-positive ESI in both groups was similar. There were no gram-negative ESI in the non-dressing group compared with 2 in the dressing group. The peritonitis rate was 1 per 37.1 patient-month in the dressing group and 1 per 44.4 patient-months in the non-dressing group. Median time to first peritonitis episode was significantly shorter in the dressing group compared to non-dressing (p = 0.03). There was no impact of dressing disruptions in the occurrence of major PD catheter-related infection. ♦

    CONCLUSION: Use of a non-dressing technique with only prophylactic topical mupirocin cream application is effective in preventing PD-related infection. The non-dressing technique is more cost-effective and convenient for PD patients, with fewer disposables.

    Matched MeSH terms: Bandages*
  11. Chen XY, Low HR, Loi XY, Merel L, Mohd Cairul Iqbal MA
    J Biomed Mater Res B Appl Biomater, 2019 08;107(6):2140-2151.
    PMID: 30758129 DOI: 10.1002/jbm.b.34309
    Graphene oxide (GO) is a potential material for wound dressing due to its excellent biocompatibility and mechanical properties. This study evaluated the effects of GO concentration on the synthesis of bacterial nanocellulose (BNC)-grafted poly(acrylic acid) (AA)-graphene oxide (BNC/P(AA)/GO) composite hydrogel and its potential as wound dressing. Hydrogels were successfully synthesized via electron-beam irradiation. The hydrogels were characterized by their mechanical properties, bioadhesiveness, water vapor transmission rates (WVTRs), water retention abilities, water absorptivity, and biocompatibility. Fourier transform infrared analysis showed the successful incorporation of GO into hydrogel. Thickness, gel fraction determination and morphological study revealed that increased GO concentration in hydrogels leads to reduced crosslink density and larger pore size, resulting in increased WVTR. Thus, highest swelling ratio was found in hydrogel with higher amount of GO (0.09 wt %). The mechanical properties of the composite hydrogel were maintained, while its hardness and bioadhesion were reduced with higher GO concentration in the hydrogel, affirming the durable and easy removable properties of a wound dressing. Human dermal fibroblast cell attachment and proliferation studies showed that biocompatibility of hydrogel was improved with the inclusion of GO in the hydrogel. Therefore, BNC/P(AA)/GO composite hydrogel has a potential application as perdurable wound dressing. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 2140-2151, 2019.
    Matched MeSH terms: Bandages*
  12. Khan R, Haider S, Khan MUA, Haider A, Razak SIA, Hasan A, et al.
    Int J Biol Macromol, 2023 Dec 31;253(Pt 5):127169.
    PMID: 37783243 DOI: 10.1016/j.ijbiomac.2023.127169
    The development of advanced multifunctional wound dressings remains a major challenge. Herein, a novel multilayer (ML) electrospun nanofibers (NFs) wound dressing based on diethylenetriamine (DETA) functionalized polyacrylonitrile (PAN), TiO2 nanoparticles (NPs) coating (Ct), and bioderived gelatin (Gel) was developed for potential applications in wound healing. The ML PAN-DETA-Ct-Gel membrane was developed by combining electrospinning, chemical functionalization, synthesis, and electrospray techniques, using a layer-by-layer method. The ML PAN-DETA-Ct-Gel membrane is comprised of an outer layer of PAN-DETA as a barrier to external microorganisms and structural support, an interlayer TiO2 NPs (Ct) as antibacterial function, and a contact layer (Gel) to improve biocompatibility and cell viability. The NFs membranes were characterized by scanning electron microscopy (SEM), surface profilometry, BET analysis, and water contact angle techniques to investigate their morphology, surface roughness, porosity, and wettability. The ML PAN-DETA-Ct-Gel wound dressing exhibited good surface roughness, porosity, and better wettability. Cell morphology, proliferation, and viability were determined using fibroblasts (3T3), and antibacterial assays were performed against six pathogens. The ML PAN-DETA-Ct-Gel NFs membrane showed good cell morphology, proliferation, viability, and antibacterial activity compared with other membranes. This new class of ML NFs membranes offers a multifunctional architecture with adequate biocompatibility, cell viability, and antibacterial activity.
    Matched MeSH terms: Bandages
  13. Nair HKR
    Int J Low Extrem Wounds, 2018 Mar;17(1):54-61.
    PMID: 29564953 DOI: 10.1177/1534734618762225
    The management of chronic nonhealing ulcers pose a great challenge because they are associated with morbidity and increased costs. This report presents the observations of standard management along with application of modified collagen with glycerin (MCG) in the periwound area for management of nonhealing wounds. This observational report included 50 patients (33 male, 17 female) aged 24 to 94 years having nonhealing wounds. All wounds were treated using standard treatment protocols (TIME concept), whereas the periwound severity was assessed using the Harikrishna Periwound Skin Classification (HPSC). All patients received once-daily application of MCG lotion directly in the periwound areas and compression bandaging until there was complete wound healing. Patient compliance was ensured by regular follow-up and counseling. All diabetic patients were counseled to ensure glycemic control during the entire follow-up period. The criteria used for wound healing were based on clinical observation, and proper epithelialization of the wound was the end point. The median age of the wounds was 12.0 weeks (95% CI = 8.00 - 58.08). Majority of the non-healing wounds were diabetic foot ulcers with age of wound between 4 weeks to 15 years. The median time to complete wound healing was 12.71 (95% CI = 10.00-16.67) weeks. Standard treatment protocol of TIME principle with periwound area assessment based on HPSC 2015 and treatment accordingly with topical application of MCG along with additional measures has shown complete healing of nonhealing wounds. However, further large-scale comparative studies are needed to substantiate these effects on a larger population.
    Matched MeSH terms: Compression Bandages*
  14. Gan JE, Chin CY
    F1000Res, 2021;10:451.
    PMID: 34249341 DOI: 10.12688/f1000research.52528.1
    Background: A dramatic growth in the prevalence of chronic wounds due to diabetes has represented serious global health care and economic issues. Hence, there is an imperative need to develop an effective and affordable wound dressing for chronic wounds. Recent research has featured the potential of bioactive compound gallic acid (GA) in the context of wound recovery due to their safety and comparatively low cost. However, there is a scarcity of research that focuses on formulating GA into a stable and functional hydrocolloid film dressing. Thus, this present study aimed to formulate and characterise GA-loaded alginate-based hydrocolloid film dressing which is potentially used as low to medium suppurating chronic wound treatment. Methods: The hydrocolloid composite films were pre-formulated by blending sodium alginate (SA) with different combinations of polymers. The hydrocolloid films were developed using solvent-casting method and the most satisfactory film formulation was further incorporated with various GA concentrations (0.1%, 0.5% and 1%). The drug-loaded films were then characterised for their physicochemical properties to assess their potential use as drug delivery systems for chronic wound treatment. Results: In the pre-formulation studies, sodium alginate-pectin (SA-PC) based hydrocolloid film was found to be the most satisfactory, for being homogenous and retaining smoothness on surface along with satisfactory film flexibility. The SA-PC film was chosen for further loading with GA in 0.1%, 0.5% and 1%. The characterisation studies revealed that all GA-loaded films possess superior wound dressing properties of acidic pH range (3.97-4.04), moderate viscosity (1600 mPa-s-3198 mPa-s), optimal  moisture vapor transmission rate (1195 g/m 2/day, 1237g/m 2/day and 1112 g/m 2/day), slower moisture absorption and film expansion rate and no chemical interaction between the GA and polymers under FTIR analysis. Conclusion: An SA-PC hydrocolloid film incorporated with gallic acid as a potentially applicable wound dressing for low to medium suppurating chronic wounds was successfully developed.
    Matched MeSH terms: Bandages
  15. Febriyenti, Azmin Mohd. Noor, Saringat Baei
    MyJurnal
    The objective of this research was to formulate an aerosol concentrate containing haruan (Channa
    striatus) water extract that would produce a thin film when sprayed onto a wound and could be used for wound dressing. The aerosol concentrates were formulated with various polymer and plasticiser mixtures and tested in dispersion systems. The polymers evaluated were hydroxypropyl methylcellulose (HPMC), carboxymethylcellulose sodium (CMC Sodium), acacia, tragacanth, chitosan, gelatine and gelatine (bloom 151–160), all at concentrations of 2%. The plasticisers evaluated were polyethylene glycol (PEG) 400 and 4000, glycerine, propylene glycol, and triacetin. Films were prepared from film-forming dispersions by casting techniques. Film-forming dispersions were characterised in terms of pH, density, surface tension, rheological properties, particle size distribution, and tackiness. Based on these evaluations, HPMC was chosen as the best polymer. It produced a film with the expected qualities and was easy to reproduce in the form of dispersions or as thin transparent films. Glycerine was judged as the most appropriate plasticiser because it produced the concentrate having the desired qualities and properties expected from an aerosol concentrate.
    Matched MeSH terms: Bandages
  16. Mohd Zohdi R, Abu Bakar Zakaria Z, Yusof N, Mohamed Mustapha N, Abdullah MN
    PMID: 21941590 DOI: 10.1155/2012/843025
    A novel cross-linked honey hydrogel dressing was developed by incorporating Malaysian honey into hydrogel dressing formulation, cross-linked and sterilized using electron beam irradiation (25 kGy). In this study, the physical properties of the prepared honey hydrogel and its wound healing efficacy on deep partial thickness burn wounds in rats were assessed. Skin samples were taken at 7, 14, 21, and 28 days after burn for histopathological and molecular evaluations. Application of honey hydrogel dressings significantly enhanced (P < 0.05) wound closure and accelerated the rate of re-epithelialization as compared to control hydrogel and OpSite film dressing. A significant decrease in inflammatory response was observed in honey hydrogel treated wounds as early as 7 days after burn (P < 0.05). Semiquantitative analysis using RT-PCR revealed that treatment with honey hydrogel significantly (P < 0.05) suppressed the expression of proinflammatory cytokines (IL-1α, IL-1β, and IL-6). The present study substantiates the potential efficacy of honey hydrogel dressings in accelerating burn wound healing.
    Matched MeSH terms: Bandages, Hydrocolloid
  17. Suleman Ismail Abdalla S, Katas H, Chan JY, Ganasan P, Azmi F, Fauzi MB
    Mol Pharm, 2021 05 03;18(5):1956-1969.
    PMID: 33822631 DOI: 10.1021/acs.molpharmaceut.0c01033
    Gelatin hydrogels are attractive for wound applications owing to their well-defined structural, physical, and chemical properties as well as good cell adhesion and biocompatibility. This study aimed to develop gelatin hydrogels incorporated with bio-nanosilver functionalized with lactoferrin (Ag-LTF) as a dual-antimicrobial action dressing, to be used in treating infected wounds. The hydrogels were cross-linked using genipin prior to loading with Ag-LTF and characterized for their physical and swelling properties, rheology, polymer and actives interactions, and in vitro release of the actives. The hydrogel's anti-biofilm and antibacterial performances against S. aureus and P. aeruginosa as well as their cytotoxicity effects were assessed in vitro, including primary wound healing gene expression of human dermal fibroblasts (HDFs). The formulated hydrogels showed adequate release of AgNPs and LTF, with promising antimicrobial effects against both bacterial strains. The Ag-LTF-loaded hydrogel did not significantly interfere with the normal cellular functions as no alteration was detected for cell viability, migration rate, and expression of the target genes, suggesting the nontoxicity of Ag-LTF as well as the hydrogels. In conclusion, Ag-LTF-loaded genipin-cross-linked gelatin hydrogel was successfully synthesized as a new approach for fighting biofilms in infected wounds, which may be applied to accelerate healing of chronic wounds.
    Matched MeSH terms: Bandages*
  18. Ismail NA, Amin KAM, Majid FAA, Razali MH
    Mater Sci Eng C Mater Biol Appl, 2019 Oct;103:109770.
    PMID: 31349525 DOI: 10.1016/j.msec.2019.109770
    In this work, the potential of titanium dioxide nanoparticles incorporated gellan gum (GG + TiO2-NPs) biofilm as wound dressing material was investigated. The GG + TiO2-NPs biofilm was prepared via evaporative casting technique and was characterized using FTIR, XRD, and SEM to study their physiochemical properties. The mechanical properties, swelling and water vapor transmission rate (WVTR) of biofilm was determined to comply with an ideal wound dressing material. In vitro and in vivo wound healing studies was carried out to evaluate the performance of GG + TiO2-NPs biofilm. In vitro wound healing was studied on 3 T3 mouse fibroblast cells for cell viability, cell proliferation, and scratch assay. The acridine orange/propidium iodide (AO/PI) staining and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay were used to evaluate the viability of cell and cell proliferation. Cell migration assay was analyzed using Essen BioScience IncuCyteTM Zoom system. In vivo wound healing via open excision wounds model on Sprague Dawley rat was studied within 14 days. The FT-IR spectra of GG + TiO2-NPs biofilm show main bands assigned to OH stretching, OH deformation, and TiO stretching modes. XRD pattern of GG + TiO2-NPs biofilm suggesting that TiO2-NPs was successfully incorporated in biofilm and well distributed on the surface as proved by SEM analysis. The GG + TiO2-NPs biofilm shows higher mechanical strength and swelling (3.76 ± 0.11 MPa and 1061 ± 6%) as compared to pure GG film (3.32 ± 0.08 Mpa and 902 ± 6%), respectively. GG + TiO2-NPs biofilm shows good antibacterial properties as 9 ± 0.25 mm and 11 ± 0.06 mm exhibition zone was observed against Staphylococcus aureus and Escherichia coli bacteria, respectively. While no exhibition zone was obtained for pure GG biofilm. GG + TiO2-NPs biofilm also demonstrated better cell-to-cell interaction properties, as it's promoted cell proliferation and cell migration to accelerate open excision wound healing on Sprague Dawley rat. The wound treated with GG + TiO2-NPs biofilm was healed within 14 days, on the other hand, the wound is still can be seen when it was treated with GG. However, GG and GG + TiO2-NPs biofilm show no cytotoxicity effects on mouse fibroblast cells.
    Matched MeSH terms: Bandages*
  19. Yusuf AL, Goh YM, Samsudin AA, Alimon AR, Sazili AQ
    Asian-Australas J Anim Sci, 2014 Apr;27(4):503-10.
    PMID: 25049980 DOI: 10.5713/ajas.2013.13533
    The study was conducted to determine the effect of feeding diets containing Andrographis paniculata leaves (APL), whole Andrographis paniculata plant (APWP) and a control without Andrographis paniculata (AP0), on growth performance, carcass characteristics and meat yield of 24 intact Boer bucks. The results obtained indicated that inclusion of Andrographis paniculata significantly improved feed intake, weight gain, feed efficiency and live weight. The ratios of carcass to fat, lean to bone, lean to fat, and composition of meat were also improved. In addition, there were significant differences (p<0.05) between the dietary treatments in dressing percentage and chilling loss. Goats fed on AP0 (control) had significantly higher proportions of fat and bone, as well as thicker back fat than the supplemented animals (APL and APWP). Higher gut fill in animals fed Andrographis paniculata suggested slow rate of digestion, which could have improved utilization and absorption of nutrients by the animals. Goats fed Andrographis paniculata also produced higher meat yield and relatively lower fat contents (p<0.05).
    Matched MeSH terms: Bandages
  20. Edith, J., Anantha K. R., Karenita K. S., Surayah M., Filzah M. K., Farhana H., et al.
    MyJurnal
    Honey dressing has been used to treat wounds since thousand years ago, however, it has been vanished of it usage on wounds management. Lately, it resurfaces again and has been used widely by clinicians in managing hard-to-heal ulcers. With the extensive study and research been carried out by scientists, a better understanding on the usage in managing non-healing ulcers has been widely accepted nowadays.
    Matched MeSH terms: Bandages
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links