Displaying publications 61 - 80 of 479 in total

Abstract:
Sort:
  1. Manogaran M, Yasid NA, Othman AR, Gunasekaran B, Halmi MIE, Shukor MYA
    PMID: 33801387 DOI: 10.3390/ijerph18052424
    The application of microorganisms in azo dye remediation has gained significant attention, leading to various published studies reporting different methods for obtaining the best dye decolouriser. This paper investigates and compares the role of methods and media used in obtaining a bacterial consortium capable of decolourising azo dye as the sole carbon source, which is extremely rare to find. It was demonstrated that a prolonged acclimation under low substrate availability successfully isolated a novel consortium capable of utilising Reactive Red 120 dye as a sole carbon source in aerobic conditions. This consortium, known as JR3, consists of Pseudomonas aeruginosa strain MM01, Enterobacter sp. strain MM05 and Serratia marcescens strain MM06. Decolourised metabolites of consortium JR3 showed an improvement in mung bean's seed germination and shoot and root length. One-factor-at-time optimisation characterisation showed maximal of 82.9% decolourisation at 0.7 g/L ammonium sulphate, pH 8, 35 °C, and RR120 concentrations of 200 ppm. Decolourisation modelling utilising response surface methodology (RSM) successfully improved decolourisation even more. RSM resulted in maximal decolourisation of 92.79% using 0.645 g/L ammonium sulphate, pH 8.29, 34.5 °C and 200 ppm RR120.
    Matched MeSH terms: Biodegradation, Environmental
  2. Agamuthu P, Faizura PN
    Waste Manag Res, 2005 Apr;23(2):95-100.
    PMID: 15864950
    Plastic waste constitutes the third largest waste volume in Malaysian municipal solid waste (MSW), next to putrescible waste and paper. The plastic component in MSW from Kuala Lumpur averages 24% (by weight), whereas the national mean is about 15%. The 144 waste dumps in the country receive about 95% of the MSW, including plastic waste. The useful life of the landfills is fast diminishing as the plastic waste stays un-degraded for more than 50 years. In this study the compostability of polyethylene and pro-oxidant additive-based environmentally degradable plastics (EDP) was investigated. Linear low-density polyethylene (LLDPE) samples exposed hydrolytically or oxidatively at 60 degrees C showed that the abiotic degradation path was oxidative rather than hydrolytic. There was a weight loss of 8% and the plastic has been oxidized as shown by the additional carbonyl group exhibited in the Fourier transform infra red (FTIR) Spectrum. Oxidation rate seemed to be influenced by the amount of pro-oxidant additive, the chemical structure and morphology of the plastic samples, and the surface area. Composting studies during a 45-day experiment showed that the percentage elongation (reduction) was 20% for McD samples [high-density polyethylene, (HDPE) with 3% additive] and LL samples (LLDPE with 7% additive) and 18% reduction for totally degradable plastic (TDP) samples (HDPE with 3% additive). Lastly, microbial experiments using Pseudomonas aeroginosa on carbon-free media with degradable plastic samples as the sole carbon source, showed confirmatory results. A positive bacterial growth and a weight loss of 2.2% for degraded polyethylene samples were evident to show that the degradable plastic is biodegradable.
    Matched MeSH terms: Biodegradation, Environmental
  3. Hadibarata T, Kristanti RA
    Bioprocess Biosyst Eng, 2013 Apr;36(4):461-8.
    PMID: 22893180 DOI: 10.1007/s00449-012-0803-4
    Armillaria sp. F022 is a white-rot fungus isolated from a tropical rain forest in Indonesia that is capable of utilizing pyrene as a source of carbon and energy. Enzymes production during the degradation process by Armillaria sp. F022 was certainly related to the increase in biomass. In the first week after incubation, the growth rate rapidly increased, but enzyme production decreased. After 7 days of incubation, rapid growth was observed, whereas, the enzymes were produced only after a good amount of biomass was generated. About 63 % of pyrene underwent biodegradation when incubated with this fungus in a liquid medium on a rotary shaker (120 rpm, 25 °C) for 30 days; during this period, pyrene was transformed to five stable metabolic products. These metabolites were extracted in ethyl acetate, isolated by column chromatography, and then identified using thin layer chromatography (TLC) and gas chromatography-mass spectrometry (GC-MS). 1-Hydroxypyrene was directly identified by GC-MS, while 4-phenanthroic acid, 1-hydroxy-2-naphthoic acid, phthalic acid, and protocatechuic acid were identified to be present in their derivatized forms (methylated forms and silylated forms). Protocatechuic acid was the end product of pyrene degradation by Armillaria sp. F022. Dynamic profiles of two key enzymes, namely laccase and 1,2-dioxygenase, were revealed during the degradation process, and the results indicated the presence of a complicated mechanism in the regulation of pyrene-degrading enzymes. In conclusion, Armillaria sp. F022 is a white-rot fungus with potential for application in the degradation of polycyclic aromatic hydrocarbons such as pyrene in the environment.
    Matched MeSH terms: Biodegradation, Environmental
  4. Hadibarata T, Kristanti RA, Bilal M, Yilmaz M, Sathishkumar P
    Chemosphere, 2023 Jan;312(Pt 1):137260.
    PMID: 36400190 DOI: 10.1016/j.chemosphere.2022.137260
    For decades, most of the developing nations have relied on chlorpyrifos for insecticidal activity in the agriculture sector. It is a common chlorinated organophosphorus pesticide that has been widely used to control insects to protect plants. This study aimed to investigate the effects of environmental characteristics such as salinity, pH, temperature, and surfactant on Hortaea sp. B15 mediated degradation of chlorpyrifos as well as enzyme activity and metabolic pathway. The highest bacterial growth (4.6 × 1016 CFU/mL) was achieved after 20 h of incubation in a 100 mg/L chlorpyrifos amended culture. The fit model and feasible way to express the chlorpyrifos biodegradation kinetics in normal condition and optimized was a first-order rate equation, with an R2 value of 0.95-0.98. The optimum pH for chlorpyrifos biodegradation was pH 9, which resulted in a high removal rate (91.1%) and a maximum total count of 3.8 × 1016 CFU/mL. Increasing the temperature over 40 °C may inhibit microbial development and biodegradation. There was no significant effect of culture salinity on degradation and bacterial growth. In the presence of non-ionic surfactant Tween 80, the maximum chlorpyrifos degradation (89.5%) and bacterial growth (3.8 × 1016 CFU/mL) was achieved. Metabolites such as 3,5,6-trichloropyridin-2-ol and 2-pyridinol were identified in the Hortaea sp. B15 mediated degradation of chlorpyrifos. According to the findings, Hortaea sp. B15 should be recommended for use in the investigation of in situ biodegradation of pesticides.
    Matched MeSH terms: Biodegradation, Environmental
  5. Gan HM, Shahir S, Ibrahim Z, Yahya A
    Chemosphere, 2011 Jan;82(4):507-13.
    PMID: 21094980 DOI: 10.1016/j.chemosphere.2010.10.094
    A co-culture consisting of Hydrogenophaga sp. PBC and Ralstonia sp. PBA, isolated from textile wastewater treatment plant could tolerate up to 100 mM 4-aminobenzenesulfonate (4-ABS) and utilize it as sole carbon, nitrogen and sulfur source under aerobic condition. The biodegradation of 4-ABS resulted in the release of nitrogen and sulfur in the form of ammonium and sulfate respectively. Ninety-eight percent removal of chemical oxygen demand attributed to 20 mM of 4-ABS in cell-free supernatant could be achieved after 118 h. Effective biodegradation of 4-ABS occurred at pH ranging from 6 to 8. During batch culture with 4-ABS as sole carbon and nitrogen source, the ratio of strain PBA to PBC was dynamic and a critical concentration of strain PBA has to be reached in order to enable effective biodegradation of 4-ABS. Haldane inhibition model was used to fit the degradation rate at different initial concentrations and the parameters μ(max), K(s) and K(i) were determined to be 0.13 h⁻¹, 1.3 mM and 42 mM respectively. HPLC analyses revealed traced accumulation of 4-sulfocatechol and at least four unidentified metabolites during biodegradation. This is the first study to report on the characterization of 4-ABS-degrading bacterial consortium that was isolated from textile wastewater treatment plant.
    Matched MeSH terms: Biodegradation, Environmental
  6. Saharudin MS, Wei J, Shyha I, Inam F
    Polymers (Basel), 2017 Jul 28;9(8).
    PMID: 30970992 DOI: 10.3390/polym9080314
    Halloysite nanotubes (HNTs)-polyester nanocomposites with four different concentrations were produced using solution casting technique and the biodegradation effect of short-term seawater exposure (120 h) was studied. Monolithic polyester was observed to have the highest seawater absorption with 1.37%. At 0.3 wt % HNTs reinforcement, the seawater absorption dropped significantly to the lowest value of 0.77% due to increase of liquid diffusion path. For samples tested in dry conditions, the Tg, storage modulus, tensile properties and flexural properties were improved. The highest improvement of Tg was from 79.3 to 82.4 °C (increase 3.1 °C) in the case of 0.3 wt % HNTs. This can be associated with the exfoliated HNTs particles, which restrict the mobility of polymer chains and thus raised the Tg. After seawater exposure, the Tg, storage modulus, tensile properties and flexural properties of polyester and its nanocomposites were decreased. The Young's modulus of 0.3 wt % HNTs-polyester dropped 20% while monolithic polyester dropped up to 24% compared to their values in dry condition. Apart from that, 29% flexural modulus reduction was observed, which was 18% higher than monolithic polyester. In contrast, fracture toughness and surface roughness increased due to plasticization effect. The presence of various microbial communities caused gradual biodegradation on the microstructure of the polyester matrix as also evidently shown by SEM images.
    Matched MeSH terms: Biodegradation, Environmental
  7. Ho YH, Gan SN, Tan IK
    Appl Biochem Biotechnol, 2002 10 25;102-103(1-6):337-47.
    PMID: 12396135
    The medium-chain-length polyhydroxyalkanoate (PHA(MCL)) produced by Pseudomonas putida PGA1 using saponified palm kernel oil as the carbon source could degrade readily in water taken from Kayu Ara River in Selangor, Malaysia. A weight loss of 71.3% of the PHA film occurred in 86 d. The pH of the river water medium fell from 7.5 (at d 0) to 4.7 (at d 86), and there was a net release of CO2. In sterilized river water, the PHA film also lost weight and the pH of the water fell, but to lesser extents. The C8 monomer of the PHA was completely removed after 6 d of immersion in the river water, while the proportions of the other monomers (C10, C12, and C14) were reversed from that of the undegraded PHA. By contrast, the monomer composition of the PHA immersed in sterilized river water did not change significantly from that of the undegraded PHA. Scanning electron microscopy showed physical signs of degradation on the PHA film immersed in the river water, but the film immersed in sterilized river water was relatively unblemished. The results thus indicate that the PHA(MCL) was degraded in tropical river water by biologic as well as nonbiologic means. A significant finding is that shorter-chain monomers were selectively removed throughout the entire PHA molecule, and this suggests enzymatic action.
    Matched MeSH terms: Biodegradation, Environmental
  8. Aziz A, Agamuthu P, Alaribe FO, Fauziah SH
    Environ Technol, 2018 Feb;39(4):527-535.
    PMID: 28281885 DOI: 10.1080/09593330.2017.1305455
    Benzo[a]pyrene is a high-molecular-weight polycyclic aromatic hydrocarbon highly recalcitrant in nature and thus harms the ecosystem and/or human health. Therefore, its removal from the marine environment is crucial. This research focuses on benzo[a]pyrene degradation by using enriched bacterial isolates in consortium under saline conditions. Bacterial isolates capable of using benzo[a]pyrene as sole source of carbon and energy were isolated from enriched mangrove sediment. These isolates were identified as Ochrobactrum anthropi, Stenotrophomonas acidaminiphila, and Aeromonas salmonicida ss salmonicida. Isolated O. anthropi and S. acidaminiphila degraded 26% and 20%, respectively, of an initial benzo[a]pyrene concentration of 20 mg/L after 8 days of incubation in seawater (28 ppm of NaCl). Meanwhile, the bacterial consortium decomposed 41% of an initial 50 mg/L benzo[a]pyrene concentration after 8 days of incubation in seawater (28 ppm of NaCl). The degradation efficiency of benzo[a]pyrene increased to 54%, when phenanthrene was supplemented as a co-metabolic substrate. The order of biodegradation rate by temperature was 30°C > 25°C > 35°C. Our results suggest that co-metabolism by the consortium could be a promising biodegradation strategy for benzo[a]pyrene in seawater.
    Matched MeSH terms: Biodegradation, Environmental
  9. Kamari A, Pulford ID, Hargreaves JS
    Environ Sci Pollut Res Int, 2015 Feb;22(3):1919-30.
    PMID: 25263414 DOI: 10.1007/s11356-014-3600-6
    The microbial breakdown of chitosan, a fishery waste-based material, and its derivative cross-linked chitosans, in both non-contaminated and contaminated conditions was investigated in a laboratory incubation study. Biodegradation of chitosan and cross-linked chitosans was affected by the presence of heavy metals. Zn was more pronounced in inhibiting microbial activity than Cu and Pb. It was estimated that a longer period is required to complete the breakdown of the cross-linked chitosans (up to approximately 100 years) than unmodified chitosan (up to approximately 10 years). The influence of biodegradation on the bioavailable fraction of heavy metals was studied concurrently with the biodegradation trial. It was found that the binding behaviour of chitosan for heavy metals was not affected by the biodegradation process.
    Matched MeSH terms: Biodegradation, Environmental*
  10. Nallapan Maniyam M, Sjahrir F, Ibrahim AL, Cass AE
    J Gen Appl Microbiol, 2013;59(6):393-404.
    PMID: 24492598
    A Rhodococcus sp. UKMP-5M isolate was shown to detoxify cyanide successfully, suggesting the presence of an intrinsic property in the bacterium which required no prior cyanide exposure for induction of this property. However, in order to promote growth, Rhodococcus sp. UKMP-5M was fully acclimatized to cyanide after 7 successive subcultures in 0.1 mM KCN for 30 days. To further shorten the lag phase and simultaneously increase the tolerance towards higher cyanide concentrations, the bacterium was induced with various nitrile compounds sharing a similar degradatory pathway to cyanide. Acetonitrile emerged as the most favored inducer and the induced cells were able to degrade 0.1 mM KCN almost completely within 18 h. With the addition of subsequent aliquots of 0.1 mM KCN a shorter period for complete removal of cyanide was required, which proved to be advantageous economically. Both resting cells and crude enzyme of Rhodococcus sp. UKMP-5M were able to biodegrade cyanide to ammonia and formate without the formation of formamide, implying the identification of a simple hydrolytic cyanide degradation pathway involving the enzyme cyanidase. Further verification with SDS-PAGE revealed that the molecular weight of the active enzyme was estimated to be 38 kDa, which is consistent with previously reported cyanidases. Since the recent advancement in the application of biological methods in treating cyanide-bearing wastewater has been promising, the discovery of this new bacterium will add value by diversifying the existing microbial populations capable of cyanide detoxification.
    Matched MeSH terms: Biodegradation, Environmental
  11. Widyasti E, Shikata A, Hashim R, Sulaiman O, Sudesh K, Wahjono E, et al.
    Enzyme Microb Technol, 2018 Apr;111:21-28.
    PMID: 29421033 DOI: 10.1016/j.enzmictec.2017.12.009
    Oil palm trunk (OPT) is one of the most promising lignocellulosic bioresources. To develop effective biodegradation, thermophilic, anaerobic microorganisms were screened from bovine manure compost using fibrillated OPT (f-OPT) pretreated by wet disk milling as the substrate. One thermophilic, anaerobic bacterium, strain CL-2, whose 16S rDNA gene has 98.6% sequence identity with that of Caldicoprobacter faecale DSM 20678T, exhibited high degradation activity (32.7% reduction in total dry solids of f-OPT). Strain CL-2 did not use cellulose as a carbon source, but used hemicelluloses such as xylan, arabinoxylan, starch and pectin at 70 °C. Phylogenetic and morphologic analyses and the polysaccharide use suggest that CL-2 may be classified as a novel species of Caldicoprobacter, named Caldicoprobacter sp. CL-2. To characterize enzymatic activities of CL-2, extracellular enzymes were prepared from culture broth using beechwood xylan as the carbon source. The extracellular enzymes showed high xylanase activity, but low cellulase activity, suggesting that f-OPT degradation may depend on xylanase activity. To understand the xylanase system of CL-2, a major xylanase was cloned and characterized. The xylanase (CalXyn11A) had a modular structure consisting of a glycoside hydrolase (GH) family-11 domain and a family 36 carbohydrate-binding module. CalXyn11A did not show f-OPT degradation activity, but a strong synergistic effect was observed when CalXyn11A was added to the extracellular enzyme preparation. These results indicate that, rather than working alone, CalXyn11A has an important role in enhancing total lignocellulose degradation activity by cooperation with other GHs.
    Matched MeSH terms: Biodegradation, Environmental
  12. Rahman RN, Ghaza FM, Salleh AB, Basri M
    J Microbiol, 2006 Jun;44(3):354-9.
    PMID: 16820766
    This study examined the capacity of immobilized bacteria to degrade petroleum hydrocarbons. A mixture of hydrocarbon-degrading bacterial strains was immobilized in alginate and incubated in crude oil-contaminated artificial seawater (ASW). Analysis of hydrocarbon residues following a 30-day incubation period demonstrated that the biodegradation capacity of the microorganisms was not compromised by the immobilization. Removal of n-alkanes was similar in immobilized cells and control cells. To test reusability, the immobilized bacteria were incubated for sequential increments of 30 days. No decline in biodegradation capacity of the immobilized consortium of bacterial cells was noted over its repeated use. We conclude that immobilized hydrocarbon-degrading bacteria represent a promising application in the bioremediation of hydrocarbon-contaminated areas.
    Matched MeSH terms: Biodegradation, Environmental
  13. Shazmin, Ahmad SA, Naqvi TA, Munis MFH, Javed MT, Chaudhary HJ
    World J Microbiol Biotechnol, 2023 Mar 31;39(6):141.
    PMID: 37000294 DOI: 10.1007/s11274-023-03575-7
    Widespread and inadequate use of Monocrotophos has led to several environmental issues. Biodegradation is an ecofriendly method used for detoxification of toxic monocrotophos. In the present study, Msd2 bacterial strain was isolated from the cotton plant growing in contaminated sites of Sahiwal, Pakistan. Msd2 is capable of utilizing the monocrotophos (MCP) organophosphate pesticide as its sole carbon source for growth. Msd2 was identified as Brucella intermedia on the basis of morphology, biochemical characterization and 16S rRNA sequencing. B. intermedia showed tolerance of MCP up to 100 ppm. The presence of opd candidate gene for pesticide degradation, gives credence to B. intermedia as an effective bacterium to degrade MCP. Screening of the B. intermedia strain Msd2 for plant growth promoting activities revealed its ability to produce ammonia, exopolysaccharides, catalase, amylase and ACC-deaminase, and phosphorus, zinc and potassium solubilization. The optimization of the growth parameters (temperatures, shaking rpm, and pH level) of the MCP-degrading isolate was carried out in minimal salt broth supplemented with MCP. The optimal pH, temperature, and rpm for Msd2 growth were observed as pH 6, 35 °C, and 120 rpm, respectively. Based on optimization results, batch degradation experiment was performed. Biodegradation of MCP by B. intermedia was monitored using HPLC and recorded 78% degradation of MCP at 100 ppm concentration within 7 days of incubation. Degradation of MCP by Msd2 followed the first order reaction kinetics. Plant growth promoting and multi-stress tolerance ability of Msd2 was confirmed by molecular analysis. It is concluded that Brucella intermedia strain Msd2 could be beneficial as potential biological agent for an effective bioremediation for polluted environments.
    Matched MeSH terms: Biodegradation, Environmental
  14. Alshelmani MI, Loh TC, Foo HL, Lau WH, Sazili AQ
    ScientificWorldJournal, 2014;2014:729852.
    PMID: 25019097 DOI: 10.1155/2014/729852
    Four cellulolytic and hemicellulolytic bacterial cultures were purchased from the Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Culture (DSMZ) and the American Type Culture Collection (ATCC). Two experiments were conducted; the objective of the first experiment was to determine the optimum time period required for solid state fermentation (SSF) of palm kernel cake (PKC), whereas the objective of the second experiment was to investigate the effect of combinations of these cellulolytic and hemicellulolytic bacteria on the nutritive quality of the PKC. In the first experiment, the SSF was lasted for 12 days with inoculum size of 10% (v/w) on different PKC to moisture ratios. In the second experiment, fifteen combinations were created among the four microbes with one untreated PKC as a control. The SSF lasted for 9 days, and the samples were autoclaved, dried, and analyzed for proximate analysis. Results showed that bacterial cultures produced high enzymes activities at the 4th day of SSF, whereas their abilities to produce enzymes tended to be decreased to reach zero at the 8th day of SSF. Findings in the second experiment showed that hemicellulose and cellulose was significantly (P < 0.05) decreased, whereas the amount of reducing sugars were significantly (P < 0.05) increased in the fermented PKC (FPKC) compared with untreated PKC.
    Matched MeSH terms: Biodegradation, Environmental
  15. Mohamed H, Shah AM, Nazir Y, Naz T, Nosheen S, Song Y
    World J Microbiol Biotechnol, 2021 Dec 06;38(1):10.
    PMID: 34866162 DOI: 10.1007/s11274-021-03197-x
    In recent years, the utilisation of endophytes has emerged as a promising biological treatment technology for the degradation of plastic wastes such as biodegradation of synthetic plastics. This study, therefore, aimed to explore and extensively screen endophytic fungi (from selected plants) for efficient in vitro polyvinyl alcohol (PVA) biodegradation. In total, 76 endophytic fungi were isolated and cultivated on a PVA screening agar medium. Among these fungi, 10 isolates showed potential and were subsequently identified based on phenotypical characteristics, ITS ribosomal gene sequences, and phylogenetic analyses. Four strains exhibited a maximum level of PVA-degradation in the liquid medium when cultivated for 10 days at 28 °C and 150 rpm. These strains showed varied PVA removal rates of 81% (Penicillium brevicompactum OVR-5), 67% (Talaromyces verruculosus PRL-2), 52% (P. polonicum BJL-9), and 41% (Aspergillus tubingensis BJR-6) respectively. The most promising PVA biodegradation isolate 'OVR-5', with an optimal pH at 7.0 and optimal temperature at 30 °C, produced lipase, manganese peroxidase, and laccase enzymes. Based on analyses of its metabolic intermediates, as identified with GC-MS, we proposed the potential PVA degradation pathway of OVR-5. Biodegradation results were confirmed through scanning electron microscopy and Fourier transform infrared spectroscopy. This study provides the first report on an endophytic P. brevicompactum strain (associated with Orychophragmus violaceus) that has a great ability for PVA degradation providing more insight on potential fungus-based applications in plastic waste degradation.
    Matched MeSH terms: Biodegradation, Environmental
  16. Siti Afida I., Razmah G., Zulina A. M.
    Sains Malaysiana, 2016;45:949-954.
    The concern on the widespread use of surfactants is increasing worldwide as they can be potential toxicants by polluting
    the environment, with the damage formed depending on their exposure and persistence in the ecosystem. This paper
    was intended to evaluate the biodegradability of palm-based surfactant, MES, in order to establish their environmental
    friendliness. The respirometric method was used to monitor the biodegradation of various homologues of MES over 28
    days as described in the OECD 301F Manometric respirometry test method. The results showed all the MES homologues
    tested were readily biodegradable with percentage of biodegradation achieved for C12, C14 and C16 MES was 73%
    within 6 days, 66% within 8 days and 63% within 16 days, respectively, while linear alkylbenzene sulphonates (LAS)
    sample 60% biodegraded within 8 days. From the results, it can be concluded that the longer the carbon chain length, the
    lower is the biodegradability of MES as the microorganisms took longer time to degrade a longer chain surfactant. Other
    than that, the presence of aromatic structure in LAS may also extend the biodegradation process. The use of palm-based
    surfactant, i.e. MES, is more environmental friendly and can be used as an alternative to petroleum-based surfactant to
    reduce adverse environmental effects of surfactant on ecosystem.
    Matched MeSH terms: Biodegradation, Environmental
  17. Ruqayyah TI, Jamal P, Alam MZ, Mirghani ME
    J Environ Manage, 2013 Mar 30;118:115-21.
    PMID: 23422153 DOI: 10.1016/j.jenvman.2013.01.003
    The degradation potential and ligninolytic enzyme production of two isolated Panus tigrinus strains (M609RQY and M109RQY) were evaluated in this study. These strains were grown on three selected abundant agro-industrial wastes (rice straw; rice husk and cassava peel) under solid-state fermentation conditions. Degradation potential was determined by analyzing the chemical composition of the selected substrates before and after fermentation along with ligninolytic enzyme production. The strain M609RQY led to the highest lignin degradation of 40.81% on cassava peel, 11.25% on rice husk and 67.96% on rice straw. Both strains significantly increased the protein content of cassava peel. Rice husk stimulated maximum laccase (2556 U/L) and lignin peroxidase (24 U/L) production by the strains M109RQY and M609RQY, respectively. Furthermore, cassava peel stimulated maximum manganese-dependent peroxidase (141 U/L) production by the strain M109RQY. The de-lignified rice straw and the nutritionally-improved cassava peel could serve as potential animal feed supplements.
    Matched MeSH terms: Biodegradation, Environmental
  18. Nor MH, Mubarak MF, Elmi HSh, Ibrahim N, Wahab MF, Ibrahim Z
    Bioresour Technol, 2015 Aug;190:458-65.
    PMID: 25799955 DOI: 10.1016/j.biortech.2015.02.103
    A double-chambered membrane microbial fuel cell (MFC) was constructed to investigate the potential use of natural microflora anaerobic palm oil mill effluent (POME) sludge and pure culture bacteria isolated from anaerobic POME sludge as inoculum for electricity generation. Sterilized final discharge POME was used as the substrate with no addition of nutrients. MFC operation using natural microflora anaerobic POME sludge showed a maximum power density and current density of 85.11mW/m(2) and 91.12mA/m(2) respectively. Bacterial identification using 16S rRNA analysis of the pure culture isolated from the biofilm on the anode MFC was identified as Pseudomonas aeruginosa strain ZH1. The electricity generated in MFC using P. aeruginosa strain ZH1 showed maximum power density and current density of 451.26mW/m(2) and 654.90mA/m(2) respectively which were five times higher in power density and seven times higher in current density compared to that of MFC using anaerobic POME sludge.
    Matched MeSH terms: Biodegradation, Environmental
  19. Munck C, Thierry E, Gräßle S, Chen SH, Ting ASY
    J Environ Manage, 2018 May 15;214:261-266.
    PMID: 29533823 DOI: 10.1016/j.jenvman.2018.03.025
    The isolate Coriolopsis sp. (1c3) was cultured on muslin cloth to induce formation of filamentous biofilm. The biofilm and the free-mycelium forms (control) were then used to treat two triphenylmethane dyes; Cotton Blue (CB) and Crystal Violet (CV). The biofilm comprised primarily of a compact mass of mycelium while sparse mycelium network was detected in free-mycelium forms. Results revealed significant decolourization activities by filamentous biofilm of 1c3 for CB (79.6%) and CV (85.1%), compared to free-mycelium forms (72.6 and 58.3%, for CB and CV, respectively). Biodegradation occurred in both biofilm and free-mycelium forms. FTIR spectra revealed that biofilm formation (stacking of mycelium), did not have severe implications to the number and types of functional groups available for dye biosorption. The findings here suggested that formation of biofilm in 1c3 was induced effectively on muslin cloth, leading to enhanced decolourization activities. This technology is simple, feasible and can be adopted and further improved to obtain biofilm to enhance their dye removal efficiency in aqueous solutions.
    Matched MeSH terms: Biodegradation, Environmental
  20. Zakaria ZA, Zakaria Z, Surif S, Ahmad WA
    J Hazard Mater, 2007 Sep 5;148(1-2):164-71.
    PMID: 17368716
    Acinetobacter haemolyticus, a Gram-negative aerobic locally isolated bacterium, immobilized on wood-husk showed the ability to detoxify Cr(VI) to Cr(III). Wood-husk, a natural cellulose-based support material, packed in an upward-flow column was used as support material for bacterial attachment. Around 97% of the Cr(VI) in wastewater containing 15 mg L(-1) of Cr(VI) was reduced at a flow rate of 8.0 mL min(-1). The wastewater containing Cr(VI) was added with liquid pineapple wastewater as nutrient source for the bacteria. Electron microscopic examinations of the wood-husk after 42 days of column operation showed gradual colonization of the wood-husk by bacterial biofilm. The use of 0.1% (v/v) formaldehyde as a disinfecting agent inhibited growth of bacteria present in the final wastewater discharge. This finding is important in view of the ethical code regarding possible introduction of exogenous bacterial species into the environment.
    Matched MeSH terms: Biodegradation, Environmental*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links