Displaying publications 61 - 80 of 250 in total

Abstract:
Sort:
  1. Kannan TP, Nik Ahmad Shah NL, Azlina A, Samsudin AR, Narazah MY, Salleh M
    Med J Malaysia, 2004 May;59 Suppl B:168-9.
    PMID: 15468871
    The present study is aimed at finding the mutagenicity and cytotoxicity of dense form of synthetic hydroxyapatite (Source: School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia) in the blood of sheep. The biomaterial was implanted in the tibia of Malin, an indigenous sheep breed of Malaysia. Blood was collected from the sheep before implantation of the biomaterial, cultured and a karyological study was made. Six weeks after implantation, blood was collected from the same animal, cultured and screened for chromosome aberrations. The mitotic indices and karyological analysis indicated that the implantation of synthetic hydroxyapatite (dense form) did not produce any cytotoxicity or chromosome aberrations in the blood of sheep.
    Matched MeSH terms: Bone and Bones/pathology
  2. Ruszymah BH
    Med J Malaysia, 2008 Jul;63 Suppl A:27-8.
    PMID: 19024966
    Tissue engineering applies the principle of engineering and life sciences towards the development of biological substitute that restore, maintain or improve tissue or organ function. Scientists grow tissues or organs in vitro and implant them when the body is unable to prompt into healing itself. This presentation aims to highlight the potential clinical application of engineered tissues being researched on at the Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Centre.
    Matched MeSH terms: Bone and Bones/cytology*
  3. Munirah S, Samsudin OC, Chen HC, Salmah SH, Aminuddin BS, Ruszymah BH
    Med J Malaysia, 2008 Jul;63 Suppl A:35-6.
    PMID: 19024971
    Chondrocytes were isolated from articular cartilage biopsy and were cultivated in vitro. Approximately 30 million of cultured chondrocytes per ml were incorporated with autologous plasma-derived fibrin to form three-dimensional construct. Full-thickness punch hole defects were created in lateral and medial femoral condyles. The defects were implanted either with the autologous 'chondrocytes-fibrin' construct (ACFC), autologous chondrocytes (ACI) or fibrin blank (AF). Sheep were euthanized after 12 weeks. The gross morphology of all defects treated with ACFC implantation, ACI and AF exhibited median scores which correspond to a nearly normal appearance according to the International Cartilage Repair Society (ICRS) classification. ACFC significantly enhanced cartilage repair compared to ACI and AF in accordance with the modified O'Driscoll histological scoring scale. The relative sulphated glycosaminoglycans content (%) was significantly higher (p < 0.05) in ACFC when compared to control groups; ACI vs. fibrin only vs. untreated (blank). Results showed that ACFC implantation exhibited superior cartilage-like tissue regeneration compared to ACI. If the result is applicable to the human, it possibly will improve the existing treatment approaches for cartilage restoration in orthopaedic surgery.
    Matched MeSH terms: Bone and Bones
  4. Panagiotopoulou O, Iriarte-Diaz J, Wilshin S, Dechow PC, Taylor AB, Mehari Abraha H, et al.
    Zoology (Jena), 2017 10;124:13-29.
    PMID: 29037463 DOI: 10.1016/j.zool.2017.08.010
    Finite element analysis (FEA) is a commonly used tool in musculoskeletal biomechanics and vertebrate paleontology. The accuracy and precision of finite element models (FEMs) are reliant on accurate data on bone geometry, muscle forces, boundary conditions and tissue material properties. Simplified modeling assumptions, due to lack of in vivo experimental data on material properties and muscle activation patterns, may introduce analytical errors in analyses where quantitative accuracy is critical for obtaining rigorous results. A subject-specific FEM of a rhesus macaque mandible was constructed, loaded and validated using in vivo data from the same animal. In developing the model, we assessed the impact on model behavior of variation in (i) material properties of the mandibular trabecular bone tissue and teeth; (ii) constraints at the temporomandibular joint and bite point; and (iii) the timing of the muscle activity used to estimate the external forces acting on the model. The best match between the FEA simulation and the in vivo experimental data resulted from modeling the trabecular tissue with an isotropic and homogeneous Young's modulus and Poisson's value of 10GPa and 0.3, respectively; constraining translations along X,Y, Z axes in the chewing (left) side temporomandibular joint, the premolars and the m1; constraining the balancing (right) side temporomandibular joint in the anterior-posterior and superior-inferior axes, and using the muscle force estimated at time of maximum strain magnitude in the lower lateral gauge. The relative strain magnitudes in this model were similar to those recorded in vivo for all strain locations. More detailed analyses of mandibular strain patterns during the power stroke at different times in the chewing cycle are needed.
    Matched MeSH terms: Bone and Bones/physiology*
  5. Roszalina R, Chai WL, Ngeow WC, Roslan AR
    Med J Malaysia, 2002 Jun;57(2):246-50.
    PMID: 24326664
    Osteoradionecrosis is a severe debilitating complication; it may occur from radiotherapy to the bones. It is a dental surgeon's nightmare as it may be long standing and difficult to manage. Osteoradionecrosis is characterised by hypoxia, hypocellularity and hypovascularity of the affected tissue. This paper reviews osteoradionecrosis in relation to dental treatment.
    Matched MeSH terms: Bone and Bones*
  6. Mahmood, W.A., Watkinson, A.C., Rooney, J.
    Ann Dent, 2000;7(1):-.
    MyJurnal
    The CO2 laser has been actively used clinically for soft tissue surgery. The advantages have been widely acknowledged. In implant related tissue surgery, the use .6f CO2 laser has been debated on whether the heat generated during the procedure would be detrimental to the bone thus losing the implants through disosseointegration. In this preliminary work, CO2 laser was used to perform a simulated gingivectomy of tissue surrounding plasma coated titanium implants. The purpose was to observe the pattern of heat generated at different levels of the implant body. The safe power range and standard precaution was also identified. The results suggested that power output between 6 Watt to 8 Watt in repeated pulsed mode with duration of 5 seconds is considered safe. With this mode the operator
    Matched MeSH terms: Bone and Bones
  7. Ambu VK, Narayanan P, Ratnasingam V
    J Laryngol Otol, 2001 Sep;115(9):740-2.
    PMID: 11564306
    Laryngeal foreign bodies, especially in children, mostly present as an acute emergency. Few cases of long-standing laryngeal foreign bodies have been reported in the literature. This case illustrates one of the sequelae of a neglected laryngeal foreign body, resulting in significant granulation tissue formation in the larynx, and its management.
    Matched MeSH terms: Bone and Bones
  8. Abdullah AM, Mohamad D, Rahim TNAT, Akil HM, Rajion ZA
    Mater Sci Eng C Mater Biol Appl, 2019 Jun;99:719-725.
    PMID: 30889745 DOI: 10.1016/j.msec.2019.02.007
    This study reports the influence of ZrO2/β-TCP hybridization on the thermal, mechanical, and physical properties of polyamide 12 composites to be suited for bone replacement. Amount of 15 wt% of nano-ZrO2 along with 5,10,15,20 and 25 wt% of micro-β-TCP was compounded with polyamide 12 via a twin-screw extruder. The hybrid ZrO2/β-TCP filled polyamide 12 exhibited higher thermal, mechanical and physical properties in comparison to unfilled polyamide 12 at certain filler loading; which is attributed to the homogenous dispersion of ZrO2/β-TCP fillers particle in polyamide 12 matrix. The hybrid ZrO2/β-TCP filled PA 12 demonstrated an increment of tensile strength by up to 1%, tensile modulus of 38%, flexural strength of 15%, flexural modulus of 45%, and surface roughness value of 93%, as compared to unfilled PA 12. With enhanced thermal, mechanical and physical properties, the newly developed hybrid ZrO2/β-TCP filled PA 12 could be potentially utilized for bone replacement.
    Matched MeSH terms: Bone and Bones/physiology*
  9. Iqbal B, Sarfaraz Z, Muhammad N, Ahmad P, Iqbal J, Khan ZUH, et al.
    J Biomater Sci Polym Ed, 2018 07;29(10):1168-1184.
    PMID: 29460709 DOI: 10.1080/09205063.2018.1443604
    In this study, collagen/alginate/hydroxyapatite beads having different proportions were prepared as bone fillers for the restoration of osteological defects. Ionic liquid was used to dissolve the collagen and subsequently the solution was mixed with sodium alginate solution. Hydroxyapatite was added in different proportions, with the rationale to enhance mechanical as well as biological properties. The prepared solutions were given characteristic bead shapes by dropwise addition into calcium chloride solution. The prepared beads were characterized using FTIR, XRD, TGA and SEM analysis. Microhardness testing was used to evaluate the mechanical properties. The prepared beads were investigated for water adsorption behavior to ascertain its ability for body fluid uptake and adjusted accordingly to the bone cavity. Drug loading and subsequently the antibacterial activity was investigated for the prepared beads. The biocompatibility was assessed using the hemolysis testing and cell proliferation assay. The prepared collagen-alginate-HA beads, having biocompatibility and good mechanical properties, have showed an option of promising biologically active bone fillers for bone regeneration.
    Matched MeSH terms: Bone and Bones
  10. Le MHT, Noor Hayaty AK, Zaini ZM, Dom SM, Ibrahim N, Radzi ZB
    Korean J Orthod, 2019 Jul;49(4):235-245.
    PMID: 31367578 DOI: 10.4041/kjod.2019.49.4.235
    Objective: This study examined bone microstructure restoration after rapid maxillary expansion (RME) with and without corticotomy over multiple retention periods.

    Methods: Eighteen male Dorper sheep were randomly distributed into three groups (n = 6 each group): group 1, RME with corticotomy on the buccal and palatal sides; group 2, conventional RME treatment; and group 3, no treatment. Post-RME, trabecular bone microstructure and new bone formation were evaluated by using microcomputed tomography (microCT) and histomorphometry after a 4- or 12-week retention period. Intergroup differences in bone quality and bone remodeling were analyzed by using two-way analysis of variance with Bonferroni post-hoc test.

    Results: The bone volume fraction (bone volume [BV]/total volume [TV]) values relative to the control in groups 1 and 2 were 54.40% to 69.88% after the 4-week retention period and returned to approximately 80% after the 12-week retention period. The pooled BV/TV values of the banded teeth in groups 1 and 2 were significantly lower than those of the control after the 4-week retention period (p < 0.05). However, after the 12-week retention period, the pooled BV/TV values in group 2 were significantly lower than those in groups 1 and 3 (p < 0.05). Histomorphological analysis showed that the new bone formation area in group 1 was approximately two to three times of those in group 2 and control.

    Conclusions: Corticotomy significantly enhanced the restoration of bone quality after the retention periods for banded teeth. This benefit might result from the increased new bone formation after corticotomy.

    Matched MeSH terms: Bone and Bones
  11. Alyessary AS, Yap AUJ, Othman SA, Rahman MT, Radzi Z
    J Oral Maxillofac Surg, 2018 03;76(3):616-630.
    PMID: 28893543 DOI: 10.1016/j.joms.2017.08.018
    PURPOSE: The present study investigated the effect of piezoelectric sutural ostectomies on accelerated bone-borne sutural expansion.

    MATERIALS AND METHODS: Sixteen male New Zealand white rabbits (20 to 24 weeks old) were randomly divided into 4 experimental groups (n = 4): group 1, conventional rapid sutural expansion; group 2, accelerated sutural expansion; group 3, accelerated sutural expansion with continuous ostectomy; and group 4, accelerated sutural expansion with discontinuous ostectomy. All sutural ostectomies were performed using a piezoelectric instrument (Woodpecker DTE, DS-II, Guangxi, China) before expander application with the rabbits under anesthesia. Modified hyrax expanders were placed across the midsagittal sutures of the rabbits and secured with miniscrew implants located bilaterally in the frontal bone. The hyrax expanders were activated 0.5 mm/day for 12 days (group 1) or with a 2.5-mm initial expansion, followed by 0.5 mm/day for 7 days (groups 2 to 4). After 6 weeks of retention, the bone volume fraction, sutural separation, and new bone formation were evaluated using micro-computed tomography and histomorphometry. Statistical analysis was performed using Kruskal-Wallis and Mann-Whitney U tests and Spearman's rho correlation (P bone formation were observed in groups 1 (63.63%) and 3 (75.93%), respectively. Spearman's correlation showed a strong, positive, and significant correlation (r = 0.932; P bone formation and amount of sutural separation.

    CONCLUSIONS: Piezoelectric sutural ostectomies increased the rate of sutural separation and promoted new sutural bone formation/osteogenesis. Continuous ostectomy gave better results than discontinuous ostectomy.

    Matched MeSH terms: Bone and Bones
  12. Rahmat O, Prepageran N
    Ear Nose Throat J, 2011 Nov;90(11):E26-7.
    PMID: 22109930
    Matched MeSH terms: Bone and Bones
  13. Sivanaesan L, Kwan TK, Perumal R
    Biochem. Int., 1991 Oct;25(3):561-70.
    PMID: 1666829
    Calmodulin, an activator protein in most calcium-dependent processes, was isolated to apparent homogeneity from the femurs of 1-day old chicks using phenyl-Sepharose and high performance liquid chromatography. The purified calmodulin was found to produce a 6-fold increase in the activity of alkaline phosphatase isolated from the same source. A Ca2+ concentration of 10(-5) M was required for the activation. Purification of alkaline phosphatase involved acetone precipitation, DEAE-Sephacel and Sephadex G-200 column chromatography. The enzyme was purified to 540-fold and had a specific activity of 10.75 U/mg protein.
    Matched MeSH terms: Bone and Bones/chemistry
  14. Dai Z, Dang M, Zhang W, Murugan S, Teh SW, Pan H
    Artif Cells Nanomed Biotechnol, 2019 Dec;47(1):1898-1907.
    PMID: 31066314 DOI: 10.1080/21691401.2019.1573183
    Hydroxyapatite (HAP) is a significant bone mineral that establishes bone strength. HAP composites in combination with biodegradable and bioactive polymer poly xylitol sebacic adipate (PXSA) would result in a constant release at target sites. Numerous studies have shown that vitamin K (VK) might possess a vital function in bone metabolism. The purpose of the present study was to inspect the synthesized composite HAP/PXSA/VK in developing polymeric biomaterials composite for the application of bone tissue regeneration. FTIR, X-ray diffraction, SEM and TEM techniques were applied to characterize the prepared composites. The release of VK from the HAP/PXSA/VK composite was evidenced through UV-Vis spectroscopy. In vitro studies proved that the HAP/PXSA/VK composite is appropriate for mesenchymal stem cell culture. Compared to pure HAP prepared following the same method, HAP/PXSA/VK composite provided favourable microstructures and good biodegradation distinctiveness for the application of tissue engineering, as well as tissue in-growth characteristics and improved scaffold cell penetration. This work reveals that the HAP/PXSA/VK composites have the potential for applications in bone tissue engineering.
    Matched MeSH terms: Bone and Bones
  15. Singh VA, Nagalingam J, Saad M, Pailoor J
    Biomed Eng Online, 2010;9:48.
    PMID: 20831801 DOI: 10.1186/1475-925X-9-48
    Sterilization and re-usage of tumour bone for reconstruction after tumour resection is now gaining popularity in the East. This recycle tumour bone needs to be sterilized in order to eradicate the tumour cells before re-implantation for limb salvage procedures. The effect of some of these treatments on the integrity and sterility of the bone after treatment has been published but there has yet been a direct comparison between the various methods of sterilization to determine the one method that gives the best tumour kill without compromising the bone's structural integrity.
    Matched MeSH terms: Bone and Bones/pathology*; Bone and Bones/surgery*
  16. Parithimarkalaignan S, Padmanabhan TV
    J Indian Prosthodont Soc, 2013 Mar;13(1):2-6.
    PMID: 24431699 DOI: 10.1007/s13191-013-0252-z
    Osseointegration, defined as a direct structural and functional connection between ordered, living bone and the surface of a load-carrying implant, is critical for implant stability, and is considered a prerequisite for implant loading and long-term clinical success of end osseous dental implants. The implant-tissue interface is an extremely dynamic region of interaction. This complex interaction involves not only biomaterial and biocompatibility issues but also alteration of mechanical environment. The processes of osseointegration involve an initial interlocking between alveolar bone and the implant body, and later, biological fixation through continuous bone apposition and remodeling toward the implant. The process itself is quite complex and there are many factors that influence the formation and maintenance of bone at the implant surface. The aim of this present review is to analysis the current understanding of clinical assessments and factors that determine the success & failure of osseointegrated dental implants.
    Matched MeSH terms: Bone and Bones
  17. Pazarci O, Torun Y, Ozturk A, Oztemur Z
    Malays Orthop J, 2020 Jul;14(2):83-89.
    PMID: 32983381 DOI: 10.5704/MOJ.2007.016
    Introduction: The performance of the drilling process depends on the characteristics of the drilling equipment and surgeon's skill. To our knowledge, no research has focused on multi-parameter analysis of the dynamic behaviour of drills during the drilling process. This study aimed to characterise the physical changes and effects of different drills attached to a robotic arm during drilling of artificial bones in a standardised experimental setup.

    Material and Methods: Drilling processes using three brands of drills attached to a robotic arm were compared in terms of thrust force, vibration, noise level, speed deviation, and temperature. A standardised experimental setup was constructed, and measurement data were analysed statistically. Identical artificial bones were drilled 10 times with each drill.

    Results: Thrust force measurements, which varied through the cortex and medulla, showed expressive differences for each drill for maximum and mean values (p<0.001). Meaningful differences were obtained for mean vibration values and noise level (p<0.001). Speed variation measurements in drilling showed conspicuous differences with confident statistics (p<0.001). Induced temperature values were measured statistically for Drill 1, Drill 2, and Drill 3 as 78.38±11.49°C, 78.11±7.79°C, and 89.77±7.79°C, respectively.

    Conclusion: Thrust force and drill bit temperature were strongly correlated for each drill. Vibration values and noise level, which also had an influential relationship, were in the acceptable range for all experiments. Both thrust force and speed deviation information could be used to detect the drill bit status in the bone while drilling.

    Matched MeSH terms: Bone and Bones
  18. Pramanik S, Ataollahi F, Pingguan-Murphy B, Oshkour AA, Osman NAA
    Sci Rep, 2015 May 07;5:9806.
    PMID: 25950377 DOI: 10.1038/srep09806
    Scaffold design from xenogeneic bone has the potential for tissue engineering (TE). However, major difficulties impede this potential, such as the wide range of properties in natural bone. In this study, sintered cortical bones from different parts of a bovine-femur impregnated with biodegradable poly(ethylene glycol) (PEG) binder by liquid phase adsorption were investigated. Flexural mechanical properties of the PEG-treated scaffolds showed that the scaffold is stiffer and stronger at a sintering condition of 1000°C compared with 900°C. In vitro cytotoxicity of the scaffolds evaluated by Alamar Blue assay and microscopic tests on human fibroblast cells is better at 1000°C compared with that at 900°C. Furthermore, in vitro biocompatibility and flexural property of scaffolds derived from different parts of a femur depend on morphology and heat-treatment condition. Therefore, the fabricated scaffolds from the distal and proximal parts at 1000°C are potential candidates for hard and soft TE applications, respectively.
    Matched MeSH terms: Bone and Bones*
  19. Tan ML, Abrams SA, Osborn DA
    Cochrane Database Syst Rev, 2020 Dec 11;12(12):CD013046.
    PMID: 33305822 DOI: 10.1002/14651858.CD013046.pub2
    BACKGROUND: Vitamin D deficiency is common worldwide, contributing to nutritional rickets and osteomalacia which have a major impact on health, growth, and development of infants, children and adolescents. Vitamin D levels are low in breast milk and exclusively breastfed infants are at risk of vitamin D insufficiency or deficiency.

    OBJECTIVES: To determine the effect of vitamin D supplementation given to infants, or lactating mothers, on vitamin D deficiency, bone density and growth in healthy term breastfed infants.

    SEARCH METHODS: We used the standard search strategy of Cochrane Neonatal to 29 May 2020 supplemented by searches of clinical trials databases, conference proceedings, and citations.

    SELECTION CRITERIA: Randomised controlled trials (RCTs) and quasi-RCTs in breastfeeding mother-infant pairs comparing vitamin D supplementation given to infants or lactating mothers compared to placebo or no intervention, or sunlight, or that compare vitamin D supplementation of infants to supplementation of mothers.

    DATA COLLECTION AND ANALYSIS: Two review authors assessed trial eligibility and risk of bias and independently extracted data. We used the GRADE approach to assess the certainty of evidence.

    MAIN RESULTS: We included 19 studies with 2837 mother-infant pairs assessing vitamin D given to infants (nine studies), to lactating mothers (eight studies), and to infants versus lactating mothers (six studies). No studies compared vitamin D given to infants versus periods of infant sun exposure. Vitamin D supplementation given to infants: vitamin D at 400 IU/day may increase 25-OH vitamin D levels (MD 22.63 nmol/L, 95% CI 17.05 to 28.21; participants = 334; studies = 6; low-certainty) and may reduce the incidence of vitamin D insufficiency (25-OH vitamin D < 50 nmol/L) (RR 0.57, 95% CI 0.41 to 0.80; participants = 274; studies = 4; low-certainty). However, there was insufficient evidence to determine if vitamin D given to the infant reduces the risk of vitamin D deficiency (25-OH vitamin D < 30 nmol/L) up till six months of age (RR 0.41, 95% CI 0.16 to 1.05; participants = 122; studies = 2), affects bone mineral content (BMC), or the incidence of biochemical or radiological rickets (all very-low certainty). We are uncertain about adverse effects including hypercalcaemia. There were no studies of higher doses of infant vitamin D (> 400 IU/day) compared to placebo. Vitamin D supplementation given to lactating mothers: vitamin D supplementation given to lactating mothers may increase infant 25-OH vitamin D levels (MD 24.60 nmol/L, 95% CI 21.59 to 27.60; participants = 597; studies = 7; low-certainty), may reduce the incidences of vitamin D insufficiency (RR 0.47, 95% CI 0.39 to 0.57; participants = 512; studies = 5; low-certainty), vitamin D deficiency (RR 0.15, 95% CI 0.09 to 0.24; participants = 512; studies = 5; low-certainty) and biochemical rickets (RR 0.06, 95% CI 0.01 to 0.44; participants = 229; studies = 2; low-certainty). The two studies that reported biochemical rickets used maternal dosages of oral D3 60,000 IU/day for 10 days and oral D3 60,000 IU postpartum and at 6, 10, and 14 weeks. However, infant BMC was not reported and there was insufficient evidence to determine if maternal supplementation has an effect on radiological rickets (RR 0.76, 95% CI 0.18 to 3.31; participants = 536; studies = 3; very low-certainty). All studies of maternal supplementation enrolled populations at high risk of vitamin D deficiency. We are uncertain of the effects of maternal supplementation on infant growth and adverse effects including hypercalcaemia. Vitamin D supplementation given to infants compared with supplementation given to lactating mothers: infant vitamin D supplementation compared to lactating mother supplementation may increase infant 25-OH vitamin D levels (MD 14.35 nmol/L, 95% CI 9.64 to 19.06; participants = 269; studies = 4; low-certainty). Infant vitamin D supplementation may reduce the incidence of vitamin D insufficiency (RR 0.61, 95% CI 0.40 to 0.94; participants = 334; studies = 4) and may reduce vitamin D deficiency (RR 0.35, 95% CI 0.17 to 0.72; participants = 334; studies = 4) but the evidence is very uncertain. Infant BMC and radiological rickets were not reported and there was insufficient evidence to determine if maternal supplementation has an effect on infant biochemical rickets. All studies enrolled patient populations at high risk of vitamin D deficiency. Studies compared an infant dose of vitamin D 400 IU/day with varying maternal vitamin D doses from 400 IU/day to > 4000 IU/day. We are uncertain about adverse effects including hypercalcaemia.

    AUTHORS' CONCLUSIONS: For breastfed infants, vitamin D supplementation 400 IU/day for up to six months increases 25-OH vitamin D levels and reduces vitamin D insufficiency, but there was insufficient evidence to assess its effect on vitamin D deficiency and bone health. For higher-risk infants who are breastfeeding, maternal vitamin D supplementation reduces vitamin D insufficiency and vitamin D deficiency, but there was insufficient evidence to determine an effect on bone health. In populations at higher risk of vitamin D deficiency, vitamin D supplementation of infants led to greater increases in infant 25-OH vitamin D levels, reductions in vitamin D insufficiency and vitamin D deficiency compared to supplementation of lactating mothers. However, the evidence is very uncertain for markers of bone health. Maternal higher dose supplementation (≥ 4000 IU/day) produced similar infant 25-OH vitamin D levels as infant supplementation of 400 IU/day. The certainty of evidence was graded as low to very low for all outcomes.

    Matched MeSH terms: Bone and Bones/physiology*
  20. Ballouze R, Marahat MH, Mohamad S, Saidin NA, Kasim SR, Ooi JP
    J Biomed Mater Res B Appl Biomater, 2021 Oct;109(10):1426-1435.
    PMID: 33484103 DOI: 10.1002/jbm.b.34802
    Autologous bone grafting remains the gold standard for almost all bone void-filling orthopedic surgery. However, autologous bone grafting has several limitations, thus scientists are trying to identify an ideal synthetic material as an alternative bone graft substitute. Magnesium-doped biphasic calcium phosphate (Mg-BCP) has recently been in the spotlight and is considered to be a potential bone substitute. The Mg-BCP is a mixture of two bioceramics, that is, hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP), doped with Mg2+ , and can be synthesized through chemical wet-precipitation, sol-gel, single diffusion gel, and solid state reactions. Regardless of the synthesis routes, it is found that the Mg2+ preferentially accommodates in β-TCP lattice instead of the HA lattice. The addition of Mg2+ to BCP leads to desirable physicochemical properties and is found to enhance the apatite-forming ability as compared to pristine BCP. In vitro results suggest that the Mg-BCP is bioactive and not toxic to cells. Implantation of Mg-BCP in in vivo models further affirmed its biocompatibility and efficacy as a bone substitute. However, like the other bioceramics, the optimum physicochemical properties of the Mg-BCP scaffold have yet to be determined. Further investigations are required regarding Mg-BCP applications in bone tissue engineering.
    Matched MeSH terms: Bone and Bones/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links