MATERIALS AND METHODS: A total of 180 root slices from 60 single-canal anterior teeth were prepared and assigned to 5 experimental groups (n = 36 in each group), designated as G1 (AH Plus®/gutta-percha), G2 (TotalFill BC™ sealer/BC-coated gutta-percha), G3 (TotalFill BC™ sealer/gutta-percha), G4 (EndoREZ® sealer/EndoREZ®-coated gutta-percha), and G5 (EndoREZ® sealer/gutta-percha). Push-out bond strengths of 18 root slices in each group were assessed at 2 weeks and the other 18 at 3 months after obturation using a universal testing machine. Data were analyzed using repeated measures ANOVA. An independent t test was used to compare the mean push-out bond strength for each group at 2 weeks and 3 months after obturation.
RESULTS: The mean push-out bond strengths of G4 and G5 were significantly lower than those of G1, G2, and G3 (p < 0.05) at both 2 weeks (G1: 1.46 ± 0.29 MPa, G2: 1.74 ± 0.43 MPa, G3: 1.74 ± 0.43 MPa, G4: 0.66 ± 0.31 MPa, G5: 0.74 ± 0.47 MPa) and 3 months after obturation (G1: 1.70 ± 1.05 MPa, G2: 3.69 ± 1.20 MPa, G3: 2.84 ± 0.83 MPa, G4: 0.14 ± 0.05 MPa, G5: 0.24 ± 0.10 MPa). The mean push-out bond strengths of G2 (3.69 ± 1.20 MPa) and G3 (2.84 ± 0.83 MPa) were higher at 3 months compared to 2 weeks after obturation (G2: 1.74 ± 0.43 MPa, G3: 1.33 ± 0.29 MPa).
CONCLUSION: The TotalFill BC™ obturation system (G2) and the TotalFill BC™ sealer/gutta-percha (G3) showed comparable bond strength to AH Plus®. Their bond strength increased over time, whereas the EndoREZ® obturation system (G4) and EndoREZ sealer (G5) had low push-out bond strength which decreased over time.
METHODOLOGY: This study was designed as a parallel, double blind, randomized controlled trial where symptomatic mature permanent teeth with carious pulp exposure meeting the inclusion criteria were randomly treated with full pulpotomy using one of 3 calcium silicate-based materials (ProRoot MTA, Biodentine and TotalFill). Full pulpotomy was performed, and haemostasis was achieved via a cotton pellet moistened with 2.5% NaOCl. A 3-mm layer of the calcium silicate-based material was randomly placed as the pulpotomy agent through a block randomization process followed by a resin-based composite restoration. Postoperative periapical radiograph was taken. Clinical and radiographic evaluation were completed after 6 months and 1 year. The patient and evaluator were blinded to the type of materials used. Pain levels were scored preoperatively and 7 days after treatment. Effect of potential prognosis factors including gender, age, diagnosis, bleeding time and type of caries were also analysed.
RESULTS: One hundred and sixty-four teeth in 146 patients received full pulpotomy and were randomly assigned to either the tested or control material through block randomization technique (50 MTA, 50 Biodentine and 64 TotalFill). The age ranged from 10 to 70 years. The diagnosis was irreversible pulpitis in 112 teeth (72%) and reversible pulpitis in 28 teeth (28%). The majority of patients presented with severe pain, during the first week 96.9% reported complete relief of pain or mild pain. Four cases had immediate failure. At 6 months the overall success rate was 92.2%, over 1 year 156/164 teeth attended follow-up with 12 failures (2 restorative failures and 10 endodontic failures), the overall success of pulpotomy at 1 year was 92.3% (144/156); 91.8% in MTA, 93.3% in Biodentine and 91.9% in TotalFill with no significant difference amongst the groups and no side effects observed. No significant association was evident between outcome and the investigated variables.
CONCLUSIONS: The 1-year success rate of full pulpotomy did not differ significantly between Biodentine pulpotomy, TotalFill pulpotomy, and MTA pulpotomy. The study was registered with clinical trials; registration number (NCT04345263).
METHODS: The questionnaire comprised 3 sections. The first part comprised questions regarding demographic features. The second part comprised questions on how treatment plans change according to factors such as nature, location, number and size of the pulp exposure, and patients' age. The third part composed of questions on the common materials and techniques used in DPC. To estimate the effect size, the risk ratio (RR) and 95% confidence interval (CI) were calculated using a meta-analysis software.
RESULTS: A tendency toward more invasive treatment was observed for the clinical scenario with carious-exposed pulp (RR = 2.86, 95% CI: 2.46, 2.32; P calcium silicate-based materials were preferred over calcium hydroxide-based materials (RR = 0.58, 95% CI: 0.44, 0.76; P calcium silicate-based materials appears to have replaced calcium hydroxide-based materials.
MATERIALS AND METHODS: Thirty single-rooted mandibular premolars were standardized and prepared using ProTaper rotary files. The specimens were divided into a control group and two experimental groups receiving Diapex and Odontopaste medicament, either filled with iRoot SP or OrthoMTA, for 1 week. Each root was sectioned transversally, and the push-out bond strength and failure modes were evaluated. The data were analyzed using Kruskal Wallis and Mann-Whitney U post hoc test.
RESULTS: There was no significant difference between the bond strength of iRoot SP and OrthoMTA without medicaments and with the prior placement of Diapex (p value > 0.05). However, iRoot SP showed significantly higher bond strength with the prior placement of Odontopaste (p value < 0.05). Also, there was no association between bond strength of OrthoMTA with or without intracanal medicament (p value > 0.05) and between failure mode and root filling materials (p value > 0.05). The prominent failure mode for all groups was cohesive.
CONCLUSION: Prior application of Diapex has no effect on the bond strength of iRoot SP and OrthoMTA. However, Odontopaste improved the bond strength of iRoot SP.
CLINICAL SIGNIFICANCE: Dislodgment resistance of root canal filling from root dentin could be an indicator of the durability and prognosis of endodontic treated teeth.